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Abstract: Much effort in RTL design has been devoted to developing “push-button”
types of tools. However, given the highly complex nature, and lack of
control on RTL design, push-button types of synthesis is not accepted
by most designers. Interactive design space exploration with assistance
of tools and algorithms can be more effective because it provides control
of all steps of synthesis.

In this paper, we propose an interactive RTL design environment,
which enables designers to control design steps. In our interactive envi-
ronment, the user can control the design process at every stage, observe
the effects of design decisions, and manually override synthesis decisions
at will. Finally, we present a set of experimental results that demon-
strate the benefits of our approach. Our combination of automated
tools and interactive control by the designer results in quickly gener-
ated RTL designs with better performance than fully-automatic results,
comparable to fully manually optimized designs.

1. INTRODUCTION
Automating RTL synthesis is very complicated issue. It is known

that the majority of synthesis tasks are NP-complete problems. Hence,
the design time becomes large, or the results are suboptimal, resulting
designs cannot satisfy the performance or area demands of real-world
constraints.

To develop a feasible approach for RTL synthesis, we have substi-
tuted the goal of a completely automated, “push-button” synthesis sys-
tem with one that allows to maximally utilize the human designer’s
insights. This approach is called Interactive synthesis methodology. In
this approach, the designer can control the design process at every stage,
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observe the effects of design decisions, and manually override synthesis
decisions at will. This is facilitated through a convenient graphical user
interface (GUI).

Hardware description languages (HDLs) such as Verilog HDL and
VHDL are most commonly used as input to RTL design. However, sys-
tem designers often write models using programming languages such as
C/C++ to estimate the system performance and to verify the functional
correctness of the design, even to refine the design into implementation.

C/C++ offers fast simulation as well as a vast amount of legacy code
and libraries which facilitate the task of system modeling. To implement
parts of the design modeled in C/C++ in hardware using synthesis tools,
designers must then manually translate these parts into a synthesizable
subset of a HDL. This process is well known for being both time con-
suming and error prone. Moreover, it can be eliminated completely.
The use of C-based languages to describe both hardware and software
will accelerate the design process and facilitate the software/hardware
migration. Hardware synthesis tools from C/C++ can then be used to
map the C/C++ models into logic netlists.

The rest of the paper is organized as follows: section 2 shows re-
lated work and section 3 introduces our RTL design environment and
the program flow of the proposed RTL synthesis tool. Section 4 shows
the experimental results. Section 5 concludes the paper with a brief
summary.

2. RELATED WORK
Issues in RTL modeling, RTL design and behavioral synthesis, aka.

High-Level Synthesis (HLS), have been studied for more than a decade
now [3].

In the recent years, a few projects have been looking at means to use
C/C++ as an input to current design flows [4, 6, 16]. Constructs are
added to model coarse-grain parallelism, communication and data-types.
These constructs can either be defined as new syntactic constructs, hence
creating a new language [4]. They can also be implemented as part of
a C++ class library [6]. In order to facilitate the mapping of C/C++
models into hardware, several tools exist that automatically translate
C/C++ based descriptions into HDL either at the behavioral level or
the register transfer level (RTL) [13, 16, 7].

Many automatic synthesis tools (also known as push-button synthesis)
have been developed, including Olympus [10], OSCAR [11], SPARK [7],

ber [16]. However, these tools provide no means to access the interme-

136

Synopsys Behavioral Compiler [15], Mentor Catapult-C [12], and Cy-



An Interactive Design Environment for C-based High-Level Synthesis

Bus Functional Model

Preprocessing

Super FSMD

RTL Refinement

Cycle-accurateFSMD

Netlist Mapper

Structural RTL

Performance
Analysis

GUI Algorithms

Performance
Analysis

Design decisions

RTL
Library

Figure 1. RTL design flow

diate design models that are created during the synthesis process and to
change important decisions by designers. The designer can specify de-
sign constraints for whole designs and access the behavioral input model
and the structural output model and design constraints.

Some interactive synthesis approaches [8, 9] addressed the importance
of user-interaction with synthesis system. However they have a fixed
design flow, that is, the designer has to perform a sequence of synthesis
tasks in a predefined order and a cycle-accurate simulation model with
complex components is not available for the intermediate stages.

3. RTL DESIGN ENVIRONMENT
In this section, we will describe our RTL design environment inte-

grated in a system-level design flow. The RTL design environment pro-
vides synthesis, refinement and exploration for RTL design as shown in
Figure 1. It includes a graphical user interface (GUI) and a set of tools
to facilitate design flow and perform refinement steps. In our flow, de-
signers or algorithms of automatic tools can make decisions such as clock
period selection, allocation, scheduling and binding. The GUI allows de-
signers to input and change such design decisions. It also enables the
designer to observe the effects of the decisions and to manually override
the decisions at will. Further, the designers can make partial decisions
and then run automatic tools to take care of the rest of the decisions.

We model an RTL design as a Finite State Machine with Data (FSMD)
[1], which is an FSM model with assignment statements added to each
state. The FSMD can completely specify the behavior of an arbitrary
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RTL design. The variables and functions in the FSMD may have differ-
ent interpretations which in turn defines several different styles of RTL
semantics.

In addtion, in order to represent pipelined or multicycled units in a de-
sign in the cycle-accruate FSMD, we have introduced new constructs [2]
such as piped for pipelined units, and after for multicycle units. The
simulation speed of the cycle-accurate FSMD is significantly improved
compared with that of the structural RTL description.

During preprocessing, the behavioral description of custom hardware
in C/C++ will be refined into an SFSMD model where each state is a
basic block of the original description. Also some presynthesis optimiza-
tion techniques including constant propagation, dead code elimination,
and common subexpression elimination are integrated. The generated
FSMD will be the input model of the RTL synthesis.

A performance analysis tool is used to obtain characteristics of the
initial design such as the number of operations, variables and data trans-
fers in each state, which serves as the basis for RTL design exploration.
It also produces quality metrics for RTL design such as the delay and
power of each state and area of the design to help the designers to make
decisions on clock selection, allocation, scheduling and binding.

The refinement tool then automatically transforms the FSMD model
based on relevant design decisions. Finally, the structural RTL model is
produced by a netlist mapper, ready to feed into traditional design tools
for logic synthesis, etc.

3.1 Synthesis Decisions
The refinement engine works on directions called the RTL synthesis

decisions. The synthesis process can either be automated or interactive
as per the designer’s choice. However, the decisions must be input to
the refinement engine using a specific format. For the purpose of our
implementation, we annotated the input model with the set of synthesis
decisions. The refinement tool then detects and parses these annotations
to perform the requisite model transformations. Based on these deci-
sions, the refinement engine imports the required RTL components from
the RTL component library and generates the cycle-accurate FSMD.

The decisions can be made by designers interactively through GUIs
and/or be made through automatic algorithms. The GUIs for interactive
decision-making allows designers to (a) specify decisions (b) override
the decisions, which are already made by the designers or automatic
algorithms (c) partially assign decisions and automatic algorithms will
fill in the rest of decisions.
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The GUI also allows automatic algorithms being plugged in. Thus
it is easily extendible because designers can select an algorithm from a
list of plug-in algorithms such as ASAP, ALAP, list and force-directed
scheduling and graph coloring for binding and so on.
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Figure 2. Allocation window

3.1.1 GUI for Interactive Decision-making. In order to
help designers to make synthesis decisions interactively, we provide an
allocation window and a scheduling & binding window. In allocation
window as shown in Figure 2, designer can see all RTL components in
the RTL component library, select them and set the parameters such as
bit width, size of array and so on [5].

The scheduling & binding window displays the SFSMD in state-opera-
tions table format which contains a series of states, each state containing
a set of operations to be performed in the state, shown in Figure 3. The
state-operations table displays the behavior of a design and all design
decisions made in graphical format. This is, the designer can modify all
design decisions at any time in the design process in the state-operations
table. In the table, State is the current state and NS is next state. CS
is the control step of the expression which is relative to the start time
of the state.

The table also shows statistics such as the lifetimes of all variables,
occurrences of operations, the number of data transfers and the critical
path in number of operations in each state. It also shows the ASAP and
ALAP control step for each expression in each state.

All expressions are scheduled at specified control steps in the schedul-
ing view, which will be assigned to CS in the state-operations table. All
operations are bound to functional units and their ports, which will be
specified in the oper column. Also all operand variables (destination,
source1, source2 ) are mapped to storage units, read/write ports of the
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Figure 3. Scheduling & Binding window for an SFSMD

storage unit, and busses in the binding view. If the variables are mapped
to memory, then the base address needs to be specified as well.

Designers can input, modify all decisions and override decisions which
algorithms made through automatic tools in scheduling & binding win-
dow. Furthermore, the designers can partially specify some of the deci-
sions and then algorithms take care of the rest of decisions still meeting
the specified designer’s decisions.

3.2 Performance Analysis
Several synthesis metrics are implemented to help the designer decide

how to select the allocation and partition a super FSMD description
into control steps. Two important metrics of design cost are operator
occurrences and variable lifetimes. Operator occurrences metric shows
the number of operations of each type used in each state. The maximum
number of occurrences of a certain operator type over all states deter-
mines the required minimum number of functional units to perform that
type of operation. Variable lifetimes metric identifies states in which
state a variable holds a useful value. The maximum number of variables
with overlapped lifetimes over all states determines the required mini-
mum number of storage units. After allocation, performance estimation
calculates the delay and power consumption of each state and the area
of the design.
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4. EXPERIMENTAL RESULTS
We have implemented our interactive RTL synthesis approach in C++

(algorithms, data structure) and Python (GUI). The benchmarks used
are sra (square root approximation), GCD (greatest common divisor),
DIFFEQ (differential equation solver), from high-level synthesis bench-
mark suite.

The different types of implementation of discrete cosine transforma-
tion, DCT (2-dimensional DCT with matrix multiplication), ChenDCT
(2-dimensional DCT implementing Chen algorithm), MP3DCT (1-
dimensional DCT for MP3 Codec) MP3IMDCT (1-dimensional ImDCT
for MP3 Codec) Codebook (codebook search block in the GSM Vocoder
which is employed worldwide for cellular phone networks. The model
was based on the bit-exact reference implementation of the ETSI stan-
dard in ANSI C).

Table 1 lists the characteristics of the designs used in terms of the
number of operations (#OPs) in the input description, which is indica-
tive of the data complexity of the design, and the number of basic blocks
(#BBs), indicative of its control complexity. Also the type and quantity
of each resource allocated to schedule and bind this design for all the
experiments are given in Table 1. The resources indicated in this table
are: ALU is used for arithmetic and logic operations ( +, −, &, |, ,̂
and ∼) or saturated arithmetic operations in Codebook example. ADD
and SUB for addition (+) and subtraction (−) respectively, ASU for
both addition and subtraction, MULT for multiplication (×) in 1 stage
pipeline fashion, DIV for division (÷) in 5 stage pipeline fashion, SQRT
for square root operation in 5 stage pipeline fashion, LU for logic op-
erations (&, |, ,̂ and ∼), SHIFT for left/right shift operation (�, �),
CMP for comparison (≥, ≤, , <, ==, ! =, !)

REG is a register with 1 read port and 1 write port and RF is a
register file with 2 read ports and 1 write port. MEM and RAM have 1
read port and 1 write port, and the ROM has 1 read port. The number
in parenthesis indicates the size of register files and memories.

For our experiments, we implements a heuristic based on list schedul-
ing algorithm [14] which performs scheduling and binding at the same
time (Automatic in Table 2). The heuristic considers the allocation of
units and the number of ports of allocated units and busses. After ap-
plying the heuristic algorithm, we applied some optimization techniques
to improve the performance of designs on the RTL design environment
(Automatic + Manual in Table 2), while Manual shows the examples
designed by designers.
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For MP3DCT and MP3IMDCT, a designer manually implements control
pipelining by inserting pipeline registers on the output logic of the con-
troller, which can reduce the clock period by reducing the delay from
the output of output logic of the controller to its datapath. In addition,
all control words are stored in program ROM.

For Codebook, the designer inserts registers at the output of func-
tional units to reduce the clock period and implements data forwarding
from output of a function unit to the input of other functions units.
In addition, the special counters are introduced to calculate the index
of arrays in the memory (inside loops), which is accessed by row and
column by two indices.

We present the logic synthesis result obtained after synthesizing the
RTL Verilog generated by Netlist mapper using the Synopsys Design
Compiler logic synthesis tool. The LSI-10K synthesis library is used for
technology mapping and components are allocated from the Synopsys
DesignWare Foundation library.

The logic synthesis results are presented in terms of three metrics:
the unit area (in terms of synthesis library used), the number of states
(states) in FSM controller, the critical path length (clock period, CP
in nanoseconds) and the number of clock cycles (cycles) to execute the
design. The critical path length is the length of the longest combina-
tional path in the netlist as reported by static timing analysis tool and
it dictates the clock period of the design.

Table 1. Characteristics of synthesis examples

Examples #OPs #BBs resources

GCD 5 (3) 9 1 SUB, 1 CMP, 1 LU, 4 REGs

DIFFEQ 11 (10) 6 1 ASU, 1 CMP, 1 MULT, 16 REGs

DCT 21 (8) 22
1 ADD, 1 MULT, 3 COUNTs, 3 REGs,

3 RAM (64), 2 ROM (64)

ChenDCT 167 (42) 27
1 ADD, 1 SUB, 1 SHIFT, 1 MULT,

1 CMP, 16 REG, 1 RAM (128)

MP3DCT 330 (0) 3
1 ASU, 1 SHIFT, 1 MULT, 1 CMP,

2 RFs (64)

MP3IMDCT 195 (178) 49
1 ASU, 1 SHIFT, 1 MULT, 1 CMP,

2 RFs (64)

Codebook 604 (253) 197
1 ALU, 1 CMP, 1 MULT, 1 DIV,

1 MAC, 1 SQRT, 16 REGs, 1 RAM (2048)

The speedup, as shown in Table 3 of a design by Automatic +
Manual and Manual is defined as follows:

Speedupx =
CPAuto. × cyclesAuto. − CPx × cyclesx

CPAuto. × cyclesAuto.
× 100
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Table 2. Synthesis result

Examples
Automatic Automatic + Manual Manual

area CP cycles area CP cycles area CP cycles

GCD 5154 35.7 34 5177 33.9 34 — — —
DIFFEQ 17484 37.6 113 16314 31.7 93 — — —

DCT 95408 60.1 6914 95173 50.9 5792 114090 42.6 4225
ChenDCT 32487 49.0 2469 31155 45.4 2129 — — —
MP3DCT 85786 61.2 565 83780 54.9 308 103357 47.7 308

MP3IMDCT 93069 55.0 382 91669 50.9 209 70239 44.3 209
Codebook 991215 71.4 56492 991065 70.2 43195 987162 55.5 33000

Table 3. Performace improvement

Examples Automatic + Manual Manual

GCD 5.0% —

DIFFEQ 30.6% —

DCT 29.1% 56.7%

ChenDCT 20.1% —

MP3DCT 51.1% 57.5%

MP3IMDCT 49.4% 55.9%

Codebook 24.8% 54.6%

where x is either Automatic + Manual or Manual.
Through the experiments, the performace of the design by the heuris-

tic algorithm is the worst among 3 implementations, but after modified
the scheduling and binding result by users, the designs get about 30%
improvement, specially in terms of clock cycles, and become close to the
designs by human.

5. CONCLUSION AND FUTURE WORK
In this paper, we proposed an interactive C-based RTL design envi-

ronment which takes full advantage of the designer’s insight by allowing
to enter, modify, override all decisions at will.

It has been developed and integrated into SoC design environment
in order to validate our approach. This allows designers to evaluate
several design points during fast exploration. Our experimental results
show that the proposed solution to improve behavioral modeling of RTL
designs is not only feasible and practical for real-world designs, it also
comes with a significant speed-up in simulation.

Future work in this direction will involve comparison between our
approach and commercial tools and the scheduling of bus protocols under
timing constraint in clock cycles.
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