
Eliminating Race Conditions in System-Level

Models by using Parallel Simulation Infrastructure
Weiwei Chen, Che-Wei Chang, Xu Han, Rainer Dömer

Center for Embedded Computer Systems

University of California, Irvine, USA

{weiwei.chen,cheweic,hanx,doemer}@uci.edu

Abstract—For a top-down system design flow, a well-written
specification model of an embedded system is crucial for its
successful design and implementation. However, the task of
writing a correct system-level model is difficult, as it involves,
among other tasks, the insertion of parallelism. In this paper, we
focus on ensuring model correctness under parallel execution. In
particular, the model must be free of race conditions in all accesses
to shared variables, so that a safe parallel implementation is
possible. Eliminating race conditions is difficult because discrete
event simulation often hides such flaws. In particular, the absence
of simulation errors does not prove the correctness of the model.
We propose to use advanced conflict analysis in the compiler,
fast checking in a parallel simulator, and a novel race-condition
diagnosis tool, that not only exposes all race conditions, but also
locates where and when such problems occur. Our experiments
have revealed a number of dangerous race conditions in existing
embedded multi-media application models and enabled us to
efficiently and safely eliminate these hazards.

I. INTRODUCTION

At the starting point of the electronic system-level (ESL)

design flow, a well-defined specification model of the intended

embedded system is critical for rapid design space exploration

and efficient synthesis and refinement towards a detailed im-

plementation at lower abstraction levels. Typically, the initial

specification model is written using system-level description

languages (SLDLs), such as SystemC and SpecC. In contrast

to the original application sources, which usually are specified

as unstructured sequential C source code, a well-defined

system model contains a clear structural hierarchy, separate

computation and communication, and explicit parallelism.

In this paper, we focus on the correct specification of

potential parallelism in the system model. In order to utilize

parallel processing for low power and high performance in

embedded systems, ESL models must contain explicit and

efficient parallelism. Notably, parallelization is a particularly

important but also very difficult task in system modeling.

Most reference code for embedded applications is sequen-

tially specified. To parallelize the application, the designer

must first identify suitable functions that can be efficiently

parallelized, and then recode the model accordingly to ex-

pose the parallelism. Because identifying effective thread-

level parallelism requires the designer’s knowledge and under-

standing of the algorithm and therefore is a manual task, the

model recoding is typically a tedious and error-prone process.

Automating the coding, validation, and debugging is highly

desirable.

In this paper, we address the problem of ensuring that

the functionality of the model remains correct during parallel

execution. In particular, the system model must be free of race

conditions for all accesses to any shared variables, so that a

safe parallel execution and implementation is possible.

Ensuring that there are no race conditions proves very dif-

ficult for the system designer, especially because the typically

used discrete event simulation often does not reveal such

mistakes in the model. Even if the simulation fails due to

encountered race conditions, these are very hard to debug as

the cause for an invalid output value may be hidden deep in

the complex model.

We emphasize that the absence of errors during simulation

does not imply the absence of any dangerous race conditions

in the model. Even parallel simulation on multi-core hosts,

such as [11], [12], [4], for which the likelihood is higher, that

a race condition leads to an error, cannot guarantee that all

situations are exposed.

To solve this race condition problem, we use our parallel

simulation infrastructure [5]. Specifically, we propose a combi-

nation of (a) advanced static conflict analysis in the compiler,

(b) table-based checking in a parallel simulator, and (c) a

novel race-condition diagnosis tool. Together, these tools not

only discover all race conditions that can potentially affect

the concurrent execution, but also provide the designer with

detailed source line information of where and when these

problems occur.

II. OVERVIEW AND APPROACH

In the context of validating a parallel system model, our

proposed approach utilizes the compiler and simulator tools

from a parallel simulation infrastructure to automatically de-

tect and diagnose potential data hazards in the model. As a

result, the system designer can quickly resolve the hazards due

to race conditions and produce a safe parallel model.

A. Creating Parallel System Models

Exposing thread-level parallelism in sequential applications

models requires three main steps:

1) Identify the blocks to parallelize: The first step is to

understand the application and its algorithms. With the

help of statistics from a profiler, the designer can then

identify suitable blocks in the application with high

978-1-4673-2899-9/12/$31.00 ©2012 IEEE 118

computational complexity for which parallelization is

desirable and likely beneficial.

2) Restructure and recode the model: Through partitioning

of functional blocks and encapsulating them into SLDL

modules, the application is transformed into a system-

level model with proper structure and hierarchy [2]. In

particular, parallel execution is exposed explicitly.

With parallelism inserted into the model structure, af-

fected variables may need to be recoded appropriately to

ensure correct functionality of the model. For example,

the variables involved in the restructuring may need to be

duplicated, relocated into appropriate scope (localized),

or wrapped in channels with explicit communication.

Here, proper data dependency analysis is a critical

component in resolving access conflicts due to paral-

lelization. Performed manually, this is a tedious and

error-prone task especially if the model is of modest or

large size. The designer must locate affected variables,

identify their all their read and write accesses, and make

sure that no invalid accesses exist due to race conditions.

3) Validate the model: The correct functionality of the

model is typically validated through simulation. How-

ever, regular simulators hide many potential access con-

flicts due to their sequential execution. Parallel simu-

lators, such as [4], [12], execute on multi-core CPUs

in parallel and can thus expose some access conflicts

and race conditions. If these lead to invalid simulation

results, this tells the designer that the model has a

problem, but not where it is. Most often it is then very

difficult to locate the cause and correct the problem.

Nevertheless, no existing simulation technique can prove

the absence of race conditions. We will address this

short-coming in this paper by an extension of a parallel

simulation infrastructure.

B. Parallel Discrete Event Simulation (PDES)

System-level models written in SLDLs are typically vali-

dated by discrete event (DE) simulation which is driven by

event notification and time advances. Traditional DE simula-

tion, which is implemented by the reference simulators for

both SystemC [9] and SpecC [7], uses a cooperative multi-

threading model where only one thread can run at any time.

Synchronous PDES approaches, such as proposed in [11],

[12], [4], allow multiple threads to run in parallel on multiple

cores in today’s host PCs. The SLDL simulators are extended

to run threads in parallel in the same simulation cycle, i.e.

same delta and time. However, synchronous PDES imposes

a total order on simulation cycle advances, making them

absolute barriers for thread execution. Available CPU cores

remain idle while waiting for the threads mapped to other

cores to reach the cycle barrier.

Out-of-order PDES [5] is an advanced simulation approach

which breaks the global time and cycle barrier and issues

multiple threads in parallel even if they are in different

simulation cycles. It relies on static conflict analysis at compile

time to generate information about hazards which is then used

by the simulator for safe but fast scheduling decisions. Out-of-

order PDES fully preserves simulation semantics and timing

accuracy, albeit being aggressive in issuing threads in order to

run as many as possible as early as possible.

We will reuse the advanced static analysis of out-of-order

PDES in this paper for detecting and diagnosing race condi-

tions.

C. Shared Variables and Race Conditions

Variables shared among parallel modules in the system

model can cause data hazards, i.e. read-after-write (RAW),

write-after-read (WAR), and write-after-write (WAW) con-

flicts. Thus, invalid parallel accesses to shared variables in

the system model must be prevented.

!"#$%&'#()

*$+,-./01)

!!!"

!"#$%&'()*

+&"%!

!"#$%&

*2!2)30+4$-"1)

(a) Manual Approach

!"#"$$%$&'()*$"+,#&

'+"-.&/,0%&12"$34%#&

5".%&/,20(-,2&&

6("72,8(8&

!!!"

6%8(7298.&

!"#$%&'()*

+&"%!

!"#

':6:&/,);($%#&

(b) Proposed Approach

Fig. 1. Validation and debugging flow for parallel system models.

As discussed earlier, designers traditionally design the spec-

ification model and handle shared variables manually. As

shown in Figure 1(a), model validation is then performed by

compiling and simulating the model using a traditional DE

simulator. If the simulation fails, the designer needs to identify

the problem, locate it in the code, and revise the model for

another iteration. This debugging is typically a lengthy and

error-prone process.

Moreover, even if the model is incorrect due to race condi-

tions regarding shared variables, the simulation may actually

succeed when using traditional sequential DE simulation. This

might lead the designer to believe the model is correct,

whereas in fact it is not. In other words, traditional simulation

can lead to false validation of parallel models.

!"#$%&'&()*&+'(

,"-./012+(

3!),4(

,5+$6%2+2.#(70%0//&/(

!"#$%&'&()*&+'(,"-./012+(

3,7!),4(

8.'92:92%;&%(70%0//&/((

!"#$%&'&()*&+'(,"-./012+(

38.'92:92%;&%(7!),4(

<0$&(=2+;"12+(!"0>+2#"#((

:2%(70%0//&/(?2;&/#(

!"#$%&'()*+*(

,-./0%"'(

!"#$%&'()*+*(,-./0%"'(

1$%234'"&506#(/'-3",2-6(

0673'$."63&2-6(

!"#$%&'()*+*(,-./0%"'(

1$%234'"&506#(/'-3",2-6(

0673'$."63&2-6(

)3&2,(8-690,3(:6&%;707(

!"#$%&'()*+*(,-./0%"'(

1$%234'"&506#(/'-3",2-6(

0673'$."63&2-6(

)3&2,(8-690,3(:6&%;707(

)"<$"62&%(

70.$%&3-'(

1$%2=,-'"(>&'&%%"%(70.$%&3-'(

(

1$%2=,-'"((

?$3=-@=-'5"'(>&'&%%"%(

)0.$%&3-'(

1$%2=,-'"(>&'&%%"%(

)0.$%&3-'(

Fig. 2. Reusing essential tools from a parallel simulation infrastructure to
diagnose race conditions in parallel models.

As shown in Figure 2, traditional DE simulation uses a

regular SLDL compiler to generate the executable model and

then uses sequential simulation for its validation. In compari-

son, synchronous PDES also uses the regular SLDL compiler,

but instruments the design with any needed synchronization

protection for true multi-threaded execution. An extended

simulator is then used for multi-core parallel simulation.

119

The advanced out-of-order PDES approach, in contrast,

uses the PDES compiler extended by an additional static

code analyzer to generate potential conflict information. The

corresponding scheduler in the simulator is also extended to

utilize the compiled conflict information for issuing threads

early and out of the order for faster simulation.

This infrastructure for advanced PDES motivates our idea

for dynamic race condition diagnosis. The compiler for out-

of-order PDES can analyze the design model statically to

generate the needed information about potential data conflicts.

Also, the synchronous PDES simulator allows threads in the

same simulation cycle to run in parallel. Combining the two,

we can therefore pass the conflict information generated by

the compiler to the scheduler for dynamic race condition

diagnosis among the parallel executing threads. As illustrated

in Figure 1(b), the system designer can thus detect and

obtain a diagnosis about parallel accesses to shared variables

automatically and fix the problem quickly.

III. AUTOMATIC RACE CONDITION DIAGNOSIS

Figure 3 shows the detailed tool flow for our proposed race

condition diagnosis in parallel design models. Here, we are

using a SpecC-based compiler and simulator framework.

The flow starts with an initial design model, i.e. Design.sc,

as the input to the SLDL compiler. The compiler parses and

checks the syntax of the model, builds an internal repre-

sentation (extended abstract syntax tree) of the model, and

then generates a C++ model (Design.cc and Design.h) that

is compiled by the C++ compiler, e.g. g++, to produce the

executable file for simulation.

In our proposed tool flow, we add a Static Code Ana-

lyzer which analyzes the internal design representation for

potentially conflicting accesses to shared variables during the

parallel execution. A Segment Graph representing the parallel

execution flow in the model and a Variable Access List are

computed in this step. Using the segment graph and the

variable access lists for the segments, the static analyzer

constructs then a Data Conflict Table that lists any potential

access conflicts in the design. This data conflict table is then

passed to the simulator via instrumentation into the model.

The model is then validated by a Parallel Simulator, a

synchronous PDES simulator extended with dynamic conflict

checking. Whenever there are two threads running at the

same simulation and delta time, the simulator checks the

data conflict table for any conflicts between the segments the

threads are running in. If there is a conflict, the simulator has

detected a race condition and reports this in a Dynamic Conflict

Trace file (Design.w). Note that this conflict checking is based

on fast table look-ups which introduces very little simulation

overhead.

After the simulation completes, the Race Condition Diag-

nosis tool processes the generated Variable Access List and

Dynamic Conflict Trace files and displays the detected race

conditions to the designer. As shown in Figure 3, critical

parallel accesses to shared variables are listed with detailed

information, including time stamp, access type, variable name

and type, and line number and source file location where

the variable is defined and where the access occurred. Since

there may be many reports for the same race condition due to

iterations in the execution, our tool combines these cases and

lists the first time stamp and the number of repetitions.

Given this detailed information, the designer can easily find

the cause of problems due to race conditions and resolve them.

IV. RACE CONDITION ELIMINATION INFRASTRUCTURE

As outlined above, we use (a) advanced static code analysis

to generate potential conflict information for a model, and then

(b) parallel simulation for dynamic conflict detection.

A. Static Code Analysis

Careful source code analysis at compile time is the key to

identify potential access conflicts to shared variables.

During simulation, threads switch back and forth between

the states of RUNNING and WAITING. Each time, threads

execute different segments of their code. Access hazards exist

when two segments contain accesses to the same variables.

Except when two segments contain only read accesses (RAR),

any write access creates a potential conflict (RAW, WAR, or

WAW). These potential conflicts are called race conditions

when they occur at the same simulation time, i.e. in the same

simulation cycle.

Due to the (intended) non-deterministic execution in the

simulator, race conditions may or may not lead to invalid

values for the affected variables. Since this is often dangerous,

race conditions must be eliminated (or otherwise handled) for

parallel design models to be safe.

!!"#!$%&'()*+!,-.*%/012!
!!3#!%&.!45!
!!6#!7+189%/:!;</).!%&.!=>!
!!?#!@!
!!A#!!!9/%*!B8%&<>!
!!C#!!!@!
!!D#!!!!!%&.!%!E!F5!
!!G#!!!!!H1%(+<%II,A>@!
!!J#!!!!!!!=!E!F5!
!!"F#!!!!!H8%K/:!"5L!
!!""#!!L!
!!"3#L5!

!"

!"

!"

!"

!"

!"

!"

!"

!"

!"

!" !"

!" !"

"D#!7+189%/:!M8%&<>!
"G#!@!
"J#!!!;!8<4>5!N!75!
3F#!!!%&.!B8%&<>!
3"#!!!@!
33#!!!!!O8:@!
36#!!!!!!!80B8%&<>5!
3?#!!!!!!!70B8%&<>5!L!
3A#!!!!!!!O:%&K<P4!E!Q*R&ST!4>5!
3C#!!!!!L!
3D#!L5!

!"

!"

!"

!"

!"

!"

!"

!"

!"

"6#!7+189%/:!N<>!
"?#!@!
"A#!!!!9/%*!B8%&<>!
"C#!!!!@!
"D#!!!!!!%&.!%!E!F5!
"G#!!!!!!H1%(+<%II,!"F>@!
"J#!!!!!!4!E!"5!
3F#!!!!!!H8%K/:!"5L!
3"#!!!!L!
33#!!L5!

!"

!"

!"

!"

!"

!"

!"

!"

!"

!"

!"

!"

!"

!"

(a) SpecC source code

!"#!!

"#$%!

"#$&! "#$'!

"#$(!

!"#$%&'!!

"#$)! "#$*!

(b) Segment graph

!"#$!""#$$%&'$($%

%$

&$)*+,%

'$)*+,%

($)*+,%

)$)*+,%

$)-,%

(c) Access lists

!"#$ %$ &$ '$ ($)$ *$

%$ +$ +$ +$ +$ +$ +$

&$ +$,$,$,$,$,$

'$ +$,$,$,$,$,$

($ +$,$,$,$,$,$

)$ +$,$,$,$,$,$

*$ +$,$,$,$,$ +$

(d) Data conflict table

Fig. 4. A parallel design example with a simple race condition.

For our proposed race condition analysis, we formally define

the following terms:

• Segment segi: statements executed by a thread between

two scheduling steps.

• Segment Boundary bi: SLDL primitives which call the

scheduler, e.g. wait, wait-for-time, par.

120

!"#$%&'()*&+,#-./*0&

1*234,52%&

60*70(%*22(0&

6#02*0&

80#,2-#"(0&

1*234,5%%95:&

';;&%(<73-*0&

1*234,&

6#0#--*-&!3<=-#"(0&

1*234,5#-32"&

1*234,5)("&

(="7="&

1*234,5>&

?#%*&'(,)3$(,&13#4,(232&

!"#$%&'()*#+&',(-.$'/(

!"#"$%&'()%%&'(*%

!)#"$%&'(+%%&'(,%

!*#"$%&'(+%%&'(,%

!+#"$%&'(+%%&'(,%

!,#"$%&'(+%%&'(,%

!-#"$%&'(+%%&'(,%

!"#"$%./.%

0123145'#% 6%

789'#% 3:;%

<'=:3>?:#% @3:'%*%

/AA'&&#%% @3:'%B%

@3:'%)B%

C'9'1;'D#% E%

0$'/()*#1&2*#(!&345$"(

&'(F':;% /AA'&&%

&'("%

&'()% 53:'G#%C.%;?%3%!53:'H$%%

53:'B#%.%;?%6%!53:'*$%

&'(*% 53:')G#%C.%;?%3%!53:')H$%

53:')B#%.%;?%6%!53:'*$%

&'(+% 53:'G#%C.%;?%3%!53:'H$%%

53:'B#%.%;?%6%!53:'*$%

&'(,% 53:')G#%C.%;?%3%!53:')H$%

53:')B#%.%;?%6%!53:'*$%

&'(-% 53:'+)#%C%;?%6!53:'*$%

6$.&$75/(8''/33(9&3,3(

4$.%%

&'("%

&'()% &'(*%

&'(-%

4$.:/#1%%

&'(+% &'(,%

;/<%/#,(=.$4>(

1*234,50%&

;9!9(3*?.'/('*1/(

@AB&C*:#D3(0&EFG&
@HB&I&
@JB&&&&D(3)&<#3,FG&
@KB&&&&I&
@LB&&&&&&3,"&3&M&NO&
@PB&&&&&&>:3-*F3;;Q&@NGI&
@RB&&&&&&S&M&@O&
TNB&&&&&&>#3U(0&@OV&
T@B&&&&V&
TTB&&VO&

&&@B&W3,%-=)*&Q2")3(5:X&
&&TB&3,"&SO&
&&AB&C*:#D3(0&+F(="&3,"&.G&
&&HB&I&
&&JB&&&D(3)&<#3,FG&
&&KB&&&I&
&&LB&&&&&3,"&3&M&NO&
&&PB&&&&&>:3-*F3;;QJGI&
&&RB&&&&&&&.&M&NO&
&&@NB&&&&&>#3U(0&@OV&
&&@@B&&V&
&&@TBVO&

TAB&C*:#D3(0&Y#3,FG&
THB&I&
TJB&&&+&#FSGO&E&CO&
TKB&&&3,"&<#3,FG&
TLB&&&I&
TPB&&&&&7#0I&
TRB&&&&&&<#3,FGO&
ANB&&&&&&&C5<#3,FGO&V&
A@B&&&&&&&703,UFZS&M&[)\,]^&SGO&
ATB&&&&&V&
AAB&VO&

Fig. 3. Tool flow for automatic race condition diagnosis among shared variables in parallel system models.

Here, segment boundaries bi start segments segi. Thus, a

directed graph is formed by the segments, as follows:

• Segment Graph (SG): SG=(V, E), where V = {v | vi is

segment segi started by segment boundary bi}, E={eij |
eij exists if segj is reached after segi}.

From the control flow graph of a design model, we can

derive the corresponding segment graph [5].

For example, Figure 4(a) and (b) show a simple system

model written in SpecC SLDL and its corresponding segment

graph. Starting from the initial segment seg0, two separate

segments seg1 and seg2 represent the two parallel threads after

the par statement in line 22. New segments are created after

each segment boundary, such as waitfor 1 (lines 10 and 20).

The segments are connected following the control flow of the

model. For instance, seg3 is followed by itself due to the while

loop in lines 8-10.

Given the segment graph, we next need to analyze the

segments for statements with potentially conflicting variable

assignments. We first build a variable access list for each

segment, and then compile a conflict table that lists the

potential conflicts between the N segments in the model:

• Variable Access List: segALi is the list of the variables

that are accessed in segi. Each entry for a variable in this

list is a tuple of (Var, AccessType).

• Data Conflict Table (CT[N,N]):

CT [i, j] =

{

true if segi has data conflict with segj
false otherwise

Note that CT [N,N] is symmetric and can be built simply

by comparing pairs of the variable access lists.

B. Dynamic Race Condition Checking

We detect race conditions dynamically at runtime when the

simulator schedules the execution of the threads. Figure 5

start

!"#$%!""!!!#!

"!"#&#'($!%&!!"$'!()(*+!%'!*,-.(/0!

)*+,1!"$!&#'($!!"#$%2$!34(56!*,-.(/!()(*+'0!!

!"#$%!""!∅!#!

78/5+(!+9(!'%:;45-,*!-:(0!

:,)(!+9(!(564%('+!!"#&#'(-.!/+,/!"#$%0!!

!"#$%!""!∅!#!

end

No

Yes

No

No

Yes

Yes

!"!"!01231!"#$%4/!5620!

!56!""!!!#!
7!567!<"!=3>7'!!

??!!"#$%!@"!!!#!

Yes

No

89,,:;/

89,,:/

No

Yes

<*1!"20!

"!"#$#!"#$%4/+9A+9B$!

1=13CD+9E'(F$!+9BE'(FG2!>?,@/

H(8,6+!65I(!I,*/%-,*E!,@A1=/

Fig. 5. Parallel simulation algorithm with dynamic race condition checks.

shows the scheduling algorithm for synchronous PDES ex-

tended with the needed checking. The simulator performs the

regular discrete event scheduling on the right side of Figure 5

in order to deliver events and increment simulation time,

following the usual delta and time cycles. On the left, the

algorithm issues suitable threads to run in parallel as long as

CPU cores are available.

Whenever it issues a thread for execution, the scheduler

consults the data conflict table provided by the compiler in

order to report detected race conditions. As shown on the

left side of Figure 5, the scheduler checks every thread for

conflicts with the other threads that are READY to run. Again,

we emphasize that these checks are simple table look-ups so

that the overhead of race condition detection is minimal.

While we are using our parallel simulator for speed reasons

here, we should note that the same detection approach can

also be integrated in a traditional sequential DE simulator.

121

V. EXPERIMENTS AND RESULTS

We have implemented the proposed tool set for race condi-

tion elimination in parallel models in a SpecC-based system-

level design environment [6]. In this section, we report the

results of using our approach on several embedded application

examples. We describe how the tool set helped us to detect

and diagnose a number of race conditions. Several reports on

invalid parallel accesses to shared variables turned out to be

the actual cause of simulation errors which we then could fix.

Other reports could be ruled out for various reasons described

below. All experiments have been performed on the same host

PC with a 4-core CPU (Intel(R) Core(TM)2 Quad) at 3.0 GHz.

A. Case study: A Parallel H.264 Video Decoder

During the development of our parallel H.264 video decoder

model [10], we used the regular sequential SLDL simulator to

validate the functionality. This showed 100% correct outputs.

However, when we later used parallel simulation, the model

sometimes ran through a few frames and then terminated with

various assertion failures, or even terminated immediately with

a segmentation fault. This was frustrating because such non-

deterministic errors are very hard to debug.

We used the new race condition diagnosis tool to check the

model, resulting in reports on 40 different shared variables.

The model designer went through the variable list one by one

to eliminate problems caused by race conditions. As reported

in Table I, half of the reported variables were defined in

channels and therefore protected from access conflicts by the

SpecC execution semantics (implicit locks). No change was

necessary for these.

Another 15 variables were determined as storing values that

are constant to each frame and thus can be shared safely when

the decoder processes the frames in parallel. One report was

about a complex structure that is actually accessed by parallel

tasks only to non-overlapping members. Another variable was

a global counter used purely for debugging. Again, no change

to the model was necessary for these cases.

However, the remaining three of the reported variables

actually caused the simulation problems. The model designer

resolved the race conditions for them by relocating the vari-

ables from global to class scope. This way, each parallel unit

has its own copy of these variables. As a result, the dangerous

race conditions were eliminated and the model now simulates

correctly also in the parallel simulator.

B. Case study: A Parallel H.264 Video Encoder

As a second large application example, we have converted

the reference C source code of a H.264 encoder into a SpecC

model [3]. To allow parallel video encoding, we restructured

the model for parallel motion estimation distortion calculation.

When using the regular sequential simulator, the simulation

result of the parallelized model matched the reference im-

plementation. However, after we switched the simulator with

a newly developed parallel simulator, the encoding result

became inconsistent. That is, the encoding process finished

properly, but the encoded video stream differed from time to

time.

At the beginning of debugging, we had no idea about the

cause of the encoding errors. Moreover, we were not even sure

whether the problem was caused by the model itself or by our

new parallel simulator. Literally thousands of lines of code, in

both the model and the simulator, were in question.

At this point, the advanced static code analysis used in our

new out-of-order PDES simulator [5] sparked the idea of using

it to attack such debugging problems. After some preparation,

a first version of the race condition diagnosis tool described

in this paper was implemented.

When we used this tool to analyze the H.264 video en-

coder model, we indeed found a total of 68 variables ac-

cessed in race conditions by the parallel motion estimation

blocks. Specifically, the encoding malfunction was caused by

read/write accesses to 14 global variables which stored the

intermediate computation results in the parallelized behaviors.

After localizing those global variables to local variables on the

stack of the executing thread, the encoding result was correct,

matching the output of the reference code.

For the remaining reported variables, a listed in Table I,

there was no immediate need to recode them. For example,

variables which remain constant during the encoding process

in our model and for our fixed parameters (for example

height pad), we decided to leave these unchanged for now

(future work).

C. Additional Embedded Applications

For this paper, we have used the proposed tool set also

to double-check embedded application models that had been

developed earlier in-house based on standard reference code.

The first application is a fixed-point MP3 decoder model

for two parallel stereo channels [1]. As shown in Table I,

our diagnosis tool reports 7 shared variables that are subject

to race conditions, out of a total of 82 conflict trace entries.

We have looked at these variables and found that they are all

member variables of channel instances which are protected

by implicit locks for mutual exclusive accesses to channel

resources. Thus, we successfully confirmed that this model

is free of race conditions.

The second application is another parallel MP3 decoder

model based on floating-point operations [1]. Our diagnosis

tool lists 9 shared variables out of 75 trace file entries. Eight

of those variables are channel variables which are free from

data hazards. The remaining variable, namely hybrid blc, is

an array of 2 elements. Each element is used separately by

the two stereo channels, so there is no real conflict. We can

resolve the race condition report by splitting this array into

two instances for the two channels. Thus, this parallel model

is also free of data hazards.

The third embedded application is a GSM Vocoder model

whose functional specification is defined by the European

Telecommunication Standards Institute (ETSI) [8]. Only two

variables are reported by our diagnosis tool for race condition

risks. The first one, Overflow, is a Boolean flag used in

primitive arithmetic operations. It can be resolved by replacing

it with local variables on the stack of the calling thread. The

second one, old A, is an array which stores the previous results

122

TABLE I
EXPERIMENTAL RESULTS ON AUTOMATIC RACE CONDITION DIAGNOSIS FOR EMBEDDED MULTI-MEDIA APPLICATIONS.

Lines # Variables Unresolved Tool Execution Time [sec]

Application of / # Trace Resolved Race Conditions Race Compiler, Simulator, Diagnosis

Code Entries Conditions diagnosis off/on diagnosis off/on

3 resolved, localized to class scope

H.264 40 15 store values constant to each frame, safe to share

video 40k / 1 structure accessed without overlap, safe 0 12.51 14.05 18.51 19.56 1.04

decoder 1201 1 debugging value, temporarily used only

20 in channels, safely protected

14 resolved, localized to stack variables

H.264 68 15 constant with current parameters, OK

video 70k / 1 identical in all parallel blocks, OK 0 29.52 29.72 110.58 111.72 13.97

encoder 712911 1 array variable resolved by splitting the array

37 in channels, safely protected

MP3 decoder, 7k 7 / 82 7 in channels, safely protected 0 1.14 1.19 4.34 4.44 0.08

fixed point

MP3 decoder, 14k 13 / 75 12 in channels, safely protected 0 3.63 3.89 13.82 13.87 0.34

floating point 1 array variable resolved by splitting the array

GSM 16k 2 / 253 1 resolved, duplicated for parallel modules 0 3.90 4.00 1.46 1.50 0.07

vocoder 1 resolved, localized to stack variable

JPEG encoder 2.5k 3 / 66 9 in channels, safely protected 0 4.01 4.09 1.54 1.56 0.02

for an unstable filter. This variable is incorrectly shared by two

parallel modules. We can resolve this situation by duplicating

the variable so that each parallel instance has its own copy.

We should note that these two bugs have been undetected for

more than a decade in this in-house example.

The last application is a JPEG encoder for color images.

There are three variables reported as potential race conditions

out of 253 entries in the trace log. Since all three are members

of channel instances which are implicitly protected by locks,

it is safe to have them in the parallel model.

In summary, Table I lists all our experimental results,

including the size of the models and the performance of

the tools. While our application examples are fairly large

design models consisting of several thousand lines of code,

the overhead of race condition diagnosis is negligible for both

compilation and simulation. Also, the diagnosis tool itself runs

efficiently in less than a few seconds.

VI. CONCLUSIONS AND FUTURE WORK

Writing well-defined and correct system-level design mod-

els with explicit parallelism is difficult. Race conditions due

to parallel accesses to shared variables pose an extra challenge

as these are often not exposed during simulation.

In this paper, we proposed an automatic diagnosis approach

that enables the designer to ensure that a developed model

is free of race conditions. The infrastructure of our proposed

tool flow includes a compiler with advanced conflict analysis,

a parallel simulator with fast dynamic conflict checking, and

a novel race-condition diagnosis tool. This flow provides

the designer with detailed race condition information that is

helpful to fix the model efficiently when needed.

The proposed approach has allowed us to reveal a number

of risky race conditions in existing embedded multi-media

application models and enabled us to efficiently and safely

eliminate these hazards. Our experimental results also show

very little overhead for race condition diagnosis during com-

pilation and simulation.

In future work, we plan to provide better analysis support for

variables of array and pointer types, and to develop recoding

functions to automate the steps in resolving race conditions.

ACKNOWLEDGMENT

This work has been supported in part by funding from

the National Science Foundation (NSF) under research grant

NSF Award #0747523. The authors thank the NSF for the

valuable support. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the

authors and do not necessarily reflect the views of the National

Science Foundation.

REFERENCES

[1] P. Chandraiah and R. Dömer. Specification and design of an MP3
audio decoder. Technical Report CECS-TR-05-04, Center for Embedded
Computer Systems, University of California, Irvine, May 2005.

[2] P. Chandraiah and R. Dömer. Computer-aided recoding to create
structured and analyzable system models. ACM Trans. Embed. Comput.

Syst., 11S(1):23:1–23:27, June 2012.
[3] C.-W. Chang and R. Dömer. System Level Modeling of a H.264 Video

Encoder. Technical Report CECS-TR-11-04, Center for Embedded
Computer Systems, University of California, Irvine, 2011.

[4] W. Chen, X. Han, and R. Dömer. Multi-Core Simulation of Transaction
Level Models using the System-on-Chip Environment. IEEE Design

and Test of Computers, 28(3):20–31, May/June 2011.
[5] W. Chen, X. Han, and R. Dömer. Out-of-Order Parallel Simulation for

ESL Design. In Proceedings of the Design, Automation and Test in

Europe (DATE) Conference, 2012.
[6] R. Dömer, A. Gerstlauer, J. Peng, D. Shin, L. Cai, H. Yu, S. Abdi, and

D. Gajski. System-on-Chip Environment: A SpecC-based Framework
for Heterogeneous MPSoC Design. EURASIP Journal on Embedded

Systems, 2008(647953):13 pages, 2008.
[7] D. D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, and S. Zhao. SpecC:

Specification Language and Design Methodology. Kluwer, 2000.
[8] A. Gerstlauer, S. Zhao, D. D. Gajski, and A. M. Horak. Design of a

GSM vocoder using SpecC methodology. Technical Report ICS-TR-99-
11, Information and Computer Science, University of California, Irvine,
March 1999.

[9] T. Grötker, S. Liao, G. Martin, and S. Swan. System Design with

SystemC. Kluwer, 2002.
[10] X. Han, W. Chen, and R. Dömer. A Parallel Transaction-Level Model

of H.264 Video Decoder. Technical Report CECS-TR-11-03, Center for
Embedded Computer Systems, University of California, Irvine, 2011.

[11] E. P, P. Chandran, J. Chandra, B. P. Simon, and D. Ravi. Parallelizing
SystemC Kernel for Fast Hardware Simulation on SMP Machines. In
PADS ’09: Proceedings of the 2009 ACM/IEEE/SCS 23rd Workshop on

Principles of Advanced and Distributed Simulation, pages 80–87, 2009.
[12] C. Schumacher, R. Leupers, D. Petras, and A. Hoffmann. parSC:

Synchronous Parallel SystemC Simulation on Multi-Core Host Archi-
tectures. In Proceedings of the International Conference on Hardware/-

Software Codesign and System Synthesis, pages 241–246, 2010.

123

	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Table of Contents

