
Improving Parallelism in System Level Models
by Assessing PDES Performance

Emad Malekzadeh Arasteh
Center for Embedded and Cyber-physical Systems

University of California, Irvine
Irvine, California, USA, 92697

emalekza@uci.edu

Rainer Dömer
Center for Embedded and Cyber-physical Systems

University of California, Irvine
Irvine, California, USA, 92697

doemer@uci.edu

Abstract—For effective embedded system design, transaction
level modeling (TLM) must explicitly expose any available
parallelism in the application. Traditional TLM in SystemC
utilizes channels for communication and synchronization be-
tween concurrent modules, whereas modern TLM-2.0 emphasizes
address-accurate communication via explicit interconnect and
memories. In both modeling styles, the choice of synchronization
mechanisms has a significant impact on the available parallelism
in the model which can be exploited by parallel discrete event
simulation (PDES).

In this work, we propose and analyze a set of non-invasive
standard-compliant modeling techniques to increase parallelism
in IEEE SystemC TLM-1 and TLM-2.0 models. We measure the
performance of aggressive out-of-order PDES in the Recoding
Infrastructure for SystemC (RISC) and analyze the parallelism
in the models. Our case study on six modeling styles of a state-
of-art deep neural network (DNN), namely the GoogLeNet image
classification algorithm, demonstrates the impact of varying
synchronization mechanisms with simulator run time reduced
by 38% compared to a synchronous parallel reference model on
a 16-core host machine. Our study also suggests that increased
parallel simulation performance indicates better models with
higher amounts of parallelism exposed.

Index Terms—system modeling, model parallelism, SystemC,
transaction-level modeling, neural networks, parallel simulation

I. INTRODUCTION

Transaction level modeling (TLM) explicitly exposes inher-
ent parallelism in the application by modeling concurrency,
hierarchy, synchronization and timing. TLM guidelines use
different methods to model communication of concurrent
modules in the design. TLM-1 focuses on modeling com-
munication using channels and TLM-2.0 focuses on model-
ing address-accurate communication using memory-mapped
buses. The choice of synchronization and communication
mechanisms in TLM models affect the available level of
parallelism. Parallel Discrete Event Simulation (PDES) is an
attractive approach to measure parallelism of TLM models
and compare simulation performance between models using
different parallelization techniques.

Exponential growth of computational requirements of new
emerging applications such as deep learning, puts an extra
demand on finding parallelism opportunities and simulation

Simulator parallelism Model parallelism

Simulation speedup

Fig. 1: Simulator parallelism, model parallelism and simula-
tion speedup forms a 3-dimensional space

performance. To this end, fast and yet standard-compliant
simulation of design candidates will enable rapid design space
exploration and hence, shorter time to market.

In this paper, we propose a set of IEEE standard-compliant
modeling techniques to increase available parallelism in Sys-
temC TLM-1 and TLM-2.0 models for parallel discrete event
simulation. As shown in Figure 1, we illustrate simulator
parallelism, model parallelism and simulation speedup in a
3-dimensional space. As the red arrow indicates, both higher
model parallelism and simulator parallelism achieve the max-
imum simulation speedup. Moreover, by increasing model
parallelism opportunities in one dimension, the simulator can
better leverage its parallelization capabilities for the maximum
simulation speedup. In particular, we demonstrate our pro-
posed techniques on SystemC TLM models of a DNN using
out-of-order parallel simulation.

Our key contributions are as follows:

(1) A systematic analysis of parallelism opportunities in
SystemC TLM-1 and TLM-2.0 models of a representative
DNN (GoogLeNet) for parallel simulation

(2) A proposal of less restrictive communication mecha-
nisms and transaction types for enhanced parallelism with out-
of-order parallel simulation of TLM-1 and TLM-2.0 models

(3) Experimental results that demonstrate the improved
parallelism in a given reference model [1] with simulator run
time reduced by 38%978-1-6654-1825-6/21/$31.00 © 2021 IEEE

II. BACKGROUND

In this section, we provide a brief background on Parallel
Discrete Event Simulation (PDES) of SystemC models and
in particular out-of-order PDES implemented in the Recoding
Infrastructure of SystemC (RISC). Furthermore, we introduce
the application driver used in this study.

A. Parallel SystemC Simulation

Earlier works on Parallel Discrete Event Simulation (PDES)
such as [2] focused on distributed simulation hosts. Fujimoto
presented the first initial work on parallel and distributed
hosts [7]. [5] presented the first synchronous parallel Sys-
temC kernel. Out-of-Order parallel SystemC simulation was
first proposed in [3] to increase the simulation speed. [10]
presented the first implementation of OoO PDES. [4] extended
the RISC compiler with Socket Call Path technique to support
safe parallel simulation of TLM-2.0 models.

The Out-of-Order PDES (OoO PDES) approach proposes
to allow threads in different cycles to run in parallel if those
threads do not have potential data or event conflicts [3]. OoO
PDES maximizes multi-core CPU utilization by localizing
global simulation time for each thread and performing conser-
vative analysis of potential conflicts among the active threads.
This approach is realized in Recoding Infrastructure for Sys-
temC (RISC) that performs parallel SystemC simulation in
maximum compliance with the IEEE standard semantics using
a dedicated SystemC compiler that automatically analyzes
existing conflicts in the model [9].

Despite the fact that RISC maximizes the number of threads
to run in parallel, we optimize TLM models such that they
exhibit further parallelism opportunities so that RISC achieves
even faster simulation.

B. Deep Learning and Convolutional Neural Network

Deep Learning (DL) is a known technique in machine
learning to extract useful features from input data, perform
data transformations, and arrive at a final meaningful repre-
sentation. One of the main application areas of DL is visual
recognition and in particular, image classification which is the
problem of assigning a descriptive label to an input image
from a fixed set of categories.

A convolutional neural network (CNN) mainly consists of
alternating convolution layers and pooling (sub-sampling) lay-
ers. Choosing a state-of-the-art deep CNN for TLM modeling
enables the means to investigate parallelism opportunities with
a real-world industry-strength application. Therefore, we select
GoogLeNet [12], a deep CNN for image classification and
detection, and start with a reference model in SystemC [1].

GoogLeNet is 22 layers deep when counting only layers
with parameters. The overall number of layers (independent
building blocks) is 142 distinct layers. The main constituent
layers are convolution, pooling, concatenation and classifier.
GoogLeNet includes two auxiliary classifiers that are used
during training to combat the vanishing gradient problem.
Further details on the GoogLeNet structure can be found in
[1] and [12].

III. RELATED WORK

Static analysis of SystemC models and TLM modeling
techniques for parallel SystemC simulation has been studied
in other works. The SystemC-clang framework [8] analyzes
SystemC models at register-transfer level and transaction-level
with support for some TLM 2.0 constructs. Authors in [13],
[14], and [15] propose modified parallel SystemC simulation
kernels that require users to manually translate their sequential
models into safe parallel models. [11] provides SystemC
designers with a set of primitives to manually parallelize
SystemC tasks for loosely-timed models. These techniques
require the designer to manually instrument the model for safe
parallel simulation. In contrast to prior works, our approach
leverages from the complete automatic parallelization in the
RISC to increase PDES simulation performance in a safe and
standard-compliant fashion.

Automatic generation of a set of RTL primitives by analyz-
ing CNN architecture and parameters to be used on FPGA has
been carried out in [16]. To the best of our knowledge, there
is no similar work on improving the parallelism in SystemC
TLM for CNN.

IV. PARALLELISM IN TLM-1 MODELING

Following the distinction between simulator parallelism and
model parallelism introduced in Figure 1, we propose alterna-
tive channel constructs to increase parallelism opportunities.
We also analyze how the number of buffers inside channels
can increase parallel simulation performance.

A. Channel type

Starting from the model proposed in [1], we improve the
communication and synchronization mechanism in this work.
To this end, we propose three channel types according to the
channel synchronization mechanism:

1) Blocking channel: In a blocking channel, synchroniza-
tion is handled using a set of two wait statements in
read and write access functions.

2) Non-blocking channel: In a non-blocking channel, the
write access function does not block and synchronization
is handled using only one wait statement in the read
access function.

3) SystemC FIFO channel: This channel is built on
the predefined primitive channel sc_fifo with de-
fault read and write member functions which use the
request_update mechanism.

In a blocking channel two sc_events ensure synchroniza-
tion between each consumer and producer. In a non-blocking
channel, we design a synchronization scheme between pro-
ducer and consumer that uses only one wait statement and
one sc_event. Lastly, we design SystemC channels that do
not require any calls to the wait construct. The improved
communication techniques increase the potential that an out-
of-order PDES simulator schedules threads more aggressively.

B. Buffering scheme
The TLM-1 model of a data processing application can be

considered as a graph data structure with modules as nodes
and channels as edges connecting neighboring modules. Each
module continuously fetches data from its input channel(s),
processes the data and writes its result(s) into output chan-
nel(s). These data processing modules often form a pipeline
structure that execute in parallel while buffers in channels
hold intermediate results between pipeline stages. The more
buffers exist in the channels, the more possibilities there are for
pipelining of data in the graph. This gives a parallel simulator
more freedom to schedule even more parallel threads at the
same delta cycle.

In particular, having only a single buffer inside blocking
channels, modules can only process data in every other delta
cycle. However, with double buffers inside channels, a pro-
ducer can write to the back buffer while a consumer can
read from the front buffer. This results in more active threads
that perform their tasks in fewer delta cycles. This increase
in the level of parallelism gives the parallel simulator more
opportunities to aggressively schedule threads and minimize
simulation run time.

Figure 2 illustrates the inception module, the main building
block of GoogLeNet. The inception module forms an unbal-
anced graph structure with four parallel tracks, each running
a different workload. Note that the four parallel tracks in each
inception module contain (2, 4, 4, 3) modules to process,
respectively. In the absence of a balanced graph topology, the
number of buffers in channels should address the imbalance
to enable the maximum number of modules to run in parallel.

A TLM-1 modeling diagram of the inception module with
double buffering scheme is shown in Figure 3. As shown, mod-
ules read/write data from/to channels via their input port(s)
and output port(s). Note that the output channels for relu 1x1
and relu pool proj keep 4 and 3 buffers, respectively, to
compensate for the unbalanced graph structure.

Fig. 2: Inception module in GoogLeNet

In the case of non-blocking channels, the write access
method does not incur any wait statement. Therefore, the

Fig. 3: TLM-1 model diagram of inception module in
GoogLeNet

number of buffers in non-blocking channels needs to be
increased to avoid any buffer overflow.

Overall GoogLeNet forms a graph with a depth of 62 layers.
In the worst case scenario, all producer layers in each level
of the graph write to the channel before consumer layers read
the data. To dimension the channel sizes for this worst case
scenario, non-blocking channels should have space for the
maximum depth of the graph plus one for the stimulus module,
namely 63 buffer elements.

V. PARALLELISM IN TLM-2.0 MODELING

While TLM-1 gives early feedback on parallelism and
local communication, it is not specifically intended for bus
modeling, interoperability and architectural exploration. Sys-
temC TLM-2.0 introduces generic payload and core transport
interfaces for the abstract modeling of memory-mapped buses.
However, the notion of channels from TLM-1 has disap-
peared from TLM-2.0 modeling and each module instead uses
pointers to access memory locations in other modules. The
lack of an encapsulating channel construct allows simulation
threads to directly access data of other modules, making
synchronization of such accesses a difficult task for parallel
simulators in a standard-compliant fashion [4] and has been
identified as an obstacle for safe and fast parallel simulation
[6]. On the other hand, TLM-2.0 models feature address-
accurate memories.

In this section, we introduce a feed-forward events mech-
anism for TLM-2.0 modeling of data processing applications
such as DNN that can be used for synchronous parallel simu-
lation. Later, we propose the back-pressure events mechanism
devised for safe out-of-order parallel simulation.

A. Feed-forward events mechanism

In TLM-2.0 modeling, a socket should be instantiated
within each initiator and each target for every transaction
level connection. Therefore, module input and output ports
in TLM-1 models are replaced with an initiator socket. The
generic payload captures the information to pass with each bus
transaction between initiator and target. The initiator module
instantiates the generic payload transaction object and sets its
attributes before passing a reference to this object to a target
module via its transport interface.

In our proposed model, we equip each module with an
initiator socket connected to a target socket on a shared TLM-
2.0 model of a memory. Each module in this model has a
dedicated address space inside the memory to read and write
its data. Figure 4a shows the connections of initiator sockets of
the first convolution and ReLU layers in GoogLeNet to target
sockets of shared TLM-2.0 memory.

(a)

(b)

Fig. 4: (a) TLM-2.0 feed-forward model connections (b) TLM-
2.0 back-pressure events connections

To minimize the memory footprint, adjacent modules share
a common buffer inside the memory. For example, the output
of the conv1_7x7_s2 module is written to a buffer that the
conv1/relu_7x7 module uses for its input. To guarantee
correct synchronization and avoid data race conditions, the
producer notifies the consumer via an event once it completes
its write transaction. On the other end, the consumer waits

for the event notification from the producer before it can
start its read transaction. Therefore, each module contains
one sc_event for each input (start) and each output
(done). For example, as seen in Figure 4a, the start
event of conv1/relu_7x7 is connected to done event of
conv1_7x7_s2.

In the feed-forward model with only a single buffer between
neighboring modules, modules only accept and process data
every other delta cycle. By increasing the number of buffers
between modules, modules can instead process data every
delta cycle. This gives the parallel simulator the opportunity to
schedule more threads in each delta cycle, utilizing available
parallelism in the processor for minimizing the simulation
run time. Moreover, such a model achieves its maximum
theoretical throughput, generating output every delta cycle.

As already illustrated in Figure 2, each inception module
in GoogLeNet has four parallel tracks and tracks containing
(2, 4, 4, 3) modules to process, respectively. Since events
occur at precise points in simulation time, the proposed TLM-
2.0 model must guarantee that inputs from different tracks
arrive at the exact same cycle to the output of the inception
module, namely inception_3a/output. To guarantee
correct event synchronizations, delay elements must be in-
serted in those tracks with less modules to form a balanced
graph structure. This means 2 delay elements in track 0
and 1 delay element in track 3 are required. Furthermore,
the output of the last modules in tracks with less modules
require extra buffers to store results generated during those
delay cycles. This means for supporting double buffering, the
last module in track 0, relu_1x1, and the last module in
track 3, relu_pool_proj, require 4 and 3 output buffers,
respectively. These extra buffers ensure a continuous stream
of data in every delta cycle into the design, increasing model
parallelism and maximizing model throughput.

B. Back-pressure events mechanism

The model without back-pressure mechanism is not safe
for aggressive out-of-order scheduling. Only a conservative in-
order scheduling approach will execute the feed-forward TLM-
2.0 model correctly due to the missing back-pressure mecha-
nism. Therefore, we devise a back-pressure events mechanism
to safely execute the TLM-2.0 model in the aggressive OoO
parallel simulation for maximum speedup.

As event connections for the first convolution and ReLU
layers in GoogLeNet are depicted in Figure 4b, each module
has a set of two sc_events for each input and output.
The stb event is always notified once a module has valid
data inside the memory to be read and the ready event is
always notified once a module is ready to read a new data. By
connecting events between all subsequent modules, the model
forms a robust back-pressure mechanism that safely controls
the flow of data inside the pipeline.

Support for the back-pressure events mechanism should be
extended to all neighboring modules in the TLM-2.0 model.
Furthermore, the double-buffering scheme guarantees a con-
tinuous stream of data inside the design pipeline, maximizing

model parallelism and model throughput with the minimum
number of buffers in the memory.

VI. PARALLELISM DIRECTION

To demonstrate degrees of freedom for parallel simulators to
find parallelism opportunities in TLM-1 and TLM-2.0 models,
we create an XY chart with communication mechanism and
buffering scheme on x- and y-axes, respectively. As depicted
in Figure 5, we map the number of buffers on the x-axis
and communication mechanism on the y-axis. On the x-axis,
min refers to a single buffer, mul to double buffer taking
into account that certain layers requires multiple buffers due
to the imbalanced graph structure, and max refers to the
total depth of TLM-1 model graph. On the y-axis, we map
communication mechanisms from the most restrictive type
for parallel simulation, namely, TLM-1 blocking, to the least
restrictive type, namely, TLM-2.0 back-pressure. Increasing
the number of buffers and utilizing communication with less
restrictive synchronization mechanisms creates more freedom
for out-of-order simulators to schedule threads in different
delta cycles. This maximizes multi-core utilization and hence
results in shorter simulator run time.

buffers

Communication

min mul max

TLM-1 blocking

TLM-1 non-blocking

TLM-1 sc fifo

TLM-2.0 feed-forward

TLM-2.0 back-pressure

A B

C

D

E

F

Fig. 5: Communication mechanism versus number of available
buffers in TLM models

Given the proposed communication mechanisms and buffer-
ing schemes, we have designed a set of TLM-1 and TLM-2.0
models for GoogLeNet. As marked in Figure 5, the reference
Model A [1] uses blocking channels with only a single buffer
in channels. We designed Model B with a double-buffering
scheme with blocking-channels. In Model C, we replaced
blocking channels with non-blocking channels with buffer size
of 63 elements, the total depth of the graph. We designed
Model D using sc_fifos with a double-buffering scheme.
Model E is a TLM-2.0 model that uses the feed-forward
events mechanism as an inter-module communication and
modules have double-buffers inside a shared memory. Finally,
we designed Model F using our back-pressure mechanism to
guarantee safe communication between modules for aggressive
out-of-order scheduling with double buffers for maximum
parallelism and maximum throughput. Table I summarizes the
properties of all designed TLM-1 and TLM-2.0 models.

TABLE I: TLM models summary

Model name Standard Communication Buffers
Model A [1] TLM-1 Blocking channels Single buffer
Model B TLM-1 Blocking channels Double buffers
Model C TLM-1 Non-blocking channels Buffer size of 63
Model D TLM-1 SystemC FIFO channels Double buffers
Model E TLM-2.0 Feed-forward Double buffers
Model F TLM-2.0 Back-pressure Double buffers

TABLE II: Platform specification

Platform name 16-core
(Phi)

32-core
(Phi HT)

OS CentOS 6.10 CentOS 6.10

CPU Model name Intel Xeon
E5-2680

Intel Xeon
E5-2680

CPU frequency 2.7 GHz 2.7 GHz
#cores 8 8
#processors 2 2
#threads per cores 1 2

Since each SystemC module has specific attributes based
on its layer type and its corresponding TLM modeling style,
writing module definitions by hand is a tremendously error-
prone task. Furthermore, interconnecting all modules at the
top level using either queues or events is a tedious task.
Therefore, we have extended the generator tool from Model A
[1] to automatically generate all the other TLM-1 and TLM-
2.0 models based on modeling style, communication type
and buffer architecture. In the case of TLM-2.0 models, the
Python 3 generator automatically produces an address map
file based on buffer architecture and supports memory address
generation for multiple buffers for any layer in the network.

VII. EXPERIMENTAL MEASUREMENTS AND RESULTS

Parallelism opportunities introduced in transaction-level
SystemC models can be quantified and measured using a Sys-
temC parallel simulator. To exploit the available parallelism in
our TLM-1 and TLM-2.0 models of GoogLeNet, we describe
our extensive measurement results using RISC and provide
valuable insights gained from analyzing the results.

A. Simulation setup

We use a 16-core host computer platform with hyper-
threading technology (HTT) to benchmark the simulations.
The specifications of the platform are shown in Table II.
To have reproducible experiments, the Linux CPU scaling
governor is set to ‘performance’ to run all cores at the
maximum frequency, and file I/O operations, i.e. cout, are
minimized.

B. Simulation Results

For benchmarking, we measure simulator run time using
Linux /usr/bin/time under CentOS 7. Measurements are re-
ported for the sequential SystemC simulation using Accellera
SystemC and for the parallel simulations using RISC simulator
V0.6.2 in three modes: synchronous (SYN), non-prediction

(NPD) and out-of-order (OOO) parallelism. For reliability of
the results, each measurement is performed three times. Later,
if the distance of each recorded value from its median is
greater than ±2%, that entire measurement is ignored.

We analyze the measurement results obtained from the
simulations of six TLM models. We create various heat map
tables to identify the relevant results regarding parallelism in
transaction types and transaction level modeling as follows:

1) Less restrictive transaction types enable higher paral-
lelism: Table III shows the elapsed time of the models in
SYN, NPD and OOO simulation modes using RISC V0.6.2.

Phi
Elapsed time SYN NPD OOO
Model A 266.66 194.77 193.94
Model B 229.04 193.63 193.08
Model C 231.79 220.32 200.29
Model D 197.02 197.93 194.90
Model E 198.31
Model F 198.66 199.31 170.44

Phi HT
Elapsed time SYN NPD OOO
Model A 276.04 198.40 197.17
Model B 237.69 196.73 197.47
Model C 235.12 224.39 202.90
Model D 201.13 195.35 195.40
Model E 203.29
Model F 203.17 204.89 170.68

TABLE III: Measurements of elapsed time for parallel simu-
lations (color scale red-to-green means slow-to-fast)

Considering the 16-core machine (phi), model A uses
blocking channels with a single buffer. The elapsed time of
Model A for the SYN mode is the highest. Model B uses
multiple buffers to increase the potential for pipelining. Model
C removes wait statements in the write function to let the OOO
scheduler schedule multiple threads together. Model D uses
SystemC FIFOs to implement channels. SystemC FIFO forces
synchronous simulation. Hence, the elapsed time of Model D
for SYN, NPD and OOO are almost identical as reflected in the
fourth row. Model E and Model F are TLM-2.0 models without
any usage of primitive channels. As previously stated, model E
is not safe for out-of-order parallel simulation, so elapsed time
for NPD and OOO simulations are not reported for this model.
As can be seen in the second to six rows, the elapsed time
for SYN simulation mode decreases steadily. However, the
aggressive OOO simulation exploits the maximum parallelism
introduced in each model and reports the shortest elapsed time
for model F. The exact same pattern applies to the other TLM-
1 and TLM-2.0 models on machines with a higher number of
logical cores.

Notably, our efforts on increasing the potential of paral-
lelism in the models pay off with a significant simulation
speedup. Comparing the synchronous reference TLM-1 model

(276.04s with hyper-threading enabled) with the OOO simula-
tion of the TLM-2.0 model with safe back-pressure (170.68s),
shows the simulator run time reduced by 38%. Note that this
applies despite the higher workload the TLM-2.0 models carry,
as we will show in the next section.

2) Abstract TLM-1 models carry less workload than mem-
ory accurate TLM-2.0 models: Table IV shows the heat
map table for elapsed time of all six models in sequential
simulation mode. The last two rows for TLM-2.0 models
indicate longer elapsed time than the first four rows for TLM-1
models. This can be explained due to the difference in number
of memory copies in TLM-1 and TLM-2.0 models. TLM-
1 models use shallow copy for storing/loading items in/from
channels. However, TLM-2.0 models use two memory copies
to read and write from/to the memory module. This distinction
shows that the actual simulator workload for the TLM-2.0
models has increased in comparison to the TLM-1 models.

Phi Phi HT
Elapsed time SEQ SEQ
Model A 949.02 949.56
Model B 940.12 939.61
Model C 941.93 940.93
Model D 945.24 943.98
Model E 956.28 955.81
Model F 956.28 956.01

TABLE IV: Measurements of elapsed time for SEQ execution
(color scale green-to-red means increasing workload)

3) Increased parallel simulation performance indicates bet-
ter models with higher amount of parallelism exposed:
Figure 6 illustrates simulation speedups in different parallel
simulation modes on our 16-core host (phi). As shown, the
maximum simulation speedup (5.6x) is achieved by model F
in out-of-order (OoO) parallel simulation mode. This indicates
model F has the highest level of parallelism available in
comparison with other TLM models. Therefore, model F is
the right design candidate for further model refinements and
lower-level implementation.

VIII. CONCLUSION

In this work, the impact of synchronization and communica-
tion mechanisms on available parallelism in transaction level
modeling (TLM) has been studied. We have demonstrated
the impact of varying synchronization mechanisms on the
exposed parallelism using six modeling styles of a state-of-
art deep neural network (DNN), GoogLeNet. We further have
quantified the improved parallelism in the improved SystemC
TLM-1 and TLM-2.0 models by measuring the performance
of aggressive out-of-order parallel simulation in the Recoding
Infrastructure of SystemC (RISC). The experimental results
show that our standard-compliant parallelization techniques
result in a significantly increased simulation speed up to 5.6x
on a 16-core host machine. Notably, the results support the
hypothesis that higher speed in aggressive parallel simulation
is a significant indicator of higher level of parallelism in design

Fig. 6: Simulation speedup for different parallel simulation
modes on a 16-core host

models which enables better implementation at later stages in
the design flow.

While this work has focused on communication and syn-
chronization aspects, we plan to expand the quantitative analy-
sis of parallelism in future work to computation, explore timed
models at lower abstraction, and include a wider range of DNN
applications.

REFERENCES

[1] Emad Malekzadeh Arasteh and Rainer Dömer. An Untimed SystemC
Model of GoogLeNet. Proceedings of the International Embedded
Systems Symposium, 2019.

[2] K. M. Chandy and J. Misra. Distributed simulation: A case study in
design and verification of distributed programs. IEEE Transactions on
Software Engineering, SE-5:440–452, 1979.

[3] Weiwei Chen, Xu Han, Che-Wei Chang, Guantao Liu, and Rainer
Dömer. Out-of-Order Parallel Discrete Event Simulation for Transaction
Level Models. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), 33(12):1859–1872, December
2014.

[4] Zhongqi Cheng and Rainer Dömer. Analyzing variable entanglement
for parallel simulation of systemc tlm-2.0 models. ACM Trans. Embed.
Comput. Syst., 18(5s), October 2019.

[5] Bastien Chopard, Philippe Combes, and Julien Zory. A Conservative
Approach to SystemC Parallelization. In International Conference on
Computational Science (4), pages 653–660, 2006.

[6] Rainer Dömer. Seven obstacles in the way of standard-compliant parallel
SystemC simulation. IEEE Embededded Systems Letters, 8(4):81–84,
December 2016.

[7] Richard Fujimoto. Parallel Discrete Event Simulation. Communications
of the ACM, 33(10):30–53, Oct 1990.

[8] A. Kaushik and H. D. Patel. Systemc-clang: An open-source framework
for analyzing mixed-abstraction systemc models. In Proceedings of the
2013 Forum on specification and Design Languages (FDL), pages 1–8,
2013.

[9] Guantao Liu, Tim Schmidt, Zhongqi Cheng, Daniel Mendoza, and
Rainer Dömer. RISC Compiler and Simulator, Release V0.6.0: Out-of-
Order Parallel Simulatable SystemC Subset. Technical Report CECS-
TR-19-04, Center for Embedded and Cyber-physical Systems, University
of California, Irvine, September 2019.

[10] Guantao Liu, Tim Schmidt, and Rainer Dömer. RISC Compiler and
Simulator, Alpha Release V0.2.1: Out-of-Order Parallel Simulatable
SystemC Subset. Technical Report CECS-TR-15-02, Center for Em-
bedded and Cyber-physical Systems, University of California, Irvine,
October 2015.

[11] Matthieu Moy. Parallel programming with systemc for loosely timed
models: A non-intrusive approach. In Proceedings of the Conference
on Design, Automation and Test in Europe, DATE ’13, page 9–14, San
Jose, CA, USA, 2013. EDA Consortium.

[12] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E.
Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and
Andrew Rabinovich. Going deeper with convolutions. In IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2015,
pages 1–9, 2015.

[13] N. Ventroux and Tanguy Sassolas. A new parallel systemc kernel
leveraging manycore architectures. 2016 Design, Automation & Test
in Europe Conference & Exhibition (DATE), pages 487–492, 2016.

[14] Jan Henrik Weinstock, Rainer Leupers, Gerd Ascheid, Dietmar Petras,
and Andreas Hoffmann. Systemc-link: Parallel systemc simulation using
time-decoupled segments. In Proceedings of the 2016 Conference on
Design, Automation and Test in Europe, DATE ’16, page 493–498, San
Jose, CA, USA, 2016. EDA Consortium.

[15] Jan Henrik Weinstock, Christoph Schumacher, Rainer Leupers, Gerd
Ascheid, and Laura Tosoratto. Time-decoupled parallel systemc simula-
tion. In 2014 Design, Automation Test in Europe Conference Exhibition
(DATE), pages 1–4, 2014.

[16] Yufei Ma, N. Suda, Yu Cao, J. Seo, and S. Vrudhula. Scalable and
modularized rtl compilation of convolutional neural networks onto fpga.
In 2016 26th International Conference on Field Programmable Logic
and Applications (FPL), pages 1–8, Aug 2016.

