
PowerMonitor: a Versatile API for Automated

Power-Aware ESL Design

Yasaman Samei, Rainer Dömer

Center for Embedded Computer Systems

University of California, Irvine, USA

ysameisy@uci.edu, doemer@uci.edu

Abstract—System Level Description Languages (SLDL)
emerged a decade ago for high-level System-on-Chip (SoC) design
and efficient design space exploration. Initially performance
and area constraints were the major concerns. Nowadays the
shrinking of transistor size has brought power and temperature
to top of the list of designer concerns. Although SLDLs are well-
defined for functional and timing modeling, the dimension for
power- and temperature-aware modeling is missing and needs to
be added manually by the user in an ad-hoc fashion. In this paper
we introduce; PowerMonitor as an Application Programming
Interface (API) capable of (a) power annotation in the executable
model, (b) power-aware simulation, and (c) monitoring and
graphically representing power dissipation at the system level
with flexible granularity and compositions.

Index Terms—System Level Description Language; Power-
aware Design; Annotation and monitoring; Profiling;

I. INTRODUCTION

Power and temperature are now one of the main concerns

in SoC design and directly affect each and every one of the

design decisions. Each of the design components have different

behaviors in terms of power dissipation and temperature. In

other words there is no unique formula for power consumption

of each unit, and in reality it is even more complex since dif-

ferent applications cause different power dissipation behavior

in a single unit, which makes power dissipation data-sensitive.

Hence, thorough power estimation needs detailed information

about power dissipation of every unit while executing a certain

set of operations as well as precise profiling results of their

interactions, communication details, memory accesses, and

cache hits/misses in addition to their operating conditions.

Currently many-core architectures have become the default in

SoC design and extracting the above mentioned information is

now even more essential and at the same time more complex.

Additionally by considering power in the early design stages,

the device life-time is significantly extended and the reliability

and performance of the system improves, revealing another

aspect of power evaluation importance.

Power modeling and estimation can be implemented in

all design levels with different accuracy and speed trade-off.

Desired power related information for design verification at

different design stages are presented in Figure 1. Any proposed

approach for system level power evaluation should support

monitoring power for peak and average power evaluation

of the entire system as well as for each design component

separately as it is shown in Figure 1(a). Moreover, design space

exploration and time-power constraints trade-off are required

to start at the system level regardless of degraded accuracy,

Figure 1(b).

p
o

w
e

r

time

DC1

DC2

(a) Power dissipation over time in design

components, DC1 and DC2

e
n

e
rg

y

performance

design options

parito-optimal design

(b) Design space exploration

Fig. 1. Power & Time Analysis at System-Level

II. RELATED WORKS

Although power aware design is crucial in Electronic Sys-

tem Level (ESL) design, SLDLs are not supporting this feature

natively. The initial solution to this deficiency, which is still

being used in some cases, was the use of spreadsheets. The

spreadsheet approach is fast for average power evaluation,

however verifying power dissipation over time and securing

the system against power peaks is only possible when timing

is taken into account [1]. There has been some research on

extending SystemC or providing new libraries for power aware

simulation. PowerSC [2] is a library proposed for power aware

simulation of SystemC-based TLMs; it can gather switching

activity information during the simulation. TLM Power 3.0 [3]

counts bit level activities in a TLM model. A similar approach

is presented in PKtool [4].

A limitation of these approaches is that the annotation of

power and timing functions to TLMs is performed manually,

which is a tedious task for the designer and not scalable.

Another drawback is that modifying the design with power

aware functions changes the pure specification of the model.

In [5] a methodology to convert RTL designs to power and

timing annotated TLM models is presented. In this work

power modeling is base on existing RTL models. In this

paper, we present PowerMonitor, a library for ANSI-C based

SLDLs such as SystemC [6] or SpecC [7]. PowerMonitor

allows power-aware design to be orthogonal to conventional

performance-aware design. Power evaluation, measurement,

annotation and visualization are developed and adapted for

SLDL. The proposed API can collect all components switching

activities, interactions and communication details. The pro-

posed extension and methodology for power modeling can

easily be applied for any other SLDL as well.

III. OVERVIEW

To develop PowerMonitor, we defined PowerMeter as a vir-

tual tool for power evaluation. PowerMeter is designed similar

to an actual power meter that is used for power monitoring and

measurements at the physical level. PowerMeter can monitor

and measure power, and generate an on-line log of power

activities during simulation. The collected information can

be used for power optimization, power-aware schedulers, and

ultimately increasing life-time and reliability of the system.

We have developed PowerMeter as an API and a library

called PowerMonitor which offers power analysis along with

timing log and graphical reports. PowerMeters are annotated

to the specification model with energy dissipation and time

consumption information. The implemented functions enable

PowerMeter to monitor and measure power consumption over

time, and within different system components or applica-

tion segments. Table I shows an overview of existing time

evaluation features along with added power features. In

TABLE I
TIME AND POWER MODELING

Features Time Power

Meters sim time time; PowerMeter pm;

Units SEC, JOULE, MILLI JOULE,..
MILLI SEC,.. WATT, MILLI WATT,..

wait(event); pm consume dynamic(&pm,dynamic);
Consumption waitfor(time); pm consume static(&pm,static);

do{...}timing{...} pm consume total(&pm,dynamic,static);

time = now(); dynamic=pm dynamic(&pm);
time = delta(); static=pm Static(&pm);

Monitor total=pm power(&pm);
display(&pm);
printPower(&pm);

order to support power analysis the PowerMonitor library

is developed with specific power and energy related units

as well as functions for power consumption and monitoring.

Owing to PowerMonitor, the design exploration process can

be initialized at the system level via verifying both timing and

power constraints as it is shown in Figure 1.

IV. POWER MONITOR

The PowerMonitor library uses PowerMeters (PM) to ex-

tract power dissipation information from the design, and

perform power analysis. Each PM monitors static and dy-

namic power dissipation over time and with proper units.

In order to support different operations over PM, such as

power consumption, power monitoring and power constraint

evaluation capabilities, multiple functions are developed in the

PowerMonitor library which are presented in the following

subsections.

A. PowerMeter

Each PM is capable of measuring power for its assigned

part of the design. There is no limit on defining PMs nor

associating them with particular part of the design. A PM can

be defined for any block, component, and behavior of the code.

The PM class objects can be defined with type PowerMeter

within the specification model code as:

PowerMeter pm;

B. Static & Dynamic Power

The PMs are treated as an actual power meter in this work.

Therefore all the expected functionalities from a power meter

are implemented as built-in features in the PowerMeter library.

For each PM the main required information encompasses the

energy dissipated over time due to the switching activity and

leakage. Hence these values are monitored and maintained

internally for each PM.

long double Dynamic ;

long double S t a t i c ;

s im time t ime ;

C. Power Consumption

To represent the power dissipation in the system model a set

of functions is presented; pm_consume_dynamic for spending

dynamic power only, pm_consume_static for static power

only, and pm_consume_total for spending both dynamic and

static power.

void pm consume dynamic (PowerMeter ∗pm ,

cons t long double Dynamic) ;

void pm consume s t a t i c (PowerMeter ∗pm ,

cons t long double S t a t i c) ;

void pm consume to ta l (PowerMeter ∗pm ,

cons t long double Dynamic ,

cons t long double S t a t i c) ;

When these functions are called the Dynamic and/or Static

energy values along with the associated time stamps are

recorded for the specified PM. Then in the analysis phase this

information is deployed to generate graphs and different forms

of power reports.

D. Monitor Power Dissipation

To access the spent dynamic, static or total power value a

set of functions are implemented. The function now() which

returns current simulation time is already available in SLDLs.

void cons t long double pm dynamic (PowerMeter ∗pm) ;

void cons t long double pm s t a t i c (PowerMeter ∗pm) ;

void cons t long double pm to t a l (PowerMeter ∗pm) ;

For monitoring dynamic and static power dissipation dif-

ferent functions are developed in PowerMonitor. The pro-

vided functions are print_pm_dynamic, print_pm_static and

print_pm_total, which print current dynamic, static and both

respectively. These functions evaluate the power values and

output the power report with proper units:

void pr in t pm dynamic (PowerMeter ∗pm) ;

void p r i n t pm s t a t i c (PowerMeter ∗pm) ;

void p r i n t pm t o t a l (PowerMeter ∗pm) ;

In order to evaluate the power dissipation over time a power-

time diagram is a convenient solution for the designer. Func-

tion display is developed to visually display power consump-

tion during simulation:

void pm disp lay (PowerMeter ∗pm) ;

Figure 4 represent an example of using function display.

E. Power Analysis

When the model simulation is over, PMs contain power

behavior of the design. At this point, the designer can ask

for different power information such as peak power, average

power, display multiple PMs power dissipation in one graph,

adding power dissipation of different PMs, or printing all

static, dynamic dissipated values. Some auxiliary functions

are implemented in order to allow these analyses. Function

pm_multidisplay gets PMs as input and returns a merged

graph of power dissipation over time of all the input PMs.

void pm mu l t i d i s p l a y (PowerMeter ∗pm1 , . . .) ;

An example of using pm_multidisplay is represented in

Figure 4.

During the power analysis, the user may want to add up power

dissipation in multiple PMs and run further investigations. In

pm_add a PM is returned that contains the summation of all

input PMs

void pm add (PowerMeter ∗ r e s u l t , PowerMeter ∗pm , . . .) ;

For user convenience, in order to get a general report of

all PMs the report_power function can be used. It iterates

through all PMs and prints the static, dynamic, total, average

and total time spent in each PMs.

void r e po r t p owe r () ;

Apart from the above mentioned functions, PowerMonitor

provides functions so PMs can be initialized, reset, or set to

certain values for dynamic power, static power and time. The

pm_assign_dynamic, pm_assign_static, pm_assign_total

functions are used to initialize or assign values to a PM at

time t.

void pm ass ign dynamic (PowerMeter ∗pm ,

s im time t ,

cons t long double Dynamic) ;

void pm a s s i g n s t a t i c (PowerMeter ∗pm ,

s im time t ,

cons t long double S t a t i c) ;

void pm a s s i g n t o t a l (PowerMeter ∗pm ,

s im time t ,

cons t long double Dynamic ,

cons t long double S t a t i c) ;

To reset the PM power values pm_reset can be called.

void pm rese t (PowerMeter ∗power) ;

V. POWERMONITOR: ENERGY & POWER

Each PM tracks the energy consumption due to switching

activity and leakage. So the user can monitors how energy is

spent at each PM over time and has the option to access the

trace files with any requested timing resolution. An example

of energy consumption at PowerMeter pm is presented in

Figure 2(a). The power behavior is a direct function of energy

consumption over time and can be obtained easily from energy

consumption information. The PowerMonitor assists the user

to generate any format of power report and diagrams for

needed simulation intervals and timing resolution. An example

of power dissipation at PowerMeter pm is shown in Figure

2(b), where the average power dissipation is obtained from

energy consumption with a sampling frequency of 1 milli

second.

 0

 40

 80

 120

 160

 3e+09 3.00004e+09

e
n
e
r
g
y
(
n
J
)

time(ns)

PM_ARM

(a) Energy consumption

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 3e+09 3.00004e+09

p
o
w
e
r
(
W
)

time(ns)

PM_ARM

(b) Power dissipation

Fig. 2. Energy consumption and derived power dissipation

VI. AUTOMATED POWERMETER ANNOTATION

The fact that applying power and time related functions to

every basic block, behavior or component of the design is

tedious and inefficient, we have provided an automated power

annotation tool in the context of the SpecC-based System-

level Design Environment (SCE) [8]. To offer a precise power

report we decided to attribute every basic block of the system

model code with its power information. The annotation tool

attaches PMs to the system level model based on user choice

of granularity and inserts pm_consume_total and waitfor

functions to every basic block of the design for the associated

PM. These two functions mimic energy and time consumption

within each basic block of the code. In this case, the designer

only needs to provide the power and time libraries for SCE

and choose the granularity of the insertion.

System-Level
Model

Power
Profiler

Compiler Simulation

Power
Monitor

Model

Refinement

Global
Power
Report

Behaviors
Power
Report

Design
Components

Power
Report

Fig. 3. Power-aware design flow

A. PM Granularity

From the user perspective, power evaluation is performed

for certain architectural components of the design like a

processing element, certain set of the behaviors within the

system model, or globally over the whole system. Thus we

provided same levels of granularity for all PM allocations.

The designer can choose to allocate PMs to all the design

components, behaviors, or only allocate a single PM for the

entire system.

B. Design Flow

A general design flow using PowerMonitor is shown in

Figure 3. Once the specification model is ready, a power model

is associated with every design component. These power

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 1e+09 2e+09 3e+09 4e+09 5e+09 6e+09 7e+09 8e+09 9e+09

p
o
w
e
r
(
W
)

time(ns)

PM_AMBA_ARM-HW
PM_AMBA_ARM-IOOUT

PM_AMBA_IOIN-ARM
PM_ARM
PM_HW

(a) Canny edge detector 6 image-stream

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 3.19e+09 3.2e+09

p
o
w
e
r
(
W
)

time(ns)

PM_AMBA_ARM-HW
PM_AMBA_ARM-IOOUT

PM_AMBA_IOIN-ARM
PM_ARM
PM_HW

(b) Zoomed in Canny

Fig. 4. Power dissipation of Canny Edge Detector application using PowerMonitor

models (equations, operating conditions,..) are user-defined,

nevertheless applied to each component automatically through

a modification to SCE, the tool for refinement of SpecC

models. Next PowerProfiler performs power annotation and,

followed by simulating the power-annotated system model,

different formats of power reports can be generated.

The User does not need to modify the specification model in

order to evaluate or test design constraints, new PE mapping,

different power behavior, or power libraries. In other words,

the cost of new design exploration is updating the mappings

and/or libraries without any power annotation related changes

in system model code. Thanks to this feature PowerMonitor

significantly reduces design space exploration effort and power

optimization.

The generated library source code can be unknown to the user

as well. Therefore it is effortless for the designer to generate

power reports. The only needed change is the inclusion of

the PowerMonitor header file. No extra library or compiling

feature is required for applying PowerMonitor. Moreover, the

annotated power information can be added to the original

design specification or it can only be used for power aware

simulation and generating power reports. The power API has

the capability of providing the trace of each behavior and PE

utilization with different time precision, which is significantly

helpful for verifying the peak power and power optimization.

VII. CASE STUDY: CANNY EDGE DETECTOR

We have examined the PowerMonitor together with the

automated power-annotation tool on the Canny edge detector

[9]. The Canny is a real-life image processing application

implemented with a 4-stage pipeline configuration. In this

architecture an ARM processor along with a custom hardware

(HW) unit are communicating through an AMBA BUS and

double-handshake channels. Figure 4 represents the power

dissipation graph for a stream of 6 images. The automated

PowerMonitor is applied at the PE level and the power graph

within all the processing and communication components of

the design is displayed. Figure 4(a) shows the application life-

time in addition to associated power dissipation and illustrates

how the pipeline is getting filled and drained, and when the

images are being transferred between ARM and HW. A short

time interval when the HW is sending the processed image 3 to

the ARM is shown in Figure 4(b). Furthermore the peak power

and working intervals of each component can be captured

and altered as the designer desires. Apart from diagrams the

detailed log of PEs power dissipation can be used for further

analysis or power optimization.

VIII. CONCLUSION & FUTURE WORK

In this paper we presented PowerMonitor as a power

extension to SLDL. Power evaluation at the system level

adds a new dimension to the system level design process

and improves the design exploration experience significantly.

An overview of PowerMeter, its functions, along with the

automated power annotator were described followed by an

experiment on Canny edge detector application. Thanks to

PowerMonitor and automated annotation feature a convenient

framework for power analysis and optimization is offered for

C-based SLDLs.

For future work we are planning to deliver power optimization

techniques to be applied automatically at the system-level.

Also we want to extend the PowerMonitor for temperature

and reliability evaluation features.

REFERENCES

[1] B. Fischer, C. Cech, and H. Muhr, “Power modeling and analysis in early
design phases,” in Proceedings of the conference on Design, Automation

& Test in Europe, p. 197, European Design and Automation Association,
2014.

[2] F. Klein, R. Azevedo, L. Santos, and G. Araujo, “Systemc-based power
evaluation with PowerSC,” Electronic System Level Design, pp. 129–144,
2011.

[3] D. Greaves and M. Yasin, “TLM POWER3: Power estimation methodol-
ogy for SystemC TLM 2.0,” in Models, Methods, and Tools for Complex

Chip Design, pp. 53–68, Springer, 2014.
[4] G. Vece, M. Conti, and S. Orcioni, “PK tool 2.0: a SystemC environment

for high level power estimation,” in Electronics, Circuits and Systems,

2005. ICECS 2005. 12th IEEE International Conference on, pp. 1–4,
IEEE, 2005.

[5] D. Lorenz, K. Grüttner, N. Bombieri, V. Guarnieri, and S. Bocchio, “From
rtl ip to functional system-level models with extra-functional properties,”
in Proceedings of the eighth IEEE/ACM/IFIP international conference on

Hardware/software codesign and system synthesis, pp. 547–556, ACM,
2012.

[6] T. G. S. Liao, G. Martin, S. Swan, and T. Grötker, System design with

SystemC. Springer, 2002.
[7] D. D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and S. Zhao, “SpecC:

Specification language and methodology,” 2000.
[8] R. Dömer, A. Gerstlauer, J. Peng, D. Shin, L. Cai, H. Yu, S. Abdi, D. D.

Gajski, et al., “System-on-chip environment: a SpecC-based framework
for heterogeneous MPSoC design,” EURASIP Journal on Embedded

Systems, vol. 2008.
[9] R. Han, Y. Samei, and R. Doemer, “System-level modeling and refinement

of a canny edge detector,” Center for Embedded Computer Systems, 2012.

