
A Program State Machine Based Virtual Processing Model
in SystemC

Tim Schmidt1, Kim Grüttner2, Rainer Dömer1, Achim Rettberg3

1University of California, Irvine, USA
2OFFIS – Institute for Information Technology, Oldenburg, Germany

3Carl von Ossietzky University Oldenburg, Germany

ABSTRACT
The Program State Machine (PSM) Model of Computation
offers a rich set of modeling elements to describe behavioral
and structural hierarchy, concurrency, synchronization, state
transitions and timing. With the rising software complexity
of today’s embedded systems, the use of Real-Time Operat-
ing Systems (RTOS) has become state-of-the-art for nearly
all System-on-Chip designs. Regrettably, the PSM model
itself has insufficient support for the specification of the pre-
emptive dynamic scheduling behavior of an RTOS. In this
paper, we propose a model for dynamically dispatching PSM
models on a virtual processing element. Our model aims
to abstract from the targeted RTOS and the processor core
through execution time annotations and a flexible preemp-
tive scheduler model. Mapping a PSM model to a set of
scheduled virtual processing elements only requires minor
model transformation and enables early exploration of dif-
ferent processing element mappings and scheduling policies.
Our virtual processing model for PSMs is realized on top
of the SystemC library. We evaluate the proposed virtual
processing model using a Canny edge detection filter.

1. INTRODUCTION
The development process of state-of-the-art embedded

systems is complex and affects many different disciplines.
Among others, the design process requires hardware and
software design decisions. Today’s system complexity of em-
bedded Multi-Processor System-on-Chip (MPSoC) designs
is continuing at an almost exponential rate [2]. The strongly
growing complexity includes the integration of the function-
ality as well as the associated software complexity. The
development of hardware is associated with immense costs.
Consequently, whenever possible, designers prefer software
solutions and realize algorithms on software processors.

To cope with the increasing complexity and the time-to-
market pressure, new design methodologies are required. One
design challenge for embedded system designers is mapping
the functionality on the individual processing elements while
meeting the required extra-functional properties (e.g. timing
and power consumption) at minimal cost. To support this
challenge, System-Level Design Languages (SLDLs) enable

EWiLi’14, November 2014, Lisbon, Portugal.
Copyright retained by the authors.

to raise the level of abstraction and support early design deci-
sions. In [3], different abstraction levels have been proposed.
The specification level enables untimed modeling of function-
ality and causality between behaviors in an executable model.
Behaviors can be statically composed in a sequential order,
as finite-state machine or parallel. Communication between
functions is described using double handshake channels with
message passing and shared variables. The architecture level
introduces processing elements (PE) that execute behaviors
in sequential order. Behaviors are annotated with delays to
specify the estimated execution times on the PEs. Commu-
nication between PEs is described through message passing
communication with annotated delays. The implementation
level adds instruction and cycle accurate timing for PEs and
signal level protocols with cycle accurate communication
times.

SLDL

COMM & SYNC 
CHANNELS

SLDL

INSTRUCTION SET 
SIMULATOR

COMM & SYNC 
CHANNELS

APPLICATION APPLICATION

(a) specification model (d) implementation model

SLDL

VIRTUAL PROCESSING 
UNIT

COMM & SYNC 
CHANNELS

APPLICATION

(b) virtual processing model

SLDL

RTOS MODEL

COMM & SYNC 
CHANNELS

APPLICATION

(c) architecture model

RTOS

Figure 1: Extension of a virtual processing model (see [4])

In this work we focus on systems that implement their
behavior in software, which can be mapped and executed
on different PEs of an MPSoC. Fig. 1 (a), (c) and (d) show
the layers for executable MPSoC models proposed in [4].
All models are executed on top of a SLDL, e.g. SpecC or
SystemC. The Application is user-defined behavior to be ex-
ecuted on the MPSoC. The layers between Application and
SLDL introduce communication, scheduling and timing tech-
niques to enable a stepwise refinement from the specification
level down to the implementation.

The design step from a non-scheduled specification model
(a) to a complete RTOS scheduled architecture model (c)
is a complex refinement step. It requires to transform the
application or behavioral description into a process- or thread-
based model and to use the configuration and scheduling
primitives of the selected RTOS. At this time the choice of
the task granularity and the supported scheduling primitives
have usually been taken. At this level, the comparison of
different task granularities and different scheduling policies,
supported by different RTOSs induces major redesign effort.
In this paper, we introduce a virtual processing model (b)
to support a smoother refinement from the unscheduled
specification to an RTOS scheduled architecture model for
PSMs.

Our approach supports PSM modeling at the specification
layer and enables early estimation of dynamic scheduling



effects when mapping parallel behaviors on the same PE.
This step can be performed without any behavior to process
or RTOS specific refinements. This way, designers can profit
from simple specification model modifications in combina-
tion with early estimated execution time annotations, thus
enabling early decisions regarding PE allocation, behavior
to process refinement granularity, process to PE binding and
scheduling policy selection.

The rest of the paper is organized as follows. In Section 2
we analyze related work. Next, we discuss the design of the
virtual processing model in Section 3. Followed by a brief
description of the implementation in Section 4, we evaluate
the new virtual processing model using a Canny filter for still
image edge detection in Section 5. Finally, we conclude our
work in Section 6.

2. RELATED WORK
An early proposal of a generic RTOS model based on Sys-

temC has been published in [11]. The presented abstract
RTOS model achieves time-accurate task preemption via Sys-
temC events and models time passing via a delay() method.
The RTOS overhead can be modeled as well. Two different
task scheduling schemes are studied: the first one uses a
dedicated thread for the scheduler, while the second is based
on cooperative procedure calls, avoiding this overhead. Al-
though in this approach explicit inter-task communication
resources are required (message queue, ...), the simulation
time advances simultaneously as the tasks consume their
delays.

In [8], an RTOS modeling tool is presented. Its main
purpose is to accurately model an existing RTOS on top of
SystemC. A system designer cannot directly use it. In this ap-
proach, the next RTOS “event” (interrupt, scheduling event,
etc.) is predicted during run-time. This improves simula-
tion speed, but requires deeper knowledge of the underlying
system.

An RTOS based scheduling approach with focus on pre-
cise interrupt scheduling has been proposed in [17]. For
this purpose, a separate scheduler is introduced to handle
incoming interrupt requests. Timing annotations and syn-
chronization within user tasks are handled by a replacement
of the SystemC wait(). In [16] an annotation method for
time estimation has been presented that supports flexible
simulation and validation of real-time constraints for task
migration between different target processors. The concept
allows preemptive scheduling in the context of priority-based
scheduling, supporting nested interrupts.

All mentioned solutions above work on architecture level
models and allow to create and handle processes and in-
terrupts on an RTOS specific abstraction. Our solution
addresses scheduling at a higher abstraction level and keeps
communication at specification abstraction, thus no need for
interrupts.

Several approaches based on abstract task graphs [9, 10,
12, 15] have been proposed as well. In this case, a pure
functional SystemC model is mapped onto an architecture
model including an abstract RTOS. The mapping requires
an abstract task graph of the model, where estimated ex-
ecution times can be annotated on a per-task basis only,
ignoring control-flow dependent durations. This reduces the
achievable accuracy.

The proposed RTOS model in [4] can be implemented on
top of any SLDL (see Fig. 1) that supports the concepts
of process handling and time modeling. An extension of
this approach [13] presents a high-level, host-compiled multi-
core RTOS simulator. This multi-core processor model can
run more than one process simultaneously which can be or-
ganized by a separate ready queue per core (Asymmetric

Multi-Processing) or one global ready queue (Symmetric
Multi-Processing) used for dynamic process to core dispatch-
ing. The proposed extension supports the concept of Trans-
action Level Modeling (TLM) for intra-core communication.
Both solutions focus on a process level RTOS abstraction at
the architecture and implementation level including features
like process creation and interrupt handling. In contrast,
our proposed approach avoids process-level RTOS opera-
tions and operates on an estimated execution time annotated
specification model. Moreover, our solution keeps commu-
nication abstract and each processing element has its own
ready queue. After exploration, based on our virtual platform
model, we can transform the scheduled specification model
into an RTOS model on the architecture level.

The timing accuracy and therefore the simulation perfor-
mance of [4, 13] is limited by the fixed minimal resolution of
discrete time advances. An extension deploying techniques
with respect to preemptive scheduling models has been pre-
sented in [14]. The Result Oriented Modeling collects and
consumes consecutive timing annotations while still handling
preemptions accurately.

A two layer for modeling approach for software task schedul-
ing considering shared resources has been proposed in [6, 7].
The design starts with an Application Layer (AL) model,
which describes the functionality in terms of software tasks,
hardware modules and shared communication objects. These
modeling elements are mapped on modeling elements of the
Virtual Target Architecture Layer (VTAL): software process-
ing elements with an RTOS model similar to [14], hardware
processing elements with fixed static scheduling, memories
and SystemC TLM for modeling shared buses and point-to-
point communication channels. Communication is realized
via Remote Method Invocation (RMI) via shared buses or
dedicated point-to-point channels. The individually mapped
software tasks can be annotated with Estimated Execution
Time (EET) blocks that represent computation time. The
design flow is supported with preemptive and cooperative
scheduling strategies, as well as deadline driven strategies.
This approach covers specification and architecture level
modeling. The main difference to our approach is that the
RTOS model works with explicit tasks (i.e. processes). Our
model could be refined as well to [6, 7] after PSM scheduling
exploration.

3. VIRTUAL PROCESSING MODEL
3.1 Basic Modeling Elements

We use an expressive subset of the program state machine
(PSM) model of computation (MoC) to describe the func-
tionality of a system. A hierarchical PSM model with the
corresponding thread graph is shown in Fig. 2(a) and (b). A
sequential composition of n behaviors describes a total execu-
tion order, denoted as a n dimensional tuple: (beh1, ..., behn).
The execution starts with beh1and finishes with behn. A
parallel composition of n behaviors describes a partial execu-
tion order, denoted as a set of n behaviors {beh1, ..., behn}.
The parent behavior of a parallel composition of child behav-
iors will not finish until all child behaviors have completed
(Fork-Join semantics). The finite-state machine behavior
composition is a special case of a sequential execution from
a start state to an end state. The execution order is defined
by state transitions.

The virtual processing model supports communication be-
tween behaviors via double handshake channels (synchro-
nized) and shared variables (unsynchronized). A double
handshake channel operates in rendezvous fashion (see Fig. 3).
When the data is transferred from the sender to the receiver,
both behaviors resume their execution at the same time. A



Processing Element PE1
A
B

Scheduler S: fixed priority

D
E

J

F
G H

C

C1

C2

C3

A → ttop

B → ttop

{C1,C2,C3}→t1

D → t2
E → t2
F → t2

G → t3 H → t4

[t1,t2] = fork(ttop)
  A
  B

C D
E

J

F
G H

C1

C2

C3

a) PSM model b) Thread graph

C → t1

[t3,t4] = fork(t2)

t2 = join(t3,t4) 
F → t2
J → t2

A → ttop
ttop = join(t1,t2) 

Processing Element:
PE1

FSM: 
C

State:  
C1

Sequence:
A

Sequence: 
D

State:  
C2

State: 
C3

Parallel:
B

E Parallel:
F J

G H

c) Mapped behavior on a PE d) Nested behaviors

Scheduler
Strategy

Figure 2: PSM model (a), which is mapped on a PE (c),
with corresponding thread graph (b) and nesting tree (d)

communicating behavior can be blocked through communica-
tion for some time, until the other communication partner is
ready and the handshake has been completed. To achieve a
high utilization of a PE the scheduler will be able to preempt
blocked behaviors.

Double handshake channel

Port 
with 

sender 
interface

Port 
with 

receiver 
interface

Receiver 
interface 

on channel

Receiver 
interface 

on channel

Communication 
direction

B1 B2

C1

Channel C1Behavior B1 Behavior B2

send()
receive()

time

blocked s0
s1

a) Communication diagram b) Sequence diagram

Figure 3: Double handshake protocol

3.2 Processing Elements
A PE maintains a single thread of execution (i.e. a single

core processor). We associate exactly one scheduler with
one PE one scheduling algorithm. We use the terms simu-
lated time and simulation time to express the amount of task
execution time currently simulated. The terms simulation
execution time and execution time refer to the amount of time
the simulator requires on the host computer1. Fig. 2(c) shows
the scheduler S which is assigned to PE1 and associated
with the fixed priority scheduling strategy. In this case all
behaviors mapped on PE1 need a specific fixed priority, such
that the scheduler can make a scheduling decision. Further-
more, we assume that computation is only in leaf behaviors
(C1, C2, C3, E, G, H and J in Fig. 2), and hierarchical
behaviors (A, B, C, D, and F in Fig. 2) describe the causal
chain of execution in the model that must be followed by the
scheduler.

3.3 Scheduling
We describe now the concept of scheduling for PSM models

for the two requested fixed priority and round robin schedul-

1
Which is of course dependent on the host CPU, clock frequency

etc. and a comparison between simulation execution times of different
model is only possible on the same reference simulation host.

ing algorithms. We decided to provide these two fundamental
strategies because more complex strategies can be easily de-
rived from them.

3.3.1 Fixed Priority
The fixed priorities are statically defined. The scheduler

always executes the behavior that has the highest priority
and is ready to execute. We are interested in making the
process of priority assignment to the behaviors on the virtual
processing model as simple as possible. The designer assigns
fixed priorities only to leaf behaviors. A hierarchical higher
behavior cannot hide the priority of a leaf behavior.

F C1, C2, C3

inner behaviors leaf behaviors

C1, C2, C3, 
G, H

inner behaviors leaf behaviors

a) Before scheduling decision b) After simulation of behavior F

Set of ready behaviors Set of ready behaviors

Figure 4: Differentiation between the priority of inner and
leaf behaviors (example based on Fig. 2)

The scheduler distinguishes between inner and leaf be-
haviors. As shown in Fig. 4(a), the set of ready behaviors
can be categorized into two subsets. Inner behaviors al-
ways have an infinite high priority and leaf behaviors have a
fixed priority defined by the designer. The scheduler always
prefers an inner behavior over a leaf behavior. Let’s assume
the behaviors C1, C2, C3, and F are ready to execute. In
this situation, the scheduler selects behavior F because F is
an inner behavior (see Fig. 2(c)) and has infinite priority.
Behavior F has two child behaviors G and H, which are leaf
behaviors. Behavior F is waiting until the child behaviors
have completed. Fig. 4(b) shows both child behaviors G and
H added to the set of behaviors ready to execute.

3.3.2 Round Robin
All mapped behaviors on a processing element get time

slices of the same length. If a behavior has terminated, the
scheduler selects immediately the next running behavior. The
scheduler executes the behaviors in a circular order. If a
behavior is not ready to execute, the next ready behavior
with respect to the circular iteration is chosen. Fig. 5 depicts
a round robin scheduling example. The parallel behaviors
G and H are mapped on the same processing element. The
behaviors G and H are scheduled by round robin and the
time slice is 5 time units. In the following, we keep the
focus on behavior G that requests once 3 and once 12 time
units. The start behavior is arbitrary because the model
in the figure does not define one; we assume the simulation
starts with behavior G. Behavior G requests 3 time units,
computes, and requests 5 more time units. The request of
3 time units can be consumed completely in one time slice;
however, the following request is too complex. 2 more time
units can be consumed after behavior H preempts behavior
G and can start executing. At time 10, behavior G is active
again and continues consuming the remaining 10 time units.

H

 Behavior of G:

 1. Request 3 time units
 2. Compute something
 3. Request 12 time units
 4. Compute something
 5. ... 

0 2 4 6 8 10 12 14

G GG H G

16

first time request 
of 3 time units

second time 
request of 12 time untis

H

18 20
simulated timeScheduler: Round robin, 

time slice: 5 time units 1. time
slice

2. time
slice

3. time
slice

G

22 24

Processing Element: PE1

Figure 5: Round robin scheduling

Depending on the scheduling algorithm and the commu-



nication status, a behavior can have one of the following
states (see Fig. 6): ready, running, communicating and wait-
ing. A ready behavior can be selected by the scheduler and
executed on the associated processing element. A behavior
has the state running, if it is currently executing on the
mapped processing element. A running behavior can be
preempted in two different ways: (a) end of the time-slice,
as defined by the scheduling algorithm (waiting state), (b)
blocked communication request on double handshake channel
(communicating). If a behavior has completed, its status is
terminated. Fig. 6 shows all possible transitions between the
described states.

ready running

waiting

termination
executes estimated 

computation

preempted
finished estimated 

computation

activation

communicating

terminated

start of
communication

end of 
communication

resumecompleted after 
communication

Figure 6: State automaton of a behavior

4. IMPLEMENTATION

4.1 Processing Element
The class osss_processing_element represents a PE and in-

herits from the osss_behaviour. Fig. 7 shows the extension of
the OSSS-Behaviour class diagram [5]. The designer derives
a class from osss_processing_element class and defines in the
constructor the execution order of the mapped behaviors on
the highest hierarchical level.

#wait(…): void
osss_module

osss_behaviour
<<virtual>>+main(): void 
#osss_seq(osss_sequential_behaviour_list): void 
#osss_fsm(osss_state_transition_list): void 
#osss_par(osss_parallel_behaviour_list): void 
<<virtual>>#init(): void
<<virtual>>#final(): void 

sc_module

0..* 1
osss_port

IF:Class1 0..*

sc_port
IF:Class

main(): void
osss_composite_behaviour

1 1

osss_parallel_behaviour
osss_sequential_behaviour

osss_end_state

osss_processing_element

1
0..1

< < virtual > > schedule(): void
< < virtual > > available_time(): sc_time
dispatch(): void

osss_scheduler

1

osss_fixed_priorty_strategy osss_round_robin_strategy

osss_fsm_behaviour

sc_core::sc_time: m_simulated_time
process_status: m_process_status
osss_priority*: m_prio

osss_scheduling_attributes osss_state

osss_initial_state

1

Figure 7: OSSS-Behaviour class extensions (bold boxes)

In the following, we describe how the basic scheduling
algorithms are designed to support preemption and commu-
nication.

4.2 Simulation of Time
Fig. 8 shows an example where the behaviors B1 and B2

are mapped on the same PE under fixed priority schedul-
ing strategy. Thread t1 is associated with behavior B1 and
thread t2 with behavior B2. We assume behavior B2 is
running and B1 ready (see Fig. 6) at the beginning and
neither B1 nor B2 have consumed any time. Thread t2
starts executing the main() function of B2 and enters the 3
milliseconds estimated waste_time() function of the sched-
uler, see Alg. 1. The while loop runs until the entire re-
quested time of a timing annotation has been consumed.
At the beginning of the loop, thread t2 calls the function
available_time(requested_time), which asks the scheduling
strategy how much of the totally requested time can be con-
sumed. In our example, the scheduling strategy is fixed
priority and the current behavior has the highest priority. In
this case, the fixed priority scheduler accepts the complete
time (i.e. 3 milliseconds).

B1 B2

...

...

status: ready, low priority
driven by thread t1

status: ready, high priority
driven by thread t2

waste_time(5ms)
waste_time(3ms)
port->receive()
waste_time(7ms)

C1 ...

Figure 8: Scheduling with communication

We allow preemption of running behaviors. The function
then of preemption is to suspend the current running pro-
cess and to resume a process the scheduling algorithm has
selected to be executed next. If we suspend a process waiting
on a timed event,we have to interrupt the waiting process,
store how much time the process has already consumed, and
consume the remaining time later. For this reason, the Sys-
temC wait() statement in Line 6 is sensitive to two different
or-composed sets of events. The first event max_time notifies
the thread after the provided time slice of the scheduler is
over. The second parameter is an or-composed event list.
All behaviors that start communication add the correspond-
ing synchronization event of the channel to that list. This
mechanism allows preempting a current running behavior by
a behavior with higher priority that has completed commu-
nication.

Algorithm 1 function waste time(requested time)

1: req time ← requested time
2: while req time > 0 do
3: max time ← available time(requested time)
4: start time ← current time
5: behavior status ← running
6: wait(max time or registered communication events)
7: req time ← req time - (current time - start time)
8: if req time = 0 then
9: return

10: else
11: behavior status ← waiting
12: dispatch()
13: end if
14: end while

Each PE represents a single core processor. For this reason,
only one behavior can be ready for the SLDL scheduler.
Otherwise, the scheduler would execute multiple behaviors
in parallel on the same PE. Communicating behaviors are an
exception because they are waiting for their synchronization
event. If the process of a communicating behavior would be
suspended, the behavior would ignore the synchronization
event. The function dispatch() (see Alg. 2) guarantees this
requirement. The set of behaviors is stored in two lists,
namely a list for inner behaviors and a list for leaf behaviors.
The first behavior in the list of ready behaviors defines the
next running behavior. In this situation behavior B1 needs
to be suspended and behavior B2 should be ready.

4.3 Scheduling Strategy
We decided to separate the scheduler and the scheduling

strategies (see Fig. 7). The designer derives a class from
osss_scheduler. The function schedule() takes a list of all
leaf behaviors as argument. The function moves the next
executing behavior to the beginning of the list. The func-
tion available_time defines the size of a consumable time
quantum.

5. EXPERIMENTS AND EVALUATION
In order to evaluate our proposed virtual processing model,

we focus on scheduling different partitions of a specification



Algorithm 2 function dispatch()

1: Unsorted List: inner behaviors, leaf behaviors
2: Process successor process ← null
3: Process current process ← get current process()
4: if inner behaviors = ∅ then
5: schedule(leaf behaviors)
6: successor process ← first element(leaf behaviors)
7: else
8: successor process ← first element(inner behavior)
9: end if

10: for all Behavior b in inner behavior do
11: if process(b) 6= current process and

status(b) 6= communicating then
12: suspend(process(b))
13: end if
14: end for
15: if current process 6= successor process then
16: resume(successor process)
17: suspend(current process)
18: end if

Scheduler S

blurX4
20ms

Sync

Sync

Sync

Scheduler S

prep

blur_done

Derivative_X_Y

Magnitude_X_Y
Non_Max_Supp

gaussian_smooth

Apply_Hysteresis canny

a) IndividualPE b)  BlurX

Processing Element PE1

Processing 
Element PE2

Scheduler S

Sync

Sync

Sync

blurX4
20ms

blurX3
20ms

d) Blur2X2Yc) Blur2X

Processing 
Element PE2

blurY1
20ms

blurY2
20ms

blurY3
20ms

blurY4
20ms

blurY_par

blurX1
20ms

blurX2
20ms

blurX3
20ms

blurX4
20ms

blurX_par

Scheduler S

prep

blur_done

Derivative_X_Y

Magnitude_X_Y
Non_Max_Supp

gaussian_smooth

Apply_Hysteresis canny
Processing Element PE1

blurY1
20ms

blurY2
20ms

blurY3
20ms

blurY4
20ms

blurY_par

blurX1
20ms

blurX2
20ms sync sync

blurY_par

Scheduler S

prep

blur_done

Derivative_X_Y

Magnitude_X_Y
Non_Max_Supp

gaussian_smooth

Apply_Hysteresis canny
Processing Element PE1

blurY1
20ms

blurY2
20ms

blurY3
20ms

blurY4
20ms

blurY_par

blurX1
20ms

blurX2
20ms

blurX3
20ms sync

blurX_par

Scheduler S

Sync

Sync

blurX3
20ms

blurX4
20ms

Processing 
Element PE2

Scheduler S

prep

blur_done

Derivative_X_Y

Magnitude_X_Y
Non_Max_Supp

gaussian_smooth

Apply_Hysteresis canny
Processing Element PE1

blurY1
20ms

blurY2
20ms sync sync

blurY_par

blurX1
20ms

blurX2
20ms sync sync

blurY_par

blurY3
20ms

blurY4
20ms

Sync

Figure 9: Partitioning of the Canny edge detector

model and measure the simulated time, count the sched-
uler calls and measure the execution time of the SystemC
program. The count of scheduler calls is compared to the ex-
pected number of scheduler calls depending on the scheduling
strategy. Based on the results, we can show that the commu-
nication via shared variables and double handshake channels,
as well as the individual scheduler on the PEs, do not violate
the causal execution order defined in the specification model.

The design we use for evaluation is a Canny edge detector
[1], a graphical filter to detect edges in a gray-scale image. As
starting point, we used an existing SpecC PSM model of the
filter, transformed it into an OSSS-Behaviour [5] model, and
implemented different virtual processing models, as shown
in Fig. 9. Communication is performed via shared variables
and double handshake channels. An array containing the
complete image is shared among the blur behaviors. Each
of these behaviors manipulates pixels on non-overlapping
tiles of the image. In the Canny algorithm blurring is the
most computationally intensive block and therefore we map
different combinations of blur leaf behaviors to a second
processing element. For our evaluation, we only require
timing annotations for parallel and mapped leaf behaviors.
We annotated each blur behavior with 20ms.

Simulated Speedup LoC ∆ [LoC] ∆ [%]
time [ms]

Specification 40 - 1497 - -

IndividualPE 160 1 1541 44 2.9
BlurX 140 1.14 1760 219 14.2
Blur2X 120 1.33 1840 80 4.5
Blur2X2Y 80 2.00 1897 57 3.1

Table 1: Comparison of selected design metrics

The following models, as shown in Fig. 9, are evaluated:
Specification (untimed, without virtual PE), Individual
PE (timed blur leaf behaviors, all behaviors mapped on a sin-
gle PE), BlurX (timed blur leaf behaviors, blurX4 mapped
to PE2, synchronization between PE1 and PE2 via double
handshake channel (behavior blurX4 on PE2 can only start
if behavior blurX_par on PE1 has been entered)), Blur2X
(timed blur leaf behaviors, parallel composition of blurX3

and blurX4 mapped to PE2, synchronization of parallel com-
position like in BlurX) and Blur2X2Y (timed blur leaf
behaviors, parallel composition of blurX3 and blurX4 and
parallel composition of blurY3 and blurY4 mapped to PE2,
synchronization like in Blur2X with additional synchroniza-
tion barrier between sequential composition of parallel blur
behaviors).

When neglecting communication (shared array access),
synchronization and scheduling (including context switch-
ing) times, our model’s total simulated times, as expected
by Amdahl’s law, are shown in Tab. 1. We compare the
complexity of the different models using a simple Lines of
Code (LoC) metric. The major effort was to allocate new
channels and behaviors for synchronization. For instance,
for the model BlurX a new PE and three sync behaviors
have been instantiated. Furthermore, the double handshake
channel was hierarchically bound from the ports of the PE’s
to the ports of the blur leaf behaviors.

In the following, we discuss the simulation of the four
virtual processing models using a round robin scheduler with
different time slice granularities from 1ns up to 100, 000ns
on each individual PE. We measured the number of context
switches and associated them with a constant cost of 1 ms.
Fig. 10 shows the simulated time of model Blur2X2Y with
context switching costs for a round robin scheduling of PE1
and PE2. As expected, we can observe that fine grained time
slices < 100 ns have a huge impact on the overall simulated
time. On the other hand, the responsiveness (although not
necessary for the image filter design) rises.

60,000	
  
80,000	
  
100,000	
  
120,000	
  
140,000	
  
160,000	
  
180,000	
  
200,000	
  
220,000	
  
240,000	
  

1	
   10	
   100	
   1,000	
   10,000	
   100,000	
  

si
m
ul
a'

on
	
  '
m
e	
  
[m

s]
	
  

Time	
  slice	
  of	
  the	
  individual	
  schedulers	
  [ns]	
  

Simula'on	
  'me	
  of	
  the	
  model	
  Blur2X2Y	
  with	
  'me	
  
annota'ons	
  for	
  context	
  switches	
  	
  

Figure 10: Simulation with costs for context switches

Fig. 11 visualizes the ratio between the simulated time for
context switches and computation for a 20 ms leaf behavior
timing annotation. When the time slice is very short, almost
70 % of the simulated time is spent on context switches.
Fig. 12 shows the measured execution time of the various
models on an Intel(R) Core(TM)2 Quad CPU Q9650 @ 3.00
GHz with 4 GB RAM running Fedora 12 Linux using the



0%	
  

20%	
  

40%	
  

60%	
  

80%	
  

100%	
  

1	
   2	
   5	
   10
	
  

20
	
  

50
	
  
10
0	
  

20
0	
  

50
0	
  

1,0
00
	
  

2,0
00
	
  

5,0
00
	
  

10
,00
0	
  

20
,00
0	
  

	
  R
a$

o	
  
be

tw
ee
n	
  
co
nt
ex
t	
  s
w
itc
h	
  

an
d	
  
co
m
pu

ta
$o

n	
  
$m

e	
  

Time	
  slice	
  of	
  individual	
  scheduler	
  [ns]	
  

Ra$o	
  between	
  context	
  switch	
  and	
  computa$on	
  $me	
  for	
  
the	
  model	
  Blur2X2Y	
  

Computa2on	
  
2me	
  

Context	
  
switch	
  2me	
  

Figure 11: Ratio between context switches and computation
time

time command. From this measurement, we can observe that
the execution time of the individual models is proportional
to the number of context switches, as shown in Fig. 10.
We traced the individual scheduler calls and compared the

0.200	
  
0.300	
  
0.400	
  
0.500	
  
0.600	
  
0.700	
  
0.800	
  
0.900	
  
1.000	
  
1.100	
  

1	
   10	
   100	
   1,000	
   10,000	
   100,000	
  

Ex
ec
u&

on
	
  &
m
e	
  
[s
ec
]	
  

Time	
  slice	
  of	
  the	
  individual	
  schedulers	
  [ns]	
  

Execu&on	
  &me	
  for	
  round	
  robin	
  scheduled	
  processing	
  
elements	
  

Spec.	
  Model	
  

Individual	
  PE	
  

Blur	
  X	
  

Blur	
  2X	
  

Blur	
  2X	
  2Y	
  

Figure 12: Simulation execution times of canny edge detector
partitionings

execution order of leaf behaviors (i.e. the causal chain)
between the specification and the Virtual Processing Models.
In the specification model, the blur behavior’s execution
order was blurX1, ... , blurX4, while in the different VPM
models the execution order changed to blurX4, ... , blurX1.
Even though the ordering is different, validity of causality
for parallel compositions (partial order) only requires to be
order isomorph, which is the case.

6. CONCLUSION AND OUTLOOK
In this paper, we extended the proposed methodology in

[4] and introduced a novel virtual processing model for PSM
based models. The existing methodology allowed scheduling
of processes using generic RTOS primitives. The design step
from a non-scheduled specification model to a process-based
RTOS scheduled architecture model is a major refinement
step. For this reason, we proposed to introduce an inter-
mediate model, called virtual processing model. This model
enables to add a scheduler with user defined scheduling al-
gorithm to a behavior, called virtual processing unit. This
flexible scheduling annotation enables fast and easy explo-
ration, regarding scheduling granularities of behaviors and
assignments of scheduling policies. After successful explo-
ration, the behavior to process transformation and RTOS
configuration for architecture refinement can be performed.
We have sketched how to use SystemC to implement our
virtual processing model. Furthermore, we have integrated
the virtual processing model into the OSSS-Behaviour li-
brary, supporting program state machine (PSM) modeling
in SystemC. Our implementation concept allows designers to
implement new scheduling strategies. For the evaluation, we
used a Canny filter design and created different behavior par-
titions and scheduler configurations. The evaluation showed
that our extension retains the functional causalities of the
original PSM model when using a round robin scheduling

with different time slice granularities. So far we did not
evaluate our simulation results against measurements on a
real platform. To do a trade-off between simulation speed
and accuracy, a comparison with measurement results is
necessary and part of future work. Currently, the context
switch penalty and communication delay is handled in a very
simple way and after the conduction of measurement trails
these timing models will be refined.

Acknowledgement
This work has been partially supported by the ARAMiS
project (01IS11035M) and the EMC2 collaborative ARTEMIS
project (01IS14002R), both funded by the German Federal
Ministry of Research and Education (BMBF).

References
[1] J. Canny. A Computational Approach to Edge Detection. Pat-

tern Analysis and Machine Intelligence, IEEE Transactions
on, PAMI-8(6):679–698, nov. 1986.

[2] D. D. Gajski, S. Abdi, A. Gerstlauer, and G. Schirner. Embedded
System Design: Modeling, Synthesis and Verification. Springer,
1st edition, 2009.

[3] D. D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, and S. Zhao.
SpecC: Specification Language and Methodology. Springer, 1
edition, 2000.

[4] A. Gerstlauer, H. Yu, and D. D. Gajski. RTOS Modeling for
System Level Design. In Proceedings of DATE. IEEE Computer
Society, 2003.

[5] K. Grüttner and W. Nebel. Modelling Program–State Machines
in SystemC. In Forum on Specification and Design Languages
2008, 09 2008.

[6] P. Hartmann, H. Kleen, P. Reinkemeier, and W. Nebel. Efficient
modelling and simulation of embedded software multi-tasking us-
ing SystemC and OSSS. In Specification, Verification and De-
sign Languages, 2008. FDL 2008. Forum on, pages 19–24, Sept
2008.

[7] P. A. Hartmann, K. Grüttner, A. Rettberg, and I. Podolski.
Distributed Resource-Aware Scheduling for Multi-Core Architec-
tures with SystemC. In Distributed, Parallel and Biologically
Inspired Systems, volume 329, pages 181–192. Springer, 2010.

[8] Z. He, A. Mok, and C. Peng. Timed RTOS modeling for Embed-
ded System Design. In Real Time and Embedded Technology
and Applications Symposium (RTAS’05), 2005.

[9] S. Huss and S. Klaus. Assessment of Real-Time Operating Sys-
tems Characteristics in Embedded Systems Design by SystemC
models of RTOS services. In Proceedings of Design & Verifica-
tion Conference and Exibition (DVCon’07), 2007.

[10] T. Kempf, M. Dörper, R. Leupers, G. Ascheid, H. Meyr, T. Ko-
gel, and B. Vanthournout. A Modular Simulation Framework for
Spatial and Temporal Task Mapping onto Multi-Processor SoC
Platforms. In Proceedings of DATE, 2005.

[11] R. Le Moigne, O. Pasquier, and J. Calvez. A Generic RTOS
Model for Real-Time Systems Simulation with SystemC. In Pro-
ceedings of DATE, 2004.

[12] S. Mahadevan, M. Storgaard, J. Madsen, and K. Virk. Arts: A
System-Level Framework for Modeling MPSoC Components and
Analysis of their Causality. In 13th IEEE International Sympo-
sium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, 2005.

[13] P. Razaghi and A. Gerstlauer. Host-Compiled Multicore RTOS
Simulator for Embedded Real-Time Software Development. In
Proceedings of DATE. IEEE, 2011.

[14] G. Schirner and R. Dömer. Introducing preemptive scheduling
in abstract RTOS models using result oriented modeling. In
Proceedings of DATE, New York, NY, USA, 2008. ACM.

[15] M. Streubühr, J. Falk, C. Haubelt, J. Teich, R. Dorsch, and
T. Schlipf. Task Accurate Performance Modeling in SystemC
for Real-Time Multi-Processor Architectures. In Proceedings of
DATE, 2006.

[16] H. Zabel and W. Müller. An Efficient Time Annotation Tech-
nique in Abstract RTOS Simulations for Multiprocessor Task
Migration. In Distributed, Parallel and Biologically Inspired
Systems, volume 271 of IFIP Advances in Information and
Communication Technology. Springer, 2008.

[17] H. Zabel, W. Müller, and A. Gerstlauer. Accurate RTOS Mod-
eling and Analysis with SystemC. In W. Ecker, W. Müller, and
R. Dömer, editors, Hardware-dependent Software, pages 233–
260. Springer Netherlands, 2009.


