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Abstract 

While integration of configurable components, such as soft 

processors, in MPSoC design enables further system adaptation to 

application needs, supporting system level tools need to provide an 

environment for systematic and efficient configuration exploration. 

This paper presents a multi-layer configuration exploration 

framework for streaming applications on MPSoCs. We introduce a 

novel Configuration Exploration Tree (CET) for configuration 

selection per processor.  Integrated in a system-level design 

environment, our CET enables efficient and fully automatic 

exploration of processor configurations in MPSoC. The proposed 

CET supports the fast evaluation of feasible configurations by 

simulation at highest levels of abstraction. In addition, assuming 

monotonous impact of configuration values on system throughput, 

we use an ordering among the nodes in the CET to minimize 

necessary simulations. Our exploration efficiently finds all feasible 

configurations for a given constraint. 

I. INTRODUCTION 

Multi-Processor SoC (MPSoC) design paradigm provides the 

parallelism and flexibility in implementation of high 

performance embedded system applications, such as streaming 

multimedia applications.  Figure 1 shows an example of such 

pipelined MPSoCs. Integration of configurable components, 

such as soft processors, configurable memories, and/or 

configurable bus interfaces, enables further system adaptation 

to application needs. For example, soft processors, such as 

LEON processors, can be configured at micro-architectural 

level. Similarly, the AMBA bus provides various options for 

data transfers between system components. System level tools 

for MPSoC design not only need to be equipped with 

simulation tools to evaluate the performance of the entire 

system, they also need to provide an environment for 

systematic design space exploration for such configurable 

components. This paper focuses on configuration exploration 

for streaming applications in MPSoC design. 

 
Figure 1- Target MPSoC architecture. 

Due to the high amount of configuration options for 

configurable processors, there is a need for tools at system 

level to efficiently perform configuration exploration. It is 

imperative to simulate the configurable components at the 

presence of other components in MPSoC design. Hence, there 

is a need for efficient system-level simulation during 

configuration exploration of MPSoC components. However, 

configuration selection through simulation (instruction level or 

cycle accurate) of entire MPSoC is too complex and very time 

consuming.  In order to reduce the complexity, we propose to 

deploy simulation tools at different levels of abstractions to 

evaluate the impact of configuration parameters on entire 

system performance. While simulation results at behavior 

level are not as accurate as simulation at instruction level, the 

execution time can be estimated within acceptable error 

margin depending on the configuration parameters.  

In this paper, we propose a multi-layer framework for 

configuration exploration of MPSoCs with configurable 

components, such as soft processors and configurable bus 

interfaces. We use three levels of abstraction, namely 

behavioral, TLM, and ISA. For configuration selection per 

processor,  our approach is based on a novel Configuration 

Exploration Tree (CET) Similar to a branch and bound 

technique, the nodes in the CET represent the values of 

configuration parameters.  Our CET can capture the multi-

layer ordering in configuration exploration by simulating the 

system at different abstraction layers. In addition, assuming 

that each configuration parameter has monotonous impact on 

system throughput, CET exploits this ordering across 

configuration values to avoid unnecessary simulation runs. We 

present our novel binary-search-based algorithm at each CET 

level to find all feasible configurations.  

Our exploration tool is integrated in the system-level 

design environment SCE [1], which allows efficient evaluation 

of MPSoCs at several abstraction levels. We have integrated a 

soft-processor model LEON3 with various micro-architectural 

configuration parameters and configurable AMBA bus into the 

system design framework. For a given throughput constraint 

of an application, our automatic configuration exploration 

finds the feasible configurations for MPSoC platform.  

II. RELATED WORK 

A wide variety of approaches have been followed to tackle the 
problem of configuration selection in MPSoCs. Broadly, they 
can be divided into two categories, System exploration 
techniques and Micro-architectural exploration techniques. [2], 
[3], [4], [5] propose micro architectural design tools with ISA 
level simulation with no evaluation from higher levels of 
abstractions for exploration. [6] proposes a design methodology 
for reconfigurable pipelined MpSoCs to execute streaming 
applications. However, it does not use simulation tools for 
evaluation of design. [7], [8], [9] present frameworks for 
system level design space exploration which uses simulation 



for evaluation but does not provide systematic or hierarchical 
configuration exploration.  

In addition, there are performance estimation techniques for 
MPSoCs using processor modeling. [10] proposes an analytical 
method with minimum simulation run to rapidly estimate the 
runtime of a pipelined MPSoCs subject to estimation error up 
to 16.45%. [11] presents a symbolic system synthesis approach 
that can prune the design space in case real-time constraints are 
violated. In MILAN [12], a design space exploration 
methodology was proposed to use both symbolic constraint 
satisfaction to prune the search space and low-level simulator 
to evaluate remaining candidate designs. However, it does not 
consider communication interface in MPSoCs. In [13] the 
parameters of a soft-core microprocessor are adjusted to reach 
the best performance point for a specific application. As 
opposed to processor modeling and analytical methods, we 
focus on multi-layer configuration and simulation to explore 
the design space of MPSoCs. There are other related works in 
the area of custom instruction generation [14] and instruction 
extension [15]. However, none uses an integrated framework of 
higher level evaluation with ISA simulation. 

III. MULTI-LAYER CONFIGURATION EXPLORATION 

We describe our systematic approach for exploration of 

configuration parameters for a pipelined MPSoC target 

architecture. Our goal is to efficiently explore the complete set 

of feasible configuration parameters for the processors and 

system busses so that the system satisfies a given throughput 

constraint. We will first describe the layering of our 

framework into three abstraction levels, then discuss the 

available configuration parameters at appropriate layers, and 

finally introduce our configuration exploration algorithm. 

A. Multi-layer Framework 

To avoid exponential complexity, we organize our exploration 

framework into three major abstraction levels. At each level, a 

different set of configuration parameters is explored. The 

highest level, called behavioral exploration, considers the 

different types of processors and their major configuration 

parameters, such as CPU frequency. The second level, TLM 

exploration, evaluates communication options, e.g. processor 

bus speed. Finally, in ISA exploration, we explore low-level 

instruction set architecture parameters for each processor. 

The reason for this layering is that the evaluation (i.e. 

simulation) of a design configuration at high level is typically 

an order of magnitude faster than at the next lower level. 

Hence, we want to explore the design space first at higher 

levels of abstraction and eliminate unsuitable configuration 

options early in design flow.  

Figure 2 shows our multi-layer exploration methodology. 

The design specification and architecture mapping are 

processed and refined step-by-step by the three exploration 

phases at the behavioral, TLM, and ISA level. Each phase 

evaluates a different set of configuration parameters (see 

parameter segregation below) and relies on corresponding 

component databases. Note that each exploration phase 

eliminates infeasible configurations and only passes feasible 

ones as candidates to the next exploration phase. At the end, 

we obtain the complete set of configuration parameters that 

satisfy the given through-put constraint. 

B.  Configuration Parameter Segragation 

The task of parameter segregation in Figure 2 is to divide all 

configuration parameters into three groups, one for each 

abstraction level. Here, we let the system designer specify the 

appropriateness and priority of parameters for each phase. 

Specifically, we evaluate overall processor parameters that are 

insensitive to specific data at the behavioral level. Examples of 

such configuration parameters include the processor frequency, 

multiplier/divider latency (in clock cycles), and support for 

floating-point arithmetic.  

 

 

 

 

 

 

 

 

 

 

Figure 2- Proposed Multi-layer Configuration Exploration 

Framework 

On the other hand, there are configuration parameters that 

need to be evaluated at the ISA level, such as register windows 

size, instruction and data cache size, load delay, and pipeline 

depth. In between these two groups, we separately explore 

communication parameters with medium impact. Table 1 

shows typical parameters for each abstraction level. 

Table 1- Abstraction Levels and Configuration Parameters 
Abstraction Configuration Parameter 

Behavioral Level 
Frequency, Mul/Div Latency 

Floating Point Ins. Latency etc. 

TLM 

(Communication ) 
Level 

Link Frequency, Burst Size,  

Transfer Mode etc. 

ISA Level 

I/D Cache Size/Assoc/Line, Reg. 

Window, Pipeline Depth,  
Load Delay, etc. 

Note that many high-level parameters have a monotonous 

impact on performance. That is, they either increase or 

decrease performance with increasing value. While some 

configuration parameters such as processor frequency and 

functional unit cycle count (e.g., multiplier cycle count) are 

intrinsically monotonic, other configuration parameters such 

as cache size can be monotonic only within a range of the 

parameter depending on application behavior (Figure 3). We 

exploit the monotonicity property of configuration parameters 

for efficient design space exploration.  

In this work, we do not consider any priority or ordering of 

parameters based on their impact on performance. 

Configuration parameters are assigned to various layer based 

on the capability of simulation tool of the corresponding layer 

to reflect the impact of configuration parameter in overall 

system performance. Deploying existing methods for ordering 



the configuration parameters at each layer can further provide 

efficient exploration [13].  

 

 

 

 

 

 

 

 

 
 

Table 2- CET Definitions 

Definition Description 

Level(v) 
Level/depth of node v in CET which represents the 

configuration parameter corresponding to v 

Conf *(v) 
Best configuration or the configuration of the left most 
path in the sub-tree beginning at node v 

Time*(v) Throughput of the CPU with Conf*(v)  

Child(v, i) ith child of node v 

Parent(v) Parent of node v 

C. Configuration Exploration Tree (CET) 

In order to efficiently explore all possible monotonous 

configuration parameter values, we represent the feasible 

configurations by a rooted tree called Configuration 

Exploration Tree (CET). Each level in the CET corresponds to 

the exploration of one configuration parameter, and each node 

represents a single configuration parameter value. Since 

configurations are explored one parameter at a time, the levels 

in the tree reflect an ordering based on which the configuration 

parameters are explored. The level where a configuration 

parameter is placed in the CET depends on its priority. 

Parameters closer to the root of the tree are explored earlier 

and possibly at higher levels of abstraction. Child nodes in the 

CET represent the feasible values of the next configuration 

parameter in order of priority. A directed path in the CET from 

the root to a leaf node represents a feasible combination of 

these parameter values. 

Figure 4 shows the CET layout with the configuration 

parameters across design abstractions. We first explore the 

behavioral level configurations and build the CET. For feasible 

configurations, we then explore TLM and ISA parameters and 

successively append feasible parameters to the CET. Therefore, 

we propose a top-down processing of configuration 

parameters in CET. The configuration parameters considered 

in our CET are monotonous. Let’s assume that the children of 

each node in CET are arranged from left to right based on their 

impact on system execution time. The arrangement is such that 

the leftmost child represents the best parameter value for 

performance and the rightmost child the worst. For example, 

the nodes representing clock frequency values are ordered 

from highest to lowest. The relation    between any two child 

nodes v1 and v2 refers to such ordering, i.e., v1 is to the left of 

v2. Figure 4 shows a CET layout with the left to right 

arrangement of children v1 to v4 for parameter 1. 

Table 2 shows definitions for each node vi in CET. 

Conf*(vi) refers to the directed path including node vi which 

results in the best execution time among all the paths from vi 

in CET. Time*(vi) refers to the CPU throughput corresponding 

to this path.  

Lemma 1 shows that the ordering between two child nodes 

in CET imposes a partial ordering between Time*(v1) and 

Time*(v2) in throughput.  

Lemma 1: Given any two nodes v1 and v2 in CET, if Parent 

(v1) = Parent (v2) and v1   v2, then Time*(v1)   Time*(v2) 

Based on Lemma 1, Lemma 2 shows that the leftmost path 

through node vi in CET is the best configuration of the system 

including node vi. 

 
Figure 4- Configuration Exploration Tree (CET) 

Lemma 2: Conf*(vi) is always the left most path through vi. 

If node V is the root of CET, Conf*(V) is the best parameter 

configuration and Time*(V) is the best throughput. 

As a result, if Time*(v1) cannot meet the system timing 

constraints, none of the paths from both node v1 and v2 is 

feasible. Vice versa, if Time*(v2) meets the timing constraint, 

Time*(v1) meets the requirement as well and does not need to 

be simulated. Similar argument can be made between the child 

nodes of the nodes v1 and v2 as follows: 

Lemma3:Given any two nodes v1 and v2 in CET: if Level (v1) = 

Level (v2) and v1  v2, then  

     Time*(Child (v1, i))   Time*(Child (v2, j))   j i 

Corollary:     Time*(Child (v1, i))   Time*(Child (v2, i)) 

Since each path from the root to a leaf in CET represents a 

single configuration of the system, the problem translates to 

finding all the feasible paths in the CET for which the 

execution time of the system is less than the timing constraint T. 

By our proposed top-down ordering of the configuration 

parameters according to their abstraction layer as well as 

ordering of the nodes in CET based on monotonous 

configuration parameters, finding feasible paths in CET can be 

performed efficiently. 

IV. CET CONSTRUCTION 

During our configuration exploration, we construct a feasible 

CET for each processor. Initially, the configuration parameters 

at the behavioral level are considered and a feasible CET is 

constructed by pruning those paths in the tree which do not 

satisfy the throughput constraint. After the behavioral level 

CET construction, we extend the existing paths in the CET by 

considering the TLM parameters and again prune those to 

keep only the feasible paths. Finally, we explore the ISA level 

parameters the same way, leading to a complete CET of all 

feasible configurations. 

A. CET Construction Algorithm 

In order to prune the CET at each level, we follow a breadth-

first-search (BFS) approach. Our BFS algorithm begins at the 

Figure 3- Performance Evaluation for Monotonic Parameters 



root node and explores all children in the CET. Then, for each 

child node, it explores its unexplored children, and so on. The 

flow of our CET construction algorithm is shown in Figure 5. 

We start with the root configuration at level 0 of the CET (v0 

in Figure 5(a)) which represents the best configuration of the 

design as per Lemma 2. If this configuration satisfies the 

throughput constraint, we add it as the leftmost path to the 

CET (v1 in Figure 5(b)). Next, we enumerate the other 

children of the root (nodes v1, v2, v3, v4) and evaluate their 

values to identify which satisfy the throughput constraint. 

Instead of performing this exploration exhaustively by looking 

at each child (which is naïve and would lead to exponential 

complexity), we exploit Lemma 1 and explore these 

configurations efficiently using binary-search-explore (BSE) 

approach. In the example in Figure 5(b), we first pick 

configuration value v2, build, and simulate the corresponding 

design. In this example, the throughput of 71ms meets the 

timing constraint of 100ms. Hence, this configuration value 

leads to a feasible design and is noted as such in the CET. In 

general, the leftmost unexplored node is evaluated first, then 

the rightmost node, and then the middle node in case the 

rightmost one fails and so on.  This approach is repeated in 

binary-search manner until the set of feasible values is 

determined. In Figure 5(b), we next evaluate v4 which is a 

valid configuration (throughput 93ms) and added to the CET. 

Note that in this case we do not need to simulate node v3 

because its throughput must be valid between the values for v2 

and v4 as per Lemma 1. 

Moving on to the next level, we use the CET property 

described in Lemma 3 and pick the leftmost enumerated child 

of each node v (Child(v, 0)) and perform BSE to find out 

which are valid. Then, we pick Child(v, 1) of each node v. In 

Figure 5(c), the order of evaluation is shown with numbers 1a, 

2a… corresponding to Child (v, 0)  v, and 1b, 2b… 

corresponding to Child(v, 1)  v, and so on. After all valid 

nodes at level 2 are determined, we enumerate their children 

and go to level 3. Note that, in order to continue with our BSE 

at level 3, we need all nodes at level 2 sorted. Lemma 3 shows, 

however, that this is not necessarily the case in a general CET. 

Thus, in order to use our BSE approach correctly at level 3 

and further down, we need to sort the nodes at their upper 

level based on their throughput. In general, we need to keep 

sorting as we continue our exploration one level after another 

in the CET. Figure 5(d-e) show level 2 before and after sorting 

correspondingly (note the reversed order of nodes v7 and v9).  

Our goal in sorting the CET nodes is to minimize the 

number of additional simulations. We use a binary search 

approach where we take the children of given two nodes and 

merge the sorted lists. We take the ordered list of children and 

find the position of the other children one by one using binary 

Figure 5- Example of CET Construction Algorithm 



search. As shown in Figure 5(e), first the children of the two 

leftmost nodes are merged; the children of 3
rd

 node from the 

left are merged with the previously merged list, and so on. In 

the example, after sorting at level 2, we continue the 

exploration at level 3 (Figure 5(f)) in the same BSE manner, 

which required only 18 simulations. At the end, we compute 

the CET of the design; Figure 5(g) shows the final CET of this 

example with all 30 feasible configurations out of the 48 

possible ones. 

Table 3- Nomenclature used in CET Algorithm. 

Term  Description 

T Throughput Constraint 

Spec Application Specification/Task Graph 

Arch Pipelined MpSoC Architecture 

Map Application Task Graph to Architecture Mapping 

DB Database of Processors/Communication Elements 

Pi Processor i in the MpSoC pipeline 

C {C1.....Cn} where Ci are configuration parameter sets of the 

processors i 

CiK {CPiK1, CPiK2…....CPiKc(i)} configuration parameter set of 

processor i at design mode/abstraction K 

Ci Configuration parameter set of processor i = {CiB, CiC, CiI} 

for K = B (Behavior), C (TLM), I (ISA)  

CPiKj Configuration parameter j of processor i at mode K={v1, v2 

…vn(j)} where v1, v2 etc. are the sorted values of j 

CET_list  Forest of CETis where CETi is the feasible CET of 
processor i 

SNLi Current list of sorted nodes in CETi, a separate list that 

maintains the sorted nodes at a CET level 

B. CET Construction Algorithm Pseudo Code 

We will now present the CET construction algorithm in 
detailed pseudo code for the Breadth-First-Search (BFS), 
Binary-Search-Explore (BSE), and the sorting of children 
nodes. Table 3 defines the nomenclature used in the algorithm. 

The algorithm CET Construction explores the three 
abstraction levels top down (line 7) and builds the 
corresponding CET (line 9) for each processor. At the end, it 
returns a forest of CETs (line 13). Each exploration consists of 
parameter segregation (line 10) and BFS exploration (line 11). 
The BFS exploration, as outlined in the example above, first 
enumerates and simulates the best configuration, i.e., the 
leftmost path (lines 15-16), then enumerates and sorts the child 
configurations (lines 21-22), and finally performs the recursive 
BSE algorithm (lines 27-34). 

Algorithm: CET Construction 
Algorithm Input: Spec, Arch, Map, C, T 

Algorithm Output: CET_list 

1 Initialize: CET_list:= {};  

2        C: = {C1, C2…..Ci}; 

3 Design = Spec; 

4 Set Mode = {REFINE_ARCH, REFINE_COMM, REFINE_ISA}; 

5 Repeat for each processor Pi 

6        CETi = nil; SNLi = nil;      

7 For each Mode Mk, k є 0…2 

8    Design = Refine (Design, Mk, DB, Arch, Map); 

9    Repeat for each processor Pi 

10       Cik = Segregate (Ci, Mk); 

11       CETi = BreadthFirstSearchExplore (CETi, Cik, Design, T); 

12       If (CETi == nil) Reject Design;  

 

13 CET_list = {CET1, CET2……CETn}; 

14 function BreadthFirstSearchExplore (CETi, Ci, Design, T) { 

15   conf = EnumerateBestConfig (CETi, Ci); // Lemma 2 

16   exec_time = Simulate (conf, Design); 

17   If (exec_time < T)  

18     AddPath (CETi, conf); 

19     If (SNLi == nil) SNLi = CETi; 

20     for conf_param in Ci 

21       SNLi = SortChildren (SNLi);  // Lemma 3 

22       conf_list = EnumerateChildrenConfig (CETi, SNLi, Ci,  

                  conf_param); 

23       BinarySearchAndExplore (CETi, conf_list); 

24     Return CETi; 

25  Else Return nil;} 

26 function BinarySearchAndExplore (CETi, List conf_list) {    
27   R = sizeof (conf_list); 
28   For param_value j = 0 to n (j)  
29      new_R = BinarySearch ({conf_list [0][j]),…  

conf_list[R][j])});    // Lemma 3 Corollary 

30      For i: = 0 to new_R 
31          AddPath (CETi, conf_list[i][j])); 
32      R = new_R;}            // shrink range of search 
33 List SortChildren (List SNL) { 
34   List new_SNL; 

35   For child in Children (SNL [0]) 

36      new_SNLAppend (child); 

37   For i = 1 to sizeof (SNL)-1 

38      new_SNL = MergeUsingBinarySearch (new_SNL, 

                    Children (SNL[i]));             

39   Return new_SNL;} 

C. Analysis 

We will now analyze the computational complexity of the 

CET construction where the number of simulations performed 

is the dominating factor. First, if none of the configuration 

parameter values are feasible, the very first simulation will 

fail, i.e. the complexity is O(1). In the general case, the 

complexity of the CET construction algorithm is the sum of 

the complexity of BSE and the complexity of sorting the 

children. Suppose there are k configuration parameters in the 

design and each configuration parameter has 1 to ni values for 

i=1…k, then the number of simulations required during BSE is 

log(n1) + (n2-1)*log(n1) + (n3-1)*log(n1*n2) + … + (nk-

1)*log(n1*n2*…nk-1). Similarly, the number of simulations 

required for the sorting of children is, in the worst case, of the 

order O(n1*n2*….nk-1). This is large, but in the average case 

the child nodes in the CET will have only minimal overlap due 

to the priority ordering of parameters. Moreover, any sorting 

at higher levels reduces the cost at lower levels significantly.

In the worst case, the number of simulations in the CET 

construction algorithm is ))log((
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simulations are distributed across abstraction levels, thereby 

reducing the cost. Since we further simulate all the processors 

in the pipeline in parallel, our approach is much better than 

brute force which is in the order of )*(
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V. EXPERIMENTS 

We have implemented our configuration exploration in the 

SoC Environment [1]. We integrated the configurable Leon3 

processor core for our case study. Leon3 is a SPARC v8 



processor with a 7-stage pipeline and configurable I/D cache, 

register window, floating point unit, etc. In SCE, we integrated 

back-annotated behavioral and Transaction Level Model 

(TLM) simulators, and cycle-accurate Instruction Set 

Simulator (ISS) in the database. Table 4 shows the 

configuration parameters used in our experiments. 

Table 4- Configuration Parameters 
Abstraction Configuration Parameter 

Behavioral Level 
CPU Frequency = 25, 50, 100, 200 MHz 

 Mul/Div Cycles = 10, 15, 20 CPU Cycles 

TLM 

(Communication ) 
Level 

Link Frequency = 25, 50, 100, 200 MHz 

ISA Level 

I-Cache Size = 16, 32 ,64 
I-Cache Assoc = 2,4 

D-Cache Size = 16, 32 ,64 

D-Cache Assoc = 2,4 

The target pipelined reconfigurable MPSoC consists of 

Leon3 soft processors connected by buffers connecting the 

processors through reconfigurable point-to-point links based 

on the AMBA bus (similar to Figure 1). For our exploration, 

we selected 3 synthetic benchmarks which are essentially 

streaming applications with filters in a pipeline. Each stage 

consists of array-based filter operations or DSP-type 

operations like MAC (multiply accumulate), row replacement, 

etc. Benchmark B1 has a single 4-stage pipeline (each stage 

mapped to a Leon3 processor), benchmark B2 is a multi-

pipeline data-parallel version of B1 (4 stages, 3
rd

 stage with 

two data-parallel units, mapped to 5 Leon3 processors), and 

benchmark B3 is a pipelined matrix-multiplication parallel 

benchmark (4 stage pipeline, 3
rd

 stage two parallel units, 

mapped to 5 Leon3 processors). We ran our proposed 

configuration exploration algorithm over these benchmarks. 

The results for the first
 
processor in the pipeline of benchmark 

B1 are shown in Table 5. As expected, simulation at the 

behavioral level is much faster than the TLM, and even much 

faster than the ISS simulation. Using our framework, we are 

able to prune 144 configuration simulations for the processor 

with only 9 behavioral simulations. The exploration results for 

all the three benchmarks are shown in Table 6. The table 

shows the feasible CPU configurations and simulation runtime. 

Compared to a brute force approach which simulates the entire 

potential configuration set, we save significant run-time 

improvement by exploring configuration space in layers of 

abstractions. An average ISA level simulation takes around 

107.8 seconds. If all the configurations are simulated for one 

CPU of any benchmark, it will take 51.7 hrs of simulation 

time whereas we explore the entire design space in about 1-1.5 

hour for all the benchmarks. Comparison of both these 

numbers establishes the effectiveness of our approach.  

VI. CONCLUSION 

In this paper, we presented a multi-layer configuration 

selection for MPSoC architectures with configurable 

processors and bus interface. Our proposed framework 

explores the configuration parameters at three levels of 

abstractions: behavioral, TLM, and ISA. We propose a 

configuration exploration tree to explore all the configurations 

per processor. By exploiting the monotonous impact of 

configuration parameters on system throughput, we propose a 

binary-search based algorithm on CET to avoid redundant 

simulations in searching for feasible configurations. Our 

preliminary results show efficient pruning of the design. 

Table 5(Results for B1- CPU1) 

Design 

Layer 

Potential 

Configs 

Successful 

(simulated) 

Failed 

(simulated) 

No. Pruned 

Solutions in 

CET 

Simulated 

Time 

Beh 12 11(8) 1(1) 1*4*36=144 < 0.1 sec 

TLM 11*4= 44 44(8) 0(0) 0 ~ 6.99 min 

ISA 
44*36  

= 1584 
506(19) 1078(6) 1078 

~44.91 
min 

Table 6- Experimental Result 
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Bench-
Marks 

Potenti
-al 

Config
s 

Feasible Solutions (simulated time in min) 

Total 
Simulati
-on Time 
(in min) 

B1 1728*4 

CPU1 CPU2 CPU3 CPU4 

166.08 506 
(51.9) 

425 
(54.58) 

436 
(38.27) 

482 
(21.33) 

B2 1728*5 

CPU1 CPU2 CPU3 CPU4 CPU5 

230.9 506 
(53.14) 

434 
(62.65) 

544 
(38.21) 

521 
(37.8) 

488 
(39.1) 

B3 1728*5 

CPU1 CPU2 CPU3 CPU4 CPU5 

364.04 384 
(63.46) 

456 
(65.33) 

514 
(91.11) 

434 
(63.81) 

476 
(80.33) 


