
Multi-layer Configuration Exploration of MPSoCs

for Streaming Applications

Deepak Mishra, Yasaman Samei, Nga Dang, Rainer Dömer, Elaheh Bozorgzadeh

University of California, Irvine

{mishrad, ysameisy, ngad, doemer, ebozorgz@uci.edu}

Abstract

While integration of configurable components, such as soft

processors, in MPSoC design enables further system adaptation to

application needs, supporting system level tools need to provide an

environment for systematic and efficient configuration exploration.

This paper presents a multi-layer configuration exploration

framework for streaming applications on MPSoCs. We introduce a

novel Configuration Exploration Tree (CET) for configuration

selection per processor. Integrated in a system-level design

environment, our CET enables efficient and fully automatic

exploration of processor configurations in MPSoC. The proposed

CET supports the fast evaluation of feasible configurations by

simulation at highest levels of abstraction. In addition, assuming

monotonous impact of configuration values on system throughput,

we use an ordering among the nodes in the CET to minimize

necessary simulations. Our exploration efficiently finds all feasible

configurations for a given constraint.

I. INTRODUCTION

Multi-Processor SoC (MPSoC) design paradigm provides the

parallelism and flexibility in implementation of high

performance embedded system applications, such as streaming

multimedia applications. Figure 1 shows an example of such

pipelined MPSoCs. Integration of configurable components,

such as soft processors, configurable memories, and/or

configurable bus interfaces, enables further system adaptation

to application needs. For example, soft processors, such as

LEON processors, can be configured at micro-architectural

level. Similarly, the AMBA bus provides various options for

data transfers between system components. System level tools

for MPSoC design not only need to be equipped with

simulation tools to evaluate the performance of the entire

system, they also need to provide an environment for

systematic design space exploration for such configurable

components. This paper focuses on configuration exploration

for streaming applications in MPSoC design.

Figure 1- Target MPSoC architecture.

Due to the high amount of configuration options for

configurable processors, there is a need for tools at system

level to efficiently perform configuration exploration. It is

imperative to simulate the configurable components at the

presence of other components in MPSoC design. Hence, there

is a need for efficient system-level simulation during

configuration exploration of MPSoC components. However,

configuration selection through simulation (instruction level or

cycle accurate) of entire MPSoC is too complex and very time

consuming. In order to reduce the complexity, we propose to

deploy simulation tools at different levels of abstractions to

evaluate the impact of configuration parameters on entire

system performance. While simulation results at behavior

level are not as accurate as simulation at instruction level, the

execution time can be estimated within acceptable error

margin depending on the configuration parameters.

In this paper, we propose a multi-layer framework for

configuration exploration of MPSoCs with configurable

components, such as soft processors and configurable bus

interfaces. We use three levels of abstraction, namely

behavioral, TLM, and ISA. For configuration selection per

processor, our approach is based on a novel Configuration

Exploration Tree (CET) Similar to a branch and bound

technique, the nodes in the CET represent the values of

configuration parameters. Our CET can capture the multi-

layer ordering in configuration exploration by simulating the

system at different abstraction layers. In addition, assuming

that each configuration parameter has monotonous impact on

system throughput, CET exploits this ordering across

configuration values to avoid unnecessary simulation runs. We

present our novel binary-search-based algorithm at each CET

level to find all feasible configurations.

Our exploration tool is integrated in the system-level

design environment SCE [1], which allows efficient evaluation

of MPSoCs at several abstraction levels. We have integrated a

soft-processor model LEON3 with various micro-architectural

configuration parameters and configurable AMBA bus into the

system design framework. For a given throughput constraint

of an application, our automatic configuration exploration

finds the feasible configurations for MPSoC platform.

II. RELATED WORK

A wide variety of approaches have been followed to tackle the
problem of configuration selection in MPSoCs. Broadly, they
can be divided into two categories, System exploration
techniques and Micro-architectural exploration techniques. [2],
[3], [4], [5] propose micro architectural design tools with ISA
level simulation with no evaluation from higher levels of
abstractions for exploration. [6] proposes a design methodology
for reconfigurable pipelined MpSoCs to execute streaming
applications. However, it does not use simulation tools for
evaluation of design. [7], [8], [9] present frameworks for
system level design space exploration which uses simulation

for evaluation but does not provide systematic or hierarchical
configuration exploration.

In addition, there are performance estimation techniques for
MPSoCs using processor modeling. [10] proposes an analytical
method with minimum simulation run to rapidly estimate the
runtime of a pipelined MPSoCs subject to estimation error up
to 16.45%. [11] presents a symbolic system synthesis approach
that can prune the design space in case real-time constraints are
violated. In MILAN [12], a design space exploration
methodology was proposed to use both symbolic constraint
satisfaction to prune the search space and low-level simulator
to evaluate remaining candidate designs. However, it does not
consider communication interface in MPSoCs. In [13] the
parameters of a soft-core microprocessor are adjusted to reach
the best performance point for a specific application. As
opposed to processor modeling and analytical methods, we
focus on multi-layer configuration and simulation to explore
the design space of MPSoCs. There are other related works in
the area of custom instruction generation [14] and instruction
extension [15]. However, none uses an integrated framework of
higher level evaluation with ISA simulation.

III. MULTI-LAYER CONFIGURATION EXPLORATION

We describe our systematic approach for exploration of

configuration parameters for a pipelined MPSoC target

architecture. Our goal is to efficiently explore the complete set

of feasible configuration parameters for the processors and

system busses so that the system satisfies a given throughput

constraint. We will first describe the layering of our

framework into three abstraction levels, then discuss the

available configuration parameters at appropriate layers, and

finally introduce our configuration exploration algorithm.

A. Multi-layer Framework

To avoid exponential complexity, we organize our exploration

framework into three major abstraction levels. At each level, a

different set of configuration parameters is explored. The

highest level, called behavioral exploration, considers the

different types of processors and their major configuration

parameters, such as CPU frequency. The second level, TLM

exploration, evaluates communication options, e.g. processor

bus speed. Finally, in ISA exploration, we explore low-level

instruction set architecture parameters for each processor.

The reason for this layering is that the evaluation (i.e.

simulation) of a design configuration at high level is typically

an order of magnitude faster than at the next lower level.

Hence, we want to explore the design space first at higher

levels of abstraction and eliminate unsuitable configuration

options early in design flow.

Figure 2 shows our multi-layer exploration methodology.

The design specification and architecture mapping are

processed and refined step-by-step by the three exploration

phases at the behavioral, TLM, and ISA level. Each phase

evaluates a different set of configuration parameters (see

parameter segregation below) and relies on corresponding

component databases. Note that each exploration phase

eliminates infeasible configurations and only passes feasible

ones as candidates to the next exploration phase. At the end,

we obtain the complete set of configuration parameters that

satisfy the given through-put constraint.

B. Configuration Parameter Segragation

The task of parameter segregation in Figure 2 is to divide all

configuration parameters into three groups, one for each

abstraction level. Here, we let the system designer specify the

appropriateness and priority of parameters for each phase.

Specifically, we evaluate overall processor parameters that are

insensitive to specific data at the behavioral level. Examples of

such configuration parameters include the processor frequency,

multiplier/divider latency (in clock cycles), and support for

floating-point arithmetic.

Figure 2- Proposed Multi-layer Configuration Exploration

Framework

On the other hand, there are configuration parameters that

need to be evaluated at the ISA level, such as register windows

size, instruction and data cache size, load delay, and pipeline

depth. In between these two groups, we separately explore

communication parameters with medium impact. Table 1

shows typical parameters for each abstraction level.

Table 1- Abstraction Levels and Configuration Parameters
Abstraction Configuration Parameter

Behavioral Level
Frequency, Mul/Div Latency

Floating Point Ins. Latency etc.

TLM

(Communication)
Level

Link Frequency, Burst Size,

Transfer Mode etc.

ISA Level

I/D Cache Size/Assoc/Line, Reg.

Window, Pipeline Depth,
Load Delay, etc.

Note that many high-level parameters have a monotonous

impact on performance. That is, they either increase or

decrease performance with increasing value. While some

configuration parameters such as processor frequency and

functional unit cycle count (e.g., multiplier cycle count) are

intrinsically monotonic, other configuration parameters such

as cache size can be monotonic only within a range of the

parameter depending on application behavior (Figure 3). We

exploit the monotonicity property of configuration parameters

for efficient design space exploration.

In this work, we do not consider any priority or ordering of

parameters based on their impact on performance.

Configuration parameters are assigned to various layer based

on the capability of simulation tool of the corresponding layer

to reflect the impact of configuration parameter in overall

system performance. Deploying existing methods for ordering

the configuration parameters at each layer can further provide

efficient exploration [13].

Table 2- CET Definitions

Definition Description

Level(v)
Level/depth of node v in CET which represents the

configuration parameter corresponding to v

Conf *(v)
Best configuration or the configuration of the left most
path in the sub-tree beginning at node v

Time*(v) Throughput of the CPU with Conf*(v)

Child(v, i) ith child of node v

Parent(v) Parent of node v

C. Configuration Exploration Tree (CET)

In order to efficiently explore all possible monotonous

configuration parameter values, we represent the feasible

configurations by a rooted tree called Configuration

Exploration Tree (CET). Each level in the CET corresponds to

the exploration of one configuration parameter, and each node

represents a single configuration parameter value. Since

configurations are explored one parameter at a time, the levels

in the tree reflect an ordering based on which the configuration

parameters are explored. The level where a configuration

parameter is placed in the CET depends on its priority.

Parameters closer to the root of the tree are explored earlier

and possibly at higher levels of abstraction. Child nodes in the

CET represent the feasible values of the next configuration

parameter in order of priority. A directed path in the CET from

the root to a leaf node represents a feasible combination of

these parameter values.

Figure 4 shows the CET layout with the configuration

parameters across design abstractions. We first explore the

behavioral level configurations and build the CET. For feasible

configurations, we then explore TLM and ISA parameters and

successively append feasible parameters to the CET. Therefore,

we propose a top-down processing of configuration

parameters in CET. The configuration parameters considered

in our CET are monotonous. Let’s assume that the children of

each node in CET are arranged from left to right based on their

impact on system execution time. The arrangement is such that

the leftmost child represents the best parameter value for

performance and the rightmost child the worst. For example,

the nodes representing clock frequency values are ordered

from highest to lowest. The relation between any two child

nodes v1 and v2 refers to such ordering, i.e., v1 is to the left of

v2. Figure 4 shows a CET layout with the left to right

arrangement of children v1 to v4 for parameter 1.

Table 2 shows definitions for each node vi in CET.

Conf*(vi) refers to the directed path including node vi which

results in the best execution time among all the paths from vi

in CET. Time*(vi) refers to the CPU throughput corresponding

to this path.

Lemma 1 shows that the ordering between two child nodes

in CET imposes a partial ordering between Time*(v1) and

Time*(v2) in throughput.

Lemma 1: Given any two nodes v1 and v2 in CET, if Parent

(v1) = Parent (v2) and v1 v2, then Time*(v1) Time*(v2)

Based on Lemma 1, Lemma 2 shows that the leftmost path

through node vi in CET is the best configuration of the system

including node vi.

Figure 4- Configuration Exploration Tree (CET)

Lemma 2: Conf*(vi) is always the left most path through vi.

If node V is the root of CET, Conf*(V) is the best parameter

configuration and Time*(V) is the best throughput.

As a result, if Time*(v1) cannot meet the system timing

constraints, none of the paths from both node v1 and v2 is

feasible. Vice versa, if Time*(v2) meets the timing constraint,

Time*(v1) meets the requirement as well and does not need to

be simulated. Similar argument can be made between the child

nodes of the nodes v1 and v2 as follows:

Lemma3:Given any two nodes v1 and v2 in CET: if Level (v1) =

Level (v2) and v1 v2, then

 Time*(Child (v1, i)) Time*(Child (v2, j)) j i

Corollary: Time*(Child (v1, i)) Time*(Child (v2, i))

Since each path from the root to a leaf in CET represents a

single configuration of the system, the problem translates to

finding all the feasible paths in the CET for which the

execution time of the system is less than the timing constraint T.

By our proposed top-down ordering of the configuration

parameters according to their abstraction layer as well as

ordering of the nodes in CET based on monotonous

configuration parameters, finding feasible paths in CET can be

performed efficiently.

IV. CET CONSTRUCTION

During our configuration exploration, we construct a feasible

CET for each processor. Initially, the configuration parameters

at the behavioral level are considered and a feasible CET is

constructed by pruning those paths in the tree which do not

satisfy the throughput constraint. After the behavioral level

CET construction, we extend the existing paths in the CET by

considering the TLM parameters and again prune those to

keep only the feasible paths. Finally, we explore the ISA level

parameters the same way, leading to a complete CET of all

feasible configurations.

A. CET Construction Algorithm

In order to prune the CET at each level, we follow a breadth-

first-search (BFS) approach. Our BFS algorithm begins at the

Figure 3- Performance Evaluation for Monotonic Parameters

root node and explores all children in the CET. Then, for each

child node, it explores its unexplored children, and so on. The

flow of our CET construction algorithm is shown in Figure 5.

We start with the root configuration at level 0 of the CET (v0

in Figure 5(a)) which represents the best configuration of the

design as per Lemma 2. If this configuration satisfies the

throughput constraint, we add it as the leftmost path to the

CET (v1 in Figure 5(b)). Next, we enumerate the other

children of the root (nodes v1, v2, v3, v4) and evaluate their

values to identify which satisfy the throughput constraint.

Instead of performing this exploration exhaustively by looking

at each child (which is naïve and would lead to exponential

complexity), we exploit Lemma 1 and explore these

configurations efficiently using binary-search-explore (BSE)

approach. In the example in Figure 5(b), we first pick

configuration value v2, build, and simulate the corresponding

design. In this example, the throughput of 71ms meets the

timing constraint of 100ms. Hence, this configuration value

leads to a feasible design and is noted as such in the CET. In

general, the leftmost unexplored node is evaluated first, then

the rightmost node, and then the middle node in case the

rightmost one fails and so on. This approach is repeated in

binary-search manner until the set of feasible values is

determined. In Figure 5(b), we next evaluate v4 which is a

valid configuration (throughput 93ms) and added to the CET.

Note that in this case we do not need to simulate node v3

because its throughput must be valid between the values for v2

and v4 as per Lemma 1.

Moving on to the next level, we use the CET property

described in Lemma 3 and pick the leftmost enumerated child

of each node v (Child(v, 0)) and perform BSE to find out

which are valid. Then, we pick Child(v, 1) of each node v. In

Figure 5(c), the order of evaluation is shown with numbers 1a,

2a… corresponding to Child (v, 0) v, and 1b, 2b…

corresponding to Child(v, 1) v, and so on. After all valid

nodes at level 2 are determined, we enumerate their children

and go to level 3. Note that, in order to continue with our BSE

at level 3, we need all nodes at level 2 sorted. Lemma 3 shows,

however, that this is not necessarily the case in a general CET.

Thus, in order to use our BSE approach correctly at level 3

and further down, we need to sort the nodes at their upper

level based on their throughput. In general, we need to keep

sorting as we continue our exploration one level after another

in the CET. Figure 5(d-e) show level 2 before and after sorting

correspondingly (note the reversed order of nodes v7 and v9).

Our goal in sorting the CET nodes is to minimize the

number of additional simulations. We use a binary search

approach where we take the children of given two nodes and

merge the sorted lists. We take the ordered list of children and

find the position of the other children one by one using binary

Figure 5- Example of CET Construction Algorithm

search. As shown in Figure 5(e), first the children of the two

leftmost nodes are merged; the children of 3
rd

 node from the

left are merged with the previously merged list, and so on. In

the example, after sorting at level 2, we continue the

exploration at level 3 (Figure 5(f)) in the same BSE manner,

which required only 18 simulations. At the end, we compute

the CET of the design; Figure 5(g) shows the final CET of this

example with all 30 feasible configurations out of the 48

possible ones.

Table 3- Nomenclature used in CET Algorithm.

Term Description

T Throughput Constraint

Spec Application Specification/Task Graph

Arch Pipelined MpSoC Architecture

Map Application Task Graph to Architecture Mapping

DB Database of Processors/Communication Elements

Pi Processor i in the MpSoC pipeline

C {C1.....Cn} where Ci are configuration parameter sets of the

processors i

CiK {CPiK1, CPiK2…....CPiKc(i)} configuration parameter set of

processor i at design mode/abstraction K

Ci Configuration parameter set of processor i = {CiB, CiC, CiI}

for K = B (Behavior), C (TLM), I (ISA)

CPiKj Configuration parameter j of processor i at mode K={v1, v2

…vn(j)} where v1, v2 etc. are the sorted values of j

CET_list Forest of CETis where CETi is the feasible CET of
processor i

SNLi Current list of sorted nodes in CETi, a separate list that

maintains the sorted nodes at a CET level

B. CET Construction Algorithm Pseudo Code

We will now present the CET construction algorithm in
detailed pseudo code for the Breadth-First-Search (BFS),
Binary-Search-Explore (BSE), and the sorting of children
nodes. Table 3 defines the nomenclature used in the algorithm.

The algorithm CET Construction explores the three
abstraction levels top down (line 7) and builds the
corresponding CET (line 9) for each processor. At the end, it
returns a forest of CETs (line 13). Each exploration consists of
parameter segregation (line 10) and BFS exploration (line 11).
The BFS exploration, as outlined in the example above, first
enumerates and simulates the best configuration, i.e., the
leftmost path (lines 15-16), then enumerates and sorts the child
configurations (lines 21-22), and finally performs the recursive
BSE algorithm (lines 27-34).

Algorithm: CET Construction
Algorithm Input: Spec, Arch, Map, C, T

Algorithm Output: CET_list

1 Initialize: CET_list:= {};

2 C: = {C1, C2…..Ci};

3 Design = Spec;

4 Set Mode = {REFINE_ARCH, REFINE_COMM, REFINE_ISA};

5 Repeat for each processor Pi

6 CETi = nil; SNLi = nil;

7 For each Mode Mk, k є 0…2

8 Design = Refine (Design, Mk, DB, Arch, Map);

9 Repeat for each processor Pi

10 Cik = Segregate (Ci, Mk);

11 CETi = BreadthFirstSearchExplore (CETi, Cik, Design, T);

12 If (CETi == nil) Reject Design;

13 CET_list = {CET1, CET2……CETn};

14 function BreadthFirstSearchExplore (CETi, Ci, Design, T) {

15 conf = EnumerateBestConfig (CETi, Ci); // Lemma 2

16 exec_time = Simulate (conf, Design);

17 If (exec_time < T)

18 AddPath (CETi, conf);

19 If (SNLi == nil) SNLi = CETi;

20 for conf_param in Ci

21 SNLi = SortChildren (SNLi); // Lemma 3

22 conf_list = EnumerateChildrenConfig (CETi, SNLi, Ci,

 conf_param);

23 BinarySearchAndExplore (CETi, conf_list);

24 Return CETi;

25 Else Return nil;}

26 function BinarySearchAndExplore (CETi, List conf_list) {
27 R = sizeof (conf_list);
28 For param_value j = 0 to n (j)
29 new_R = BinarySearch ({conf_list [0][j]),…

conf_list[R][j])}); // Lemma 3 Corollary

30 For i: = 0 to new_R
31 AddPath (CETi, conf_list[i][j]));
32 R = new_R;} // shrink range of search
33 List SortChildren (List SNL) {
34 List new_SNL;

35 For child in Children (SNL [0])

36 new_SNLAppend (child);

37 For i = 1 to sizeof (SNL)-1

38 new_SNL = MergeUsingBinarySearch (new_SNL,

 Children (SNL[i]));

39 Return new_SNL;}

C. Analysis

We will now analyze the computational complexity of the

CET construction where the number of simulations performed

is the dominating factor. First, if none of the configuration

parameter values are feasible, the very first simulation will

fail, i.e. the complexity is O(1). In the general case, the

complexity of the CET construction algorithm is the sum of

the complexity of BSE and the complexity of sorting the

children. Suppose there are k configuration parameters in the

design and each configuration parameter has 1 to ni values for

i=1…k, then the number of simulations required during BSE is

log(n1) + (n2-1)*log(n1) + (n3-1)*log(n1*n2) + … + (nk-

1)*log(n1*n2*…nk-1). Similarly, the number of simulations

required for the sorting of children is, in the worst case, of the

order O(n1*n2*….nk-1). This is large, but in the average case

the child nodes in the CET will have only minimal overlap due

to the priority ordering of parameters. Moreover, any sorting

at higher levels reduces the cost at lower levels significantly.

In the worst case, the number of simulations in the CET

construction algorithm is))log((

1

11

k

i

i

k

i

i
nnO +)(

1

1

k

i

i
nO . The

simulations are distributed across abstraction levels, thereby

reducing the cost. Since we further simulate all the processors

in the pipeline in parallel, our approach is much better than

brute force which is in the order of)*(

1

k

i

i
nnumprocsO .

V. EXPERIMENTS

We have implemented our configuration exploration in the

SoC Environment [1]. We integrated the configurable Leon3

processor core for our case study. Leon3 is a SPARC v8

processor with a 7-stage pipeline and configurable I/D cache,

register window, floating point unit, etc. In SCE, we integrated

back-annotated behavioral and Transaction Level Model

(TLM) simulators, and cycle-accurate Instruction Set

Simulator (ISS) in the database. Table 4 shows the

configuration parameters used in our experiments.

Table 4- Configuration Parameters
Abstraction Configuration Parameter

Behavioral Level
CPU Frequency = 25, 50, 100, 200 MHz

 Mul/Div Cycles = 10, 15, 20 CPU Cycles

TLM

(Communication)
Level

Link Frequency = 25, 50, 100, 200 MHz

ISA Level

I-Cache Size = 16, 32 ,64
I-Cache Assoc = 2,4

D-Cache Size = 16, 32 ,64

D-Cache Assoc = 2,4

The target pipelined reconfigurable MPSoC consists of

Leon3 soft processors connected by buffers connecting the

processors through reconfigurable point-to-point links based

on the AMBA bus (similar to Figure 1). For our exploration,

we selected 3 synthetic benchmarks which are essentially

streaming applications with filters in a pipeline. Each stage

consists of array-based filter operations or DSP-type

operations like MAC (multiply accumulate), row replacement,

etc. Benchmark B1 has a single 4-stage pipeline (each stage

mapped to a Leon3 processor), benchmark B2 is a multi-

pipeline data-parallel version of B1 (4 stages, 3
rd

 stage with

two data-parallel units, mapped to 5 Leon3 processors), and

benchmark B3 is a pipelined matrix-multiplication parallel

benchmark (4 stage pipeline, 3
rd

 stage two parallel units,

mapped to 5 Leon3 processors). We ran our proposed

configuration exploration algorithm over these benchmarks.

The results for the first

processor in the pipeline of benchmark

B1 are shown in Table 5. As expected, simulation at the

behavioral level is much faster than the TLM, and even much

faster than the ISS simulation. Using our framework, we are

able to prune 144 configuration simulations for the processor

with only 9 behavioral simulations. The exploration results for

all the three benchmarks are shown in Table 6. The table

shows the feasible CPU configurations and simulation runtime.

Compared to a brute force approach which simulates the entire

potential configuration set, we save significant run-time

improvement by exploring configuration space in layers of

abstractions. An average ISA level simulation takes around

107.8 seconds. If all the configurations are simulated for one

CPU of any benchmark, it will take 51.7 hrs of simulation

time whereas we explore the entire design space in about 1-1.5

hour for all the benchmarks. Comparison of both these

numbers establishes the effectiveness of our approach.

VI. CONCLUSION

In this paper, we presented a multi-layer configuration

selection for MPSoC architectures with configurable

processors and bus interface. Our proposed framework

explores the configuration parameters at three levels of

abstractions: behavioral, TLM, and ISA. We propose a

configuration exploration tree to explore all the configurations

per processor. By exploiting the monotonous impact of

configuration parameters on system throughput, we propose a

binary-search based algorithm on CET to avoid redundant

simulations in searching for feasible configurations. Our

preliminary results show efficient pruning of the design.

Table 5(Results for B1- CPU1)

Design

Layer

Potential

Configs

Successful

(simulated)

Failed

(simulated)

No. Pruned

Solutions in

CET

Simulated

Time

Beh 12 11(8) 1(1) 1*4*36=144 < 0.1 sec

TLM 11*4= 44 44(8) 0(0) 0 ~ 6.99 min

ISA
44*36

= 1584
506(19) 1078(6) 1078

~44.91
min

Table 6- Experimental Result

BIBLIOGRAPHY
[1] R. Dömer, et al., "System-on-Chip Environment: A SpecC-Based

Framework for Heterogeneous MPSoC Design," EURASIP Journal on
Embedded Systems, Article ID 647953, 2008 .

[2] B. C. Lee and D. Brooks, "Efficiency Trends and Limits from
Comprehensive Micro architectural Adaptivity," in ASPLOS , 2008.

[3] C. Haubelt, T. Schlichter, and J. Teich, "Improving Automatic Design
Space Exploration by Integrating Symbolic Techniques into Multi-
Objective Evolutionary Algorithms," (IJCIR), Special Issue on
MultiobjectiveOptimization and Applications, vol. 2, no. 3, pp. 239-254,
2006.

[4] C. Dubach, T. M. Jones, and M. F. P. O’Boyle, "Micro architectural
Design Space Exploration Using An Architecture-Centric Approach," in
MICRO , 2007.

[5] H. Cook and K. Skadron, "Predictive Design Space Exploration Using
Genetically Programmed Response Surfaces," in DAC, 2008.

[6] H. Javaid and S. Parameswaran, "A Design Flow for Application Specific
Heterogeneous Pipelined Multiprocessor Systems," in DAC , 2009.

[7] F. N. v. Wijk, J. P. M. Voeten, and A. J. W. M. T. Berg, "An Abstract
Modeling Approach Towards System-Level Design-Space Exploration,"
in In Proc. Of the Forum on Specification and Design Language, 2002.

[8] F. Angiolini, et al., "An Integrated Open Framework for Heterogeneous
MPSoC Design Space Exploration," in DATE, 2006.

[9] C. Silvano, et al., "MULTICUBE: Multi-Objective Design Space
Exploration of Multi-Core Architectures," in IEEE Annual Symposium on
VLSI, 2010.

[10] H. Javaid, A. Janapsatya, M. S. Haque, and S. Parameswaran, "Rapid
Runtime Estimation Methods for Pipelined MPSoCs," in DATE, 2010.

[11] F. Reimann, M. Lukasiewycz, M. Glass, C. Haubelt, and J. Teich,
"Symbolic System Synthesis in the Presence of Stringent Real-Time
Constraint," in DAC, 2011.

[12] S. Mohanty, V. K. Prasanna, S. Neema, and J.Davis, "Rapid Design
Space Exploration of Heterogeneous Embedded Systems using Symbolic
Search and Multi-Granular Simulation," in LCTES/SCOPES, 2002.

[13] D. Sheldon, F. Vahid, and S. Lonardi, "Soft-core processor customization
using the design of experiments paradigm," in DATE, 2007.

[14] L. Bauer, M. Shafique, and J. Henkel, "Cross-Architectural Design Space
Exploration Tool for Reconfigurable Processors," in DATE , 2009.

[15] U. D. Bordoloi, H. P. Huynh, T. Mitra, and S. Chakraborty, "Design
space exploration of instruction set customizable MPSoCs for
multimedia applications," in International Conference on Embedded
Computer Systems (SAMOS), 2010 , pp. 170-177.

Bench-
Marks

Potenti
-al

Config
s

Feasible Solutions (simulated time in min)

Total
Simulati
-on Time
(in min)

B1 1728*4

CPU1 CPU2 CPU3 CPU4

166.08 506
(51.9)

425
(54.58)

436
(38.27)

482
(21.33)

B2 1728*5

CPU1 CPU2 CPU3 CPU4 CPU5

230.9 506
(53.14)

434
(62.65)

544
(38.21)

521
(37.8)

488
(39.1)

B3 1728*5

CPU1 CPU2 CPU3 CPU4 CPU5

364.04 384
(63.46)

456
(65.33)

514
(91.11)

434
(63.81)

476
(80.33)

