
System-level Synthesis from Transaction-level
Models: Algorithms and Tools
Rainer Dömer

Center for Embedded Computer Systems
Irvine, CA 92697–2625

Email: doemer@cecs.uci.edu

Daniel D. Gajski
Center for Embedded Computer Systems

Irvine, CA 92697–2625
Email: gajski@cecs.uci.edu

Abstract— With design complexities increasing daily, the multi-
core community is entertaining the idea of increasing the level
of abstraction to transaction-level modeling (TLM) and design.
However, the proper definition, style or semantics of TLM is
not clear. Nor is it clear how to synthesize or verify TLMs. In
this paper, we will introduce several TLM models and define
their semantics. This formalism will allow us to define design
decisions and corresponding model transformations that can be
used to transform one model into another. These transformations
and refinements are the enabler for automatic synthesis and
verification on TLM. We will also discuss the algorithms and
flow for model transformation according to the OSI network
layers and show how to build tools with inputs and outputs
at transaction level. We will conclude with preliminary tools
and results that promise a productivity gain of several orders
of magnitude.

I. INTRODUCTION

The complexity of embedded designs has reached a level
beyond what human system designers can produce with tradi-
tional approaches and EDA tools. Our approach summarized
in this paper incorporates more than 15 years of research in
system synthesis to provide a solution that will reduce both
time and effort needed in the system design process. Given a
system specification of the application described graphically
in form of hierarchically composed C code together with a
platform target architecture description, our approach allows
to automatically generate transaction-level models (TLM) [1]
for simulation, analysis and verification, as well as a pin- and
cycle-accurate model (P/CAM) for implementation.

II. TLM ABSTRACTION LEVELS

The standard product design starts with an application code
for which designers envision a multi-core platform architec-
ture. This application code is then partitioned and mapped
to components in the platform, thus leading to a system
specification. Each component in the architecture must further
be refined to a pin- and cycle-accurate level for synthesis with
standard EDA tools. Similarily, the application code must be

refined to allow communication through the network on the
platform.

In order to automate this refinement, we need to define
proper abstraction levels, design decisions at each level, and
necessary refinement steps for each system model, in order to
generate a new model corresponding to those design decisions.

In general, three models are necessary,

(a) the system specification, written by application designers
(b) TLM, to validate the system specification on the selected

platform, and
(c) P/CAM, generated by system designers for input to

standard EDA tools.

Pin Accurate, Cycle Accurate Model

Transaction Level Model

Specification Model

Application
Presentation
Session
Transport
Network
Link + Stream 
Media Access
Protocol
Physical

Application
Presentation
Session
Transport
Network
Link + Stream 
Media Access
Protocol
Physical

Address Lines

Data lines

Control Lines

TLM 

Spec 

P/CAM

Fig. 1: Model abstraction and communication layers.

Figure 1 illustrates the abstraction levels of the models in the
design flow with respect to OSI layers [2]. The input specifica-
tion model is a untimed, hierarchical, functional description of
the system, using abstract communication channels. The timed
intermediate TLM is partitioned into the system’s processing
elements, communicating over fast and timing-accurate TLM
channels. The final implementation model is pin- and cycle-
accurate and feeds directly into standard design tools at lower
levels.



III. DESIGN FLOW

The design flow to the corresponding abstraction levels
allows an application designer to capture the system speci-
fication at a higher abstraction level. The specification is then
validated and evaluated to determine its necessary specifics
and required properties using a transaction-level model (TLM).

The application engineer can then change the platform
components and connections or the application code until
satisfactory results are obtained. Once the platform and the
code satisfy the given requirements, the system designer
generates pin- and cycle-accurate code.

The TLM and P/CAM models can be generated automati-
cally using a decision-based refinement methodology. Such a
methodology associates with each design decision or design
change a corresponding model refinement or change, resulting
in a model transformation that produces a new model that
reflects the selected design decisions.

P/CAM

Implementation

System Synthesis

TLM

System Definition

Application
Model

Platform
Architecture

Specification

Fig. 2: Embedded system design flow.

Figure 2 shows an overview about the overall design flow
and the system design environment supporting it. Such a
design flow starts with the capture of the application model,
a purely behavioral description of the system functionality.
Independently, the system platform architecture is defined
as a system netlist of major system components, including
processors, dedicated hardware accelerators, memories and
IPs, interconnected by system busses, bridges, and transducers.
Together, the application model and the platform architecture
form the system specification as input to the design environ-
ment.

The system specification can be seen as a combination of
the application model and platform architecture, integrated
with additional information taken from the system component
database. From the system specification, model generation
tools automatically generate transaction-level models (TLMs)
towards validation and exploration, while system synthesis
tools generate a pin- and cycle-accurate model (P/CAM)
that serves as input to standard EDA tools for the system
implementation.

A. Application model

The input application model is a purely functional, exe-
cutable specification of the intended design. It consists of a
hierarchy of sequential or concurrent functional blocks that
communicate by use of abstract channels reflecting various
types of message-passing communication semantics. In other
words, the model is a hierarchical composition of blocks
defined as ANSI C code.

To enable true design space exploration, the application
model does not contain any implementation details. In par-
ticular, the model is architecture-less, that is, it is void of any
structural information.

To allow functional validation, the application model also
contains stimulus and monitor behaviors that build a testbench
for the design model.

v1

C1

B1 B2

B3 B4

C2

v1

C1C1

B1 B2

B3 B4

C2

Fig. 3: Application model example.

Figure 3 shows an example of a simple application model.
Four concurrent functional blocks B1 through B4 communi-
cate via shared variables (v1) and abstract channels C1 and
C2.

B. Platform architecture

As outlined above, the platform architecture is the second
input to our design flow. The platform model describes a
system netlist of the major components, such as software
processors, dedicated hardware blocks, memories and intel-
lectual property (IP) components. Following a general block



diagram paradigm, the system components are interconnected
by system busses which in turn can be connected by bus
bridges and transducers.

CPU Mem

Br
id

ge

HW IP

Ar
bi

te
r

CPU Mem

Br
id

ge

HW IP

Ar
bi

te
r

Fig. 4: Platform architecture example.

Figure 4 shows a platform architecture suitable for the
example shown in Figure 3. This simple example system
consists of a general-purpose processor CPU, a hardware
accellerator HW, a shared memory Mem, and a third-party block
IP. The four components are connected by the main processor
bus and a bridge to the IP bus.

C. System specification

Br
id

ge

v1

C1

B1 B2

CPU Mem

HW

B3

IP

B4

C2

Ar
bi

te
r

Br
id

ge

v1

C1C1

B1 B2

CPU Mem

HW

B3

IP

B4

C2

Ar
bi

te
r

Fig. 5: System specification example.

Figure 5 shows the system specification of the example
design as a model that combines the functional aspects of
the application model with the structural information of the
platform architecture. Note that the two aspects, behavior and
structure, are fully complementary (i.e. non-overlapping). This
is highlighted in Figure 5 which simply is an overlay of
Figure 3 and Figure 4.

D. TLM generation

From the system specification model, our envisioned design
environment can then automatically generate a corresponding
transaction-level model (TLM).

CPU Bus

B1 B2

OS

B4

CP
U Mem

IP

B3

HW

HALDrivers

IP BusCPU Bus

B1 B2

OS

B4

CP
U Mem

IP

B3

HW

HALDrivers

IP Bus

Fig. 6: Generated transaction-level model (TLM).

Figure 6 shows the generated TLM for the simple example
defined in Figure 5. In the model, transaction-level commu-
nication layers have been inserted to reflect the transactions
on the system busses between the components. The busses
themselves are represented by TLM channels CPU Bus and
IP Bus. In the software component CPU, additional layers of
hierarchy have been inserted to accurately reflect the hardware
abstraction layer (HAL) of the processor. Also, the functional
blocks B1 and B2 are now modeled as tasks, being scheduled
by an abstract operating system OS channel and commu-
nicating via integrated Drivers. The inserted components
stem from template models in the system database which are
customized according to the actual design decisions applied
by the system designer.

E. Pin- and cycle-accurate model generation

System synthesis tools allow to automatically generate
a pin- and cycle-accurate model (P/CAM) that reflects the
intended implementation of the system accurately down to the
interconnecting pins and wires.

Figure 7 shows the generated P/CAM for the TLM shown
in Figure 6. The lower-level communication layers, that were
abstracted away in the TLM channels, are now properly
modeled as an inner layer that samples and drives the explicit
bus wires according to the selected communication protocol
and timing.



B1 B2

OS

B4

CP
U Mem

IP

Ar
bi

te
r

Bridge

B3

HW

HAL

B1 B2

OS

B4

CP
U Mem

IP

Ar
bi

te
r

Bridge

B3

HW

HAL

Fig. 7: Generated pin- and cycle-accurate model (P/CAM).

IV. SYSTEM ENVIRONMENT

The above described models and design flow can be united
in a system environment for automatic generation of TLMs.
Such an environment includes extensive simulation and analy-
sis engines for detailed feedback about design model behavior
and quality metrics. Apart from capturing the system specifi-
cation and later design decisions, it’s graphical user interface
(GUI) supports a wide variety of visualizations for simulation
and analysis results. This allows the system designer to focus
her/his efforts on the critical aspects in the system design
flow and exploration, thus arriving at an optimal design
implementation in a short amount of time.

System Spec

TLM

Model
refinement tool

Estimation
tool

Component
library

Simulation /
Verification

tool

GUI

(Design
decisions)

Fig. 8: System design environment.

Figure 8 shows the main components of the environment,
all driven and visualized by an easy-to-use GUI. The heart of
the environment is the model refinement engine that combines
the application model and platform architecture to a system

specification model and allows it to be further refined down
to a transaction-level or pin-accurate model. The refinement
engine is supported by a component library with models
and property annotations for processor, hardware, and IP
components.

Validation of both input and output models is performed by
integrated simulation and verification tools. An estimation tool
is also included, allowing early and rapid feedback about the
quality metrics of the design at hand.

Such an environment offers the following features:

• Graphical entry of platform target architecture as a netlist
of components and busses.

• Graphical entry of system specification as application
code consisting of communicating processes.

• Automatic generation of platform transaction-level mod-
els (TLMs) for simulation, analysis and verification.

• Extensive platform simulation and analysis through fast
and accurate transaction-level simulation.

• Evaluation and exploration of platform quality and be-
havior through large set of profiling and analysis tools.

A. ESE Frontend

In the rest of the paper, we demonstrate and describe the
design flow using an example of a MP3 decoder using a
prototype tool called Embedded System Environment (ESE)
Frontend. ESE Frontend is a tool that simplifies and automates
the generation of Transaction Level Models (TLM). Automatic
model generation allows designers to move from idea to an
executable model in less than one hour. Furthermore, it enables
extensive exploration and validation of the computation and
communication design space.

The system architecture is defined as a netlist of major
system components, including processors, dedicated hardware
accelerators, and other processing elements. Independently, the
system application is specified hierarchically and concurrently
by behavior and channel blocks containing ANSI C code.
Together, these two inputs form the system specification that
is captured and serves as input to the ESE Frontend.

In addition to the main model refinement engine, ESE
Frontend features platform validation with fast simulation
and profiling and analysis tools, and platform exploration
of architecture alternatives and parameter variations. Both,
software and hardware design flows are integrated to allow
for an application development in true co-design manner.

As the output, ESE Frontend automatically generates a
model at the transaction level that allows to co-simulate
the system platform fast and accurately for early and rapid
feedback of the design characteristics.



ESE Frontend offers the following advantages over current
embedded design flows:

• Freedom from system-level design languages: Graphical
entry of block diagrams and hierarchical C code.

• Easier design space exploration: Automatic TLM gener-
ation from application code and design decisions.

• Fast verification cycles: TLMs allow fast yet accurate
simulation.

• Early validation of design constraints: Profiling and anal-
ysis tools provide feedback for evaluation.

V. DESIGN EXAMPLE

We will now use an MP3 decoder application [3] as example
to demonstrate system design using ESE Frontend.

HuffDec

FilterCoreIMDCT 

PCM

FilterCoreIMDCT 

mp3 pcm

Left channel

Right channel

AliasRed

AliasRed

2 granules

HuffDec

FilterCoreIMDCT 

PCM

FilterCoreIMDCT 

mp3 pcm

Left channel

Right channel

AliasRed

AliasRed

2 granules

Fig. 9: MP3 decoder example, functional block diagram.

Based on a reference C code, we have captured the func-
tionality of the MP3 decoder in ESE Frontend. Our application
model reflects the major functional blocks in the decoder
pipeline, as shown in Figure 9. In addition, the application
model contains smaller control blocks that handle the input
and output of the byte streams, as well as a testbench wrapped
around the design such that the functionaly can be validated
through simulation.

Fig. 10: Screenshot of ESE Frontend.

Next, we have captured an initial platform architecture that
maps the entire MP3 decoder functionality on an embedded
ARM7TDMI processor. Only the PCM output is performed
by a dedicated hardware unit that emits the decoded PCM
sound samples according to the timing specified in the MP3
stream. The ARM processor and the PCM output unit both
have their own local bus, connected together by a bridge unit.
Figure 10 shows this platform architecture in a screenshot of
ESE Frontend.

mainBus

OSDrivers

pcmBus

PCM

. HuffEnc

AliasRed

AliasRed

IMDCT

IMDCT

FilterCore

FilterCore

ARM

Mem

Bridge PCM

HAL

mainBus

OSDrivers

pcmBus

PCM

. HuffEnc

AliasRed

AliasRed

IMDCT

IMDCT

FilterCore

FilterCore

ARM

Mem

Bridge PCM

HAL

Fig. 11: MP3 decoder example, generated TLM 1.

To evaluate this architecture of the MP3 decoder, we used
ESE Frontend to generate a TLM (Figure 11) and simulated
the model. The simulation results showed that the ARM
processor alone cannot meet the required frame speed of
26.12ms.

mainBus

OSDrivers

pcmBus

PCM

. HuffEnc

AliasRed

AliasRed

IMDCT

IMDCT

ARM

Mem

Bridge PCM

FilterCore

HW1

FilterCore

HW2

HAL

mainBus

OSDrivers

pcmBus

PCM

. HuffEnc

AliasRed

AliasRed

IMDCT

IMDCT

ARM

Mem

Bridge PCM

FilterCore

HW1

FilterCore

HW2

HAL

Fig. 12: MP3 decoder example, generated TLM 2.

To speed up the design, we extended our platform archi-
tecture by introducing two additional hardware accelerators
dedicated to the FilterCore blocks for the left and right audio
channel, respectively. The improved model (Figure 12) showed
a significant speed improvement, but the frame deadline could
still not be met due to high bus contention on the AMBA main
bus.



mainBus

OSDrivers

PCM

. HuffEnc

AliasRed

AliasRed

IMDCT

IMDCT

ARM

Mem

PCM

FilterCore

HW1

FilterCore

HW2

pcmBus

HAL

mainBus

OSDrivers

PCM

. HuffEnc

AliasRed

AliasRed

IMDCT

IMDCT

ARM

Mem

PCM

FilterCore

HW1

FilterCore

HW2

pcmBus

HAL

Fig. 13: MP3 decoder example, generated TLM 3.

Again, we adjusted the target platform. We connected the
FilterCore units directly to the PCM output unit, eliminating
the need for the bus bridge, as shown in Figure 13. This design
successfully met the frame delay.

Figure 14 shows some simulation and estimation results
obtained for each of the TLM alternatives. The graphs clearly
show that only the third design alternative meets the frame
delay deadline.

(a) Frame delay (ms)

0

10

20

30

40

TLM1 TLM2 TLM3

Deadline: 26.12

(b) Main bus utilization (%)

0
0.1
0.2
0.3
0.4
0.5

TLM1 TLM2 TLM3

Fig. 14: Estimation results for the generated TLM alternatives.

We would like to emphasize that the entire design explo-
ration for this example can be performed in less than one
hour of time. This is possible due to an intuitive GUI that
allows easy capturing and modifying of design models, and
in particular due to the automatic model generator that creates
TLMs within seconds for the selected platform architecture.

In summary, the MP3 design study clearly shows that ESE
Frontend enables rapid design space exploration.

VI. CONCLUSION

In summary, ESE Frontend offers a true system-level design
flow with the following benefits:

• Design decisions and models can be easily exchanged in
electronic form, providing simplified globally-distributed
design.

• Designs can be easily modified and prototyped, providing
better market penetration through customization.

• Models and design decisions can be reused, providing
easier change and version management.

• Models are automatically generated, providing shorter
time to market.

• No need for manual model development, providing 1000x
productivity gains.

ACKNOWLEDGMENT

The authors would like to thank the members of the System-
on-Chip Environment group in the Center for Embedded
Computer Systems at UC Irvine who contributed to this work,
especially Andreas Gerstlauer, Junyu Peng, Dongwan Shin,
Samar Abdi, and Roger Ang.

REFERENCES

[1] T. Grötker, S. Liao, G. Martin, and S. Swan, System Design with SystemC.
Kluwer Academic Publishers, 2002.

[2] ISO, Reference Model of Open System Interconnection (OSI), 2nd ed.,
Internation Organization for Standardization (ISO), 1994, iSO/IEC 7498
Standard.

[3] P. Chandraiah and R. Dömer, “Specification and design of an MP3
audio decoder,” Center for Embedded Computer Systems, University of
California, Irvine, Tech. Rep. CECS-TR-05-04, May 2005.

[4] D. D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, and S. Zhao, SpecC:
Specification Language and Design Methodology. Kluwer Academic
Publishers, 2000.

[5] A. Gerstlauer, R. Dömer, J. Peng, and D. D. Gajski, System Design: A
Practical Guide with SpecC. Kluwer Academic Publishers, 2001.

[6] “SpecC Technology Open Consortium,” http://www.specc.org.
[7] “Open SystemC Initiative,” http://www.systemc.org.

http://www.specc.org
http://www.systemc.org

	I Introduction
	II TLM Abstraction Levels
	III Design Flow
	III-A Application model
	III-B Platform architecture
	III-C System specification
	III-D TLM generation
	III-E Pin- and cycle-accurate model generation

	IV System Environment
	IV-A ESE Frontend

	V Design example
	VI Conclusion
	References

