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h THE LARGE COMPLEXITY of modern embedded

systems with their heterogeneous components,

complex interconnects, and sophisticated function-

ality poses challenges to system validation and

debugging. At the Electronic System-Level (ESL),

accurate yet fast simulation is key to enabling

effective and efficient model validation and imple-

mentation. This paper presents and compares

several simulation techniques for designs described

in System-Level Description Languages (SLDLs). In

particular, the well-known approach of Parallel

Discrete Event Simulation (PDES) [1] has recently

gained attention again due to the inexpensive avail-

ability of parallel processing in today’s multi-core CPU

hosts. PDES holds the promise to map the explicit

parallelism described in SLDL models efficiently onto

the parallel cores available on the simulation host. As

such, it can exploit the available parallelism and

significantly reduce the simulation time.

Related work
The validation of ESL

models is typically based

on Discrete Event (DE)

simulation which is driven

by events and simulation

time advances. Most ESL

design frameworks today still rely on synchronous

discrete event simulators which issue only a single

thread at any time to avoid the complex synchroni-

zation of the concurrent threads. As such, the

simulator kernel becomes an obstacle to improving

simulation performance on multi-core hosts.

Distributed Parallel Simulation [2], [3] breaks a

model into modules, dispatches them on geograph-

ically distributed simulation hosts, and then runs

the simulation in parallel. However, model parti-

tioning is difficult and the network speed be-

comes a bottleneck due to the frequently needed

communication.

Specializedhardware including Field-Programmable

Gate Array (FPGA) [4] and Graphics Processing Units

(GPU) [5] can also boost simulation speed. The

methodology presented in [6] parallelizes SystemC

simulation across multicore CPUs and GPUs but the

model needs to be partitioned on the heterogeneous

simulator units.

Other techniques run multiple simulators in

parallel and synchronize them. The Wisconsin

Wind Tunnel [7] uses a conservative time bucket

synchronization scheme to synchronize simulators
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at a predefined interval. In [8], a simulation back-

plane handles the synchronization between

wrapped simulators and the system optimizes the

period of the synchronization message transfer. Both

techniques significantly speedup the simulation at

the cost of timing accuracy.

PDES research on SLDL simulation provides a

general approach for parallel simulation of ESL

models. An extension of the SystemC kernel [9],

[10] actually allows parallel execution on multicore

processors. The modified simulator kernel issues

multiple OS kernel threads in parallel and synchro-

nizes them in each scheduling step. The SpecC-based

approach in [11] is similar. However, a synchroniza-

tion protection mechanism automatically instruments

communication channels. There is no need to work

around the cooperative SystemC execution semantics,

nor for a specially prepared channel library.

SLDL DE simulation uses the notion of delta-

cycles which interpret the ‘‘zero-delay’’ semantics of

SLDLs and impose a partial order on the events that

happen at the same time. Synchronous PDES

approaches including [9], [11] impose a total order

on simulation advances which makes delta and time

cycles absolute simulation cycle barriers for thread

execution. When a thread finishes its execution for a

cycle, it has to wait until all other active threads

complete the same cycle. Only then the simulator

advances to the next delta or time cycle. Available

CPU cores are idle until all threads have reached the

barrier.

To address this limitation, out-of-order PDES [12]

breaks the simulation cycle barrier and aggressively

issues multiple threads in parallel even if they are in

different cycles. This keeps the available CPU cores

in the host as busy as possible. In contrast to

synchronous PDES, timing is only partially ordered

in out-of-order PDES.

In comparison to our work in [11], [12], we

review and compare the major PDES approaches

here. We highlight the advanced out-of-order PDES

and provide results for a new highly parallel

benchmark example (fibo_timed) and additional

embedded applications for image, video and audio

processing which compare synchronous and out-of-

order PDES.

Parallel discrete event simulation
DE simulation creates threads for the explicit

parallelism in the model (e.g. par and pipe state-

ments in SpecC, and SC_THREADS in SystemC).1 A

scheduler manages the threads by use of queues,

such as READY, which contains all those that are

ready to execute, and WAIT, which contains threads

waiting for events. Threads switch between READY

and WAIT during simulation subject to event notifi-

cation and time advances. Events are delivered in an

inner loop called delta-cycle and simulation time

advances in an outer loop time-cycle.

PDES approaches differ in the way threads are

scheduled and, in particular, whether or not threads

are allowed to run in parallel. A simple example can

illustrate this. Figure 1a shows a high-level model of

a DVD player which decodes the MP3 audio and

H.264 video frames of the media stream using

separate decoders. The decoders work in parallel

and output the decoded frames according to their

rate, 30 FPS for video (delay 33.3 ms) and 38.28 FPS

for audio (delay 26.12 ms).

Traditional DE simulation executes threads se-

quentially, only one at any time, and when running

at the same simulated time, i.e. within a delta-cycle,

the choice of the next thread to run is non-

deterministic (by definition). For the DVD player,

this schedule is shown in Figure 1c.

In contrast, PDES approaches improve simulator

performance by executing suitable threads in

parallel on a multi-core host. Figure 1d shows the

scheduling under synchronous and Figure 1e under

out-of-order PDES. While synchronous PDES paral-

lelizes only threads running at the same simulated

time, i.e. only the very first frame at time 0, out-of-

order PDES localizes the simulation time and

executes independent threads in parallel out-of-

order. For the DVD model, this results in significantly

reduced simulator run-time.

Synchronous PDES
Figure 2a shows the control flow of the synchro-

nous PDES scheduler. In each cycle, it picks multiple

threads from the READY queue and runs them in

parallel. In particular, the loop on the left side of the

graph moves threads from READY to RUN as long as

processor cores are available.

1With the exception of different requirements for protec-
tion of communication and synchronization between con-
current threads, as outlined in [11], this section applies equally
to both SystemC and SpecC SLDLs.
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Explicit synchronization is required for running

multiple threads safely in parallel. The simulator

data structures, including thread queues and event

lists, and shared variables in communication chan-

nels must be properly protected by locks for

mutually exclusive access by the concurrent threads.

Note that synchronous PDES only parallelizes

threads running in the same delta-cycle and the

global simulation time advances only when no

threads are running. CPU cores are idle when there

are not enough threads in the same cycle or the

workloads of the parallel threads are imbalanced.

Out-of-order PDES
Figure 2b shows the more aggressive algorithm of

out-of-order PDES which issues threads that are

independent early without waiting for global time

advance. In other words, out-of-order PDES advances

simulation cycles in a partial order using thread-local

timing. Each thread processes its simulation cycles

Figure 1. High-level DVD player example. (a) Model structure; (b) segment graph;
(c) traditional DE simulation schedule; (d) synchronous PDES schedule;
(e) out-of-order PDES schedule.
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Figure 2. PDES algorithms. (a) Synchronous PDES scheduler. (b) Out-of-order PDES
scheduler.
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as soon as possible subject only to dependencies on

other threads [12].

While simulation time is localized to each thread,

SLDL execution semantics are fully preserved

because potential data and event hazards are

conservatively analyzed at compile-time and

checked at run-time. This is in contrast to temporal

decoupling in SystemC TLM which trades off simu-

lation speed against accuracy. Temporal decoupling

allows threads to run ahead of the global simulation

time without checking of dependencies and thus

can lead to execution inconsistent with the standard

semantics.

The conservative out-of-order PDES is also differ-

ent from speculative multithreading techniques

which are optimistic but have to roll-back in case

the speculation turns out to be incorrect. Note that

roll-backs are costly in the sense that either special

hardware or complex software is needed to preserve

the simulation semantics.

Out-of-order PDES uses static model analysis at

compile-time to meet the standard simulation

semantics. Using table-lookups at run-time, the

scheduler then can make quick and safe decisions

about issuing threads in parallel.

During simulation, threads call the scheduler at

the end of every cycle so that the scheduler can

decide and issue the threads for execution in the

next cycle. We define the portion of code executed

by a thread between two scheduling steps as a

Segment (seg), and a Segment Boundary is

defined by SLDL statements which call the

scheduler, such as wait and par.

Together, segment boundaries (vertices) and

segments (edges) form a directed graph, called

Segment Graph, which can be derived from the

control flow graph of the model. As such, the

segment graph shows the possible order of execu-

tion of the segments in the model.

Figure 1b shows the segment graph of the DVD

example. Simulation starts at segment seg0 and then

creates two parallel threads for the two decoders in

seg1 and seg2. Segments seg3 and seg4, respectively,

follow after the segment boundaries created by the

wait-for-time statements reflecting the frame delays.

In the DVD example, the audio and video frames

are data-independent, so there are no conflicts

between the segments. In general, however, a table

of potential data and event conflicts among the seg-

ments is calculated by the compiler and passed to the

simulator for checking at run-time [12]. Figure 2b

lists the conflict table lookup (NoConflict(th)) by

the scheduler which avoids any possible data and

event hazards. Note that each conflict check can be

performed in constant time ðOð1ÞÞ.
Table 1 compares out-of-order PDES in detail

against the traditional DE simulation and synchro-

nous PDES.

Table 1 Comparison of traditional, synchronous, and out-of-order PDES approaches.
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Parallel system-level benchmarks
To demonstrate the potential of parallel simula-

tion, we have designed three highly parallel bench-

mark models: a parallel floating-point multiplication

example, a parallel recursive Fibonacci calculator,

and a parallel recursive Fibonacci calculator with

timing information. All these benchmarks are

system-level models specified in SpecC SLDL.

For our experiments, we use a symmetric multi-

processing server running 64-bit Fedora 12 Linux.

The multi-core hardware specifically consists of

2 Intel Xeon X5650 processors running at 2.67 GHz.2

Each CPU contains 6 parallel cores, each of which

supports 2 hyper-threads per core. Thus, in total the

server hardware supports up to 24 threads running

in parallel.

Parallel floating-point multiplications
Our first parallel benchmark fmul is a simple

stress-test example for parallel floating-point calcula-

tions. Specifically, fmul creates 256 parallel instances

which perform 10 million double-precision floating-

point multiplications each. As an extreme example,

the parallel threads are completely independent, i.e.,

do not communicate or share any variables.

The chart in Figure 3a shows the experimental

results for our synchronous PDES simulator when

executing this benchmark. To demonstrate the

scalability of parallel execution on our server, we

vary the number of parallel threads admitted by the

parallel scheduler (the value #CPUs in Figure 2a)

between 1 and 32.

We use the elapsed simulator run time for one core

as the base (33.5 seconds). When plotting the relative

speedup, one can see that, as expected, the simulation

speed increases in nearly linear manner the more

parallel cores are used and tops out when no more

CPU cores are available. The maximal speedup is

about 16� for this example on our 24-core server.

Parallel Fibonacci calculation
Our second parallel benchmark fibo calculates

the Fibonacci series in parallel and recursive

2To ensure consistent timing measurements, we have
disabled the dynamic frequency scaling and turbo mode of
the processors.

Figure 3. Simulation results for highly parallel benchmark models. (a) fmul (synchronous PDES);
(b) fibo (synchronous PDES); (c) fibo_timed (synchronous PDES vs. out-of-order PDES).
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fashion. Recall that a Fibonacci number is defined

as the sum of the previous two Fibonacci numbers,

fibðnÞ ¼ fibðn� 1Þ þ fibðn� 2Þ, and the first two

numbers are fibð0Þ ¼ 0 and fibð1Þ ¼ 1. Our fibo

design parallelizes the Fibonacci calculation by

letting two parallel units compute the two previous

numbers in the series. This parallel decomposition

continues up to a user-specified depth limit (in our

case 5), from where on the classic recursive

calculation method is used.

In contrast to the fmul example above, the fibo

benchmark uses shared variables to communicate

the input and calculated output values between the

units, as well as a few counters to keep track of the

actual number of parallel threads (for statistical

purposes). Thus, the threads are not fully indepen-

dent from each other. Also, the computational load

is not evenly distributed among the instances due to

the fact that the number of calculations increases by

a factor of approximately 1.618 (the golden ratio) for

every next number.

The fibo simulation results are plotted in

Figure 3b. Again we use the elapsed simulator run

time for one core as base (29.7 seconds). The curve

for the relative simulation speedup shows the same

increasing shape as in Figure 3a. Speed increases in

nearly linear fashion until it reaches saturation at

about a factor of 12�.
When comparing the fmul and fibo benchmark

results, we notice a more regular behavior of the

fmul example due to its even load and zero inter-

thread communication.

Parallel Fibonacci calculation with
timing information

Our third parallel benchmark fibo_timed is an

extension of fibo with timing information. System

models usually have timing information either back-

annotated by estimation tools or added by the

designers to evaluate the real-time behavior of the

design. Compared to the untimed fibo, this timed

benchmark is a more realistic embedded applica-

tion example.

fibo_timed has the same structure as fibo with

the same parallel decomposition depth (in our

case 5). Timing information is annotated using

wait-for-time statements at each leaf block where

the classic recursive calculation method is used.

The time delay is determined by the computational

load of the unit, i.e. TfibðnÞ ¼ 1:618 � Tfibðn�1Þ.

Figure 3c plots the simulation results for both

synchronous and out-of-order PDES. Using the

1-core elapsed simulator time as base (32.7 seconds

for both simulators), the relative speedup shows that

out-of-order PDES can exploit more parallelism

during the simulation and is more efficient than

synchronous PDES. This benchmark confirms the

increased CPU utilization on amulti-core host by out-

of-order PDES.

Embedded application examples
To demonstrate the effectiveness of the PDES

approaches for realistic design examples, we use six

embedded applications which we have modeled in-

house based on reference source code for standard

algorithms. We measure the results on the same host

PC as in Parallel system-level benchmarks.3

JPEG image encoder with parallel color
space encoding

The JPEG encoder performs its DCT, Quantization

and Zigzag modules for the 3 color components in

parallel, followed by a sequential Huffman encoder

at the end. Table 2 shows the simulation speedup.

The size of our input BMP image is 3216 � 2136

pixels. Note that, the model has maximal 3 parallel

threads, followed by a significant sequential part.

We simulate this application model at four

abstraction levels (specification, architecture

mapped, OS scheduled, network linked). As shown

in Table 2, simulation speed increases for both

parallel simulators but the out-of-order PDES gains

more speedup than synchronous PDES.

H.264 video decoder with parallel
slice decoding

Our second application is a parallelized video

decoder model based on the H.264/AVC standard.

An H.264 video frame can be split into multiple

independent slices during encoding. Our model

uses four parallel slice decoders to decode the

separate slices in a frame simultaneously. The H.264

stimulus module reads the slices from the input

stream and dispatches them to the four following

slice decoders for parallel processing. A synchro-

nizer block at the end completes the decoding of

3Compared to the experiments in [11] and [12], the results
for the JPEG image encoder and the H.264 video decoder here
are based on improved models and have been simulated on a
different host with different test streams.
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each frame and triggers the stimulus to send the next

one. This design model is of industrial-size and

consists of about 40k lines of code.

We use a test stream of 1079 video frames with

1280 � 720 pixels per frame (approximately 58.6% of

the total computation is spent on the slide decoding

which has been parallelized). Table 2 shows that

synchronous PDES can hardly gain any speedup due

to the simulation cycle barriers. Furthermore, protect-

ing the shared resources and added synchronizations

introduce simulation overhead for PDES. However,

out-of-order PDES still gains significant speed up to a

factor of 1.77�. Note that even for a large realistic

design, such as this H.264 decoder model, the

increased compilation time due to the static model

analysis for out-of-order PDES is negligible.

Edge detection with parallel
Gaussian smoothing

Our third application example, a Canny edge

detector application, calculates edges in images of a

video stream. In our model, we have parallelized the

most computationally complex function Gaussian

Smooth (approximately 45% of the total computa-

tion) on 4 cores. With a test stream of 100 frames of

1280 � 720 pixels, the simulation results in Table 2

show 1.38 speedup for synchronous PDES and

1.52 speedup for out-of-order PDES.

The fourth example uses the same edge detection

algorithm but only detects the edges in a single image.

Again we split the Gaussian Smooth function equally

on 4 parallel modules, but use a larger image. For the

test image with 3245 � 2500 pixels, PDES accelerates

the simulation with an average speedup of 1.27. The

workload is evenly distributed so it fully fills the

simulation cycles of the mapped parallel threads.

Thus, out-of-order PDES loses its advantage and

performs slightly slower than synchronous PDES

due to the out-of-order scheduling overhead.

H.264 video encoder with parallel motion search
The fifth application is a parallelized video

encoder based on the H.264/AVC standard. Intra-

and inter-frame prediction are applied to encode an

image according to the type of the current frame.

During inter-frame prediction, the current image is

compared to the reference frames in the decoded

picture buffer and the corresponding error for each

reference image is obtained.

In our model, multiple motion search units are

processing in parallel so that the comparison

between the current image and multiple reference

frames can be performed simultaneously. Our test

stream is a video of 95 frames with 176 � 144 pixels

per frame, and the number of B-slices between every

I-slice or P-slice is 4. That is, among every 5 con-

secutive frames 4 frames need bidirectional inter-

frame prediction. Table 2 shows a similar simulation

acceleration with a speedup of 1.87 for synchro-

nous PDES, and 1.98 for out-of-order PDES.

Table 2 Experimental results for embedded application examples using standard algorithms.

IEEE Design & Test52

Practical Parallel EDA



MP3 stereo audio decoder
The last application, a MP3 player, is another

example for which the performance of PDES is

marginal due to the limited parallelism in the

model. Our MP3 audio decoder is modeled with

parallel decoding for stereo channels. Our test

stream is a 99.6 Kbps, 44.1 Hz joint stereo MP3 file

with 2372 frames. It takes less than 5 seconds to

simulate, but there are 7114 context switches in

scheduling the two parallel threads. Here, both

PDES approaches take longer time than the tradi-

tional DE simulation due to the low computation

workload and the then significant overhead for

synchronization.

Overall, we can see that the 24 available parallel

cores on the server are under-utilized for all six

applications, and by both parallel simulators. The

reason is clearly the limited available parallelism in

the models.

PARALLEL DISCRETE EVENT Simulation carries the

promise to exploit the explicit parallelism in an ESL

design model by utilizing the parallel computing

resources on a multi-core simulation host. Synchro-

nous PDES parallelizes the threads in the same

simulation cycles. In contrast, advanced out-of-order

PDES aggressively breaks the simulation cycle

barrier and allows threads in different cycles to

run in parallel for the small cost of increased

compile time for static dependency analysis. Both

PDES approaches fully retain the SLDL simulation

semantics and result in standard-compliant simula-

tion with accurate timing. Moreover, both signifi-

cantly reduce the simulator run time. In most cases,

out-of-order PDES proves to be the winner which

gains the highest speedup with only a small increase

of compilation time.

Overall, PDES is highly desirable for ESL design

due to the constantly rising complexity of embed-

ded systems which requires accurate and fast

simulation. Given the need for higher simulation

speeds and the demonstrated potential of parallel

simulation, it becomes clear that PDES is and will be

an area of active research.

Future work includes further improvements in

dependency analysis for both conservative and

optimistic PDES techniques in order to exploit

more parallelism, and research on model design

suitable for faster execution on parallel architec-

tures. However, all efforts in simulator design are

limited by the amount of exposed parallelism in the

application. How to expose thread-level parallelism

in software applications remains as a Grand

Challenge. h
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