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ABSTRACT
Programming multi-processor systems-on-chip (MPSoC) in-
volves partitioning and mapping of sequential reference code
onto multiple parallel processing elements. The immense
potential available through MPSoC architectures depends
heavily on the effectiveness of this programming. Exist-
ing automatic parallelizing techniques, though effective on
shared memory architectures, are insufficient for MPSoCs,
which are typically characterized by heterogeneous process-
ing elements and memory architectures. The lack of ef-
fective automatic techniques requires designers to manually
partition the code and the data structures in the reference
application to generate a parallel and flexible specification.
Manual creation of this model is time consuming and error
prone.
In this work, we present a novel designer-controlled ap-
proach to partition existing code and data structures au-
tomatically into a parallel and flexible abstract specifica-
tion model that can be mapped to a heterogeneous MPSoC.
Our results show significant productivity gains and improve-
ments in the end design.

Categories and Subject Descriptors
D.1.2 [Programming Techniques]: Automatic Program-
ming

General Terms
Algorithms, Design, Languages

Keywords
System specification, Code Partitioning, Re-coding, MPSoC

1. INTRODUCTION
The generation of a parallel specification model from a se-

quential reference application is the most time-critical and
challenging task in programming MPSoC architectures. Con-
currency and flexibility are two important characteristics
of this model. Concurrency enables the efficient utiliza-
tion of the underlying parallel architecture, and flexibility
directly impacts the size of the design space that can be ex-
plored. Traditional parallelizing compilers can be used to
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expose concurrency. However, completely automatic tech-
niques have been ineffective. First, most rely on a shared
memory programming model and hence cannot handle het-
erogeneous MPSoC architectures such as specialized cus-
tom processors and non-uniform memory architectures. Sec-
ond, though effective in parallelizing applications in scien-
tific computing, completely automatic compilers have been
ineffective in handling real-life embedded source codes. Third,
more than often exposing concurrency in embedded appli-
cations requires algorithm knowledge which cannot be de-
tected by the compilers. Flexibility in the model is necessary
to perform large design space exploration. In general, flexi-
bility increases with separation of computation and commu-
nication in the model. Moreover, flexibility directly depends
on the number of distinct code and data partitions, which
communicate through abstract channels. In the later stages
of system synthesis, this flexibility increases the number of
different code, data and channel mappings onto processors,
memories and buses, respectively.
In case of low cost and low power MPSoCs, which cannot af-
ford expensive cache coherence mechanisms, composite vari-
ables in the application need to be partitioned and explicitly
localized so that they fit into small local memories.

1.1 Designer-Controlled Approach
Creating a parallel and flexible specification from a C

model for a heterogeneous MPSoC involves identifying task-
level parallelism, code partitioning, selective data structure
partitioning and proper communication using abstract chan-
nels. This calls for designer-controlled parallelization, where
the designer chooses the loops to be parallelized and the data
structures to be partitioned and localized. Our approach is
controlled by the designer to the extent that all the criti-
cal analysis and the time-consuming code transformations
are performed by automatic transformations, but the deci-
sion to apply them is up to the designer. Our goal is to
generate a flexible MPSoC specification model in a System
Level Design Language (SystemC [7] or SpecC [6]) from a
sequential reference C model. In this paper, we present a
set of code/data partitioning and flexibility adding transfor-
mations using a designer-controlled approach.

1.2 Related Work
The problem of partitioning code and data structures in

a reference application to generate a parallel MPSoC spec-
ification has not yet received much attention. The onus of
performing this tedious recoding lies on the designer.
There has been extensive research in the parallel comput-
ing community to automatically parallelize applications. By
means of inter-procedural analysis [9], symbolic analysis [8]



1. int a[32], b[16], c, d, x; 
2. …
3. //loop
4. for (i=0; i<16; i++) {
5. x = i *i;             //CAT(x) in this loop is WR
6. a[i]++;              //CAT(a) in this loop is RW
7. a[2i] = c+d;      //CAT(c,d)  in this loop is R
8. b[i] = c*d-x; }  //CAT(b)  in this loop is W

1. int a[32], b[16], c, d, x; 
2. …
3. //loop partition 1
4. for (i=0; i<4; i++) {
5. x = i *i; 
6. a[i]++; 
7. a[2i] = c+d; 
8. b[i] = c*d-x; }
10. //loop partition 2
11. for (i=4; i<8; i++) {
12. x = i *i; 
13. a[i]++;
14. a[2i] = c+d; 
15. b[i] = c*d-x; }

17. //loop partition 3
18. for (i=8; i<12; i++) {
19. x = i *i; 
20. a[i]++; 
21. a[2i] = c+d; 
22. b[i] = c*d-x; } 
24. //loop partition 4 
25. for (i=12; i<16; i++) {
26. x = i *i; 
27. a[i]++; 
28. a[2i] = c+d; 
29. b[i] = c*d-x; }

(a) Original loop

(b) Partitioned loops

Figure 1: Code changes resulting from loop splitting

and loop transformations, techniques to extract coarse-grained
parallelism have been proposed for shared memory multi-
processors [4, 9, 14]. Intel C compiler [1] for Pentium-3
and 4 implements the above techniques to extract thread-
level parallelism for shared memory architectures. In spite of
these advanced analysis capabilities, completely automatic
techniques have not been effective even for shared memory
architectures. Application knowledge becomes necessary to
parallelize many real-life applications. This has resulted in
OpenMP compilers [2], where the programmer sets OpenMP
directives to parallelize code. However, all analysis to en-
sure that a piece of code can be parallelized and resolution of
nasty dependencies must be performed by the programmer.
For distributed computer systems, on the other hand, the
programmer manually writes parallel code using a Message
Passing Interface (MPI) [5].

2. CONTROLLED TRANSFORMATIONS
In this section, we present 4 program transformations

that implement code and data partitioning to expose paral-
lelism in loops, and encapsulate communication using chan-
nels to add flexibility to the model. All transformations
are designer-controlled. Designer’s application knowledge is
used in each transformation step to resolve any dependencies
that are not handled by the automatic analysis.

2.1 Loop Splitting
Loop splitting is one of many well-known transformations

used in compiler optimization and parallelizing community
[12, 13]. Our loop splitting transformation creates differ-
ent incarnations of a loop with the same loop body in each
split iterating over different contiguous portions of the loop
index range. Depending on the trip count and the num-
ber of unrolls specified by the designer, the resulting par-
titions become loops with smaller trip count, or code seg-
ments with the induction variable completely replaced by
constants. Figure 1 shows an example loop with trip count
16 uniformly split into 4 loops each with a trip count of 4.
Non-uniform splitting would create splits with unequal in-
dex ranges.
Since the designer specifies the parameters of the loop for

the transformation, we can also handle loops that cannot
be parallelized by automatic compilers. For example, auto-
matic compilers can parallelize only loops whose loop bound-
aries and trip count can be determined statically. However,
in reference applications, it is common for a programmer to
use while structures instead of for structures for loops. while
loops can also be split if the loop parameters are known to
the designer.

2.2 Cumulative Access Type Analysis
This static analysis of a loop reveals scalar and vector

variables that are dependent between iterations of the loop.
Variables written in one iteration and read in another are
considered dependents. We classify cumulative accesses to
variables within the loop into 4 categories, Read(R), Write(W),
Write-Read(WR) and Read-Write(RW). Figure 1(a) shows
variables with 3 different cumulative access types (CATs).
Variables with access type RW are considered dependents.
Variables with WR access are not dependents between it-
erations as they are written first before being read in the
same iteration. Access to scalar dependents must be syn-
chronized between the partitions to ensure correct semantics
of the program after parallelization. Vector dependents are
further analyzed and, if possible, partitioned to avoid un-
necessary communication, as discussed in the next section.

2.3 Partitioning of Vector Dependents
If there are dependents between the loop partitions, then

it is not possible to have a communication-free parallelism.
This transformation splits vector dependents into contigu-
ous sections across different partitions. Communication free
partitioning is possible only if array references in different
loop partitions do not depend on the same array element.
This is a hard problem to solve in presence of sparse array
accesses such as A[B[i]]. However, the problem is simpler if
the array references are limited to affine expressions, which
often is the case in embedded source codes. [11] provides
techniques to partition an array in a loop across multiple
processors for message passing parallel machines when the
array references are of the form x + b, where x is the induc-
tion variable and b a constant. In our transformation, we
conduct analysis of general affine expression (mx+b), where
m and b are constants.
Inputs to our algorithm are vector V , main loop L, split
loops Lp where 0 ≤ p ≤ NP, where NP is the number of
loop partitions.

1. Check if the loop partitions access the same element of
vector (v). If m1x+b1 and m2x+b2 are two affine ref-
erences to vector v in a loop L with induction variable
x, iterating from start S to end E in increments of ∆x,
the condition to be satisfied for these two references to
be different in the entire iteration space is

m1x + b1 6= m2(x + k∆x) + b2

where, 1 ≤ k ≤ ((E−S +1)/∆x)−1 is the normalized
iteration number. We can simplify the equation to

((m1 − m2)x + b1 − b2)/(m2∆x) 6= k
∀k: 1 ≤ k ≤ ((E−S+1)/∆x)−1, ∀x: S ≤ x ≤ E. We
test this inequality for all pairs of index expressions.

2. If step 1 is true, compute the vector partition start
VPSp and end VPEp of v for each loop partition Lp
with index limits Sp and Ep. Given N different index
expressions (IE(x)) in the loop body, these limits are
the minimum and maximum values of all IE(x), re-



1. int a[32], b_part1[4], b_part2[4], 
b_part3[4], b_part4[4], c, d, x; 

2. …
3. //loop partition 1
4. for (i=0; i<4; i++) {
5. x = i *i; 
6. a[i]++;
7. a[2i] = c+d; 
8. b_part1[i] = c*d-x; }
10.//loop partition 2
11. for (i=4; i<8; i++) {
12. x = i *i; 
13. a[i]++;
14. a[2i] = c+d; 
15. b_part2 [i-4] = c*d-x; }

17.//loop partition 3
18. for (i=8; i<12; i++) {
19. x = i *i; 
20. a[i]++;
21. a[2i] = c+d; 
22. b_part3 [i-8] = c*d-x; } 
24.//loop partition 4 
25. for (i=12; i<16; i++) {
26. x = i *i; 
27. a[i]++; 
28. a[2i] = c+d; 
29. b_part4[i-12] = c*d-x; }

Figure 2: Code after partitioning vector b

spectively. That is, VPSp = min(IEφ
n) and VPEp =

max(IEψ
n ), where

IEφn = min(IEn(Sp), IEn(Ep)), ∀n : 1 ≤ n ≤ N

IEψn = max(IEn(Sp), IEn(Ep)), ∀n : 1 ≤ n ≤ N

3. If the vector portions computed for each loop partition
above are non-overlapping, (VPE p < VPSp+1, ∀p: 0 ≤

p ≤ NP−1), then for each loop partition, create sepa-
rate vector variables (Vp) with size VPEp−VPSp + 1.

4. Normalize the index expressions in each loop partition
to account for the smaller vector sizes. An index ex-
pression IEn(x) in loop partition p is replaced with
IEn(x)−VPSp.

5. Replace access to vector V in each loop partition Lp
with access to vector partition Vp with the normalized
index expression.

Figure 2 shows the loop partitions of Figure 1 after split-
ting the array b. Array a is unchanged as it cannot be split
without communication to the other partitions. For exam-
ple, the element 6 of array a is written in partition 1 and
read in loop partition 2. If the split vector is used by other
parts of the program, these partition details are remembered
and correct split and merge codes are generated. For space
limitations, this code generation not discussed in this paper.

2.4 Synchronization of Dependent Variables
To allow full parallelism, any scalar dependents in the

loop have to be manually resolved by the designer. If this is
not possible, the designer can choose to synchronize the ac-
cess to the scalar dependents using channels. Synchronizing
channels implement blocking send() and receive() commu-
nication. Figure 3 shows an example where the variable p,
dependent across the behaviors b0, b1, b2 is synchronized
using 3 channels. To synchronize a variable requires the cre-
ation of NP − 1 channels, where NP is the number of code
partitions. Following this, every read access is replaced by a
receive() call and every write access by a send() call to the
appropriate channel. This transformation, when applied to
each dependent variable, will result in a semantically correct
parallel specification.

3. SOURCE RECODER
We have integrated the transformations discussed in the

previous section into our source re-coder along with other
transformations, including re-scoping variables, creating be-
haviors and ports, etc. Source re-coder [3] is a controlled,

C0 C1

… … … ..
a = p
… … … ..
p++;
… … … ..

b0 b1 b2

… … … … … .
a =C0.recv( p)
… … … … … .
p++;
C1.send(p)
… … … … …

(a) Code before (b) Code in each behavior after synchronizing variable p

… … … … …
a =C1.recv( p)
… … … … …
p++;
… … … … ..
… … … … …

… … … ..
a = p
… … … ..
p++;
C0.send(p)
… … … ..

Figure 3: Synchronizing access to a scalar dependent

interactive approach to implement analysis and refinement
tasks for MPSoC specification. It is an intelligent union of
editor, compiler, and powerful transformation and analysis
tools. Our re-coder supports re-modeling of SLDL models
at all levels of abstraction. Analysis results of each transfor-
mation are kept in an abstract syntax tree and get carried to
subsequent transformations automatically. The transforma-
tions are performed and presented to the designer instantly
in the source code. The designer can also modify the code
by typing and these changes are applied on-the-fly to the
data structures, keeping it updated all the time.

4. EXPERIMENTS AND RESULTS
As discussed, the main advantage of giving control to

the designer is to enable parallelization of real-life embed-
ded source code which requires application-specific knowl-
edge. Thus, we can parallelize code that cannot be han-
dled by existing state-of-the-art parallelizing compilers. To
corroborate this claim, we will now show our experiments
with an industrial-strength design example, a MP3 audio
decoder. An abstract code portion of the sequential refer-
ence code [10] is shown in Figure 4(a). 2 loops implement-
ing Stereo+Imdct+Alias operations (Loop-A) and Synthesis
Filter (Loop-B) exist at different functional levels (indicated
by rectangular boxes). Each loop spans a few hundred lines
of code. In the MP3 decoder, the processing of the left and
right channels of a stereo MP3 stream are independent of
each other. However, this is not apparent in the reference
code. We tried parallelizing the C code using the Intel C
compiler [1], one of the few compilers that can detect coarse-
grained parallelism on a shared memory platform. The com-
piler only detected 5 small loops implementing array copy
and initialization, each spanning 1 to 4 lines of code. The
computation in these loop was less than 2% of the over-
all computation in the application. The loops with hidden
parallelism in Figure 4 could not be parallelized due to a
function call within the loop, false dependencies, and due to
unknown trip count of the loops.
The main array variables of interest, sbsample, filter, pcm,
and their I/O relation with respect to Loop-A and Loop-B
is shown in Figure 4. Since the synthesis filter accounts for
most of the computation, we decided to parallelize Loop-
B. Splitting Loop-B also requires splitting filter and pcm
vectors so that they can be made private to each code par-
tition. Since sbsample is also accessed in Loop-A, splitting
it requires generation of split data structures (copying of
data from sbsample to sbsample1, sbsample2 ) at the end of
Loop-A. Since Loop-A and Loop-B had identical parame-
ters (start, end, iterations) and accessed sbsample using the
same references, copying of data was easily avoided by split-
ting both loops. Using the transformations available in our
source recoder, we quickly arrived at the parallel code shown
in Figure 4(b), after 6 easy transformations:

• Split Loop-B into 2 parts



sbsample[2][36][32];  

2

2

O/P: sbsample

I/P: sbsample

(a) Sequential MP3 code structure

Stereo + 
Imdct + 
Alias

Synthesis 
Filter loop

Filter[2][2][2][16][8]
pcm[2][1152]

Local: Filter, pcm

sbsample1[36][32];  
sbsample2[36][32];

1

Filter1[2][2][16][8]
pcm1[1152]

1

Filter2[2][2][16][8]
pcm2[1152]

(b) Parallel MP3 code structure

Synthesis 
Filter loop 
Partition-1

Synthesis 
Filter loop 
Partition-2

1
Stereo + 
Imdct + 
Alias 
Partition-1

1Stereo + 
Imdct + 
Alias 
Partition-2

Loop-A

Loop-B

O/P: sbsample1, sbsample2 

I/P: sbsample1 I/P: sbsample2

Figure 4: MP3 code structure

• Find scalar, vector dependents using CAT analysis
• Split vector dependents filter, pcm at first dimension
• Localize filter1, filter2 and pcm1, pcm2 to Loop-B
• Split Loop-A into 2 parts
• Split sbsample into 2 parts at first dimension

Having these transformations automated, we arrived at the
partitioned model in minutes (which otherwise would take
hours). Since there were no scalar dependents between the
two partitions, we need no communication between the new
partitions of the loop. With just the model in Figure 4,
we could explore 2 design alternatives. Because now such
a model can be generated quickly, we could partition other
loops in the program to create a flexible model with more
partitions enabling larger design space explorations.
Besides the MP3 example, we used our recoder to parallelize
and partition other practical applications. Table 1 shows de-
tails of the transformations performed that could not be par-
allelized by [1]. Table 1 lists the number of loops and vectors
that were affected by different transformations. The other
operations mainly include variable re-scoping and localiza-
tion. The automated recoding time is the time it takes to
parallelize using the source recoder, and manual time is the
estimated time to implement the same manually. In spite
of not being completely automatic, this controlled approach
results in a productivity gain in the order of 100.

5. CONCLUSIONS
Concurrency and flexibility are critical features of an MP-

SoC specification. Concurrency is necessary to exploit the
parallel resources available on the MPSoC. Flexibility is nec-
essary for freedom in design space exploration. The hetero-
geneous nature of MPSoCs and the complexities posed by
unstructured input applications severely limit today’s au-
tomatic compilers in generating parallel MPSoC code from
a sequential monolithic application. Completely automatic
compilers, though successful in extracting instruction level
parallelism, do not offer much help in exposing task-level
parallelism. This requires application-specific knowledge.
In this paper, we proposed a designer-controlled approach to
create a parallel and flexible MPSoC specification model in a
system level language. We developed a set of code and data
partitioning transformations that can split loops and vector
variables to expose concurrency. Our interactive source re-
coder integrates our transformations and inter-procedural

Table 1: Example productivity gains
Properties JPEG Fix-Point MP3 Floating-Point MP3

Loops split 1 2 2
Vectors split 1 4 2

Other operations 2 9 6
Automatic Re-coding time ≈2 mins ≈4 mins ≈3 mins

Estimated manual time 85 mins 360 mins 340 mins

Productivity factor 42 90 113

analysis functions in a text-based editor to assist the de-
signer in modeling and re-modeling of an input specifica-
tion. It can be employed on C and C-based SLDLs, in-
cluding SpecC and SystemC, to automatically perform code
transformations. In this designer-controlled environment,
the automated transformations can be applied to the pro-
gram quickly and efficiently, to generate a specification that
is most suitable for the application on the MPSoC platform.
Limitations of existing parallelizing compilers are overcome
by the designer-in-the-loop. Our experiments on real-life
examples show significant productivity gains, and prove the
effectiveness of our approach.
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