
Pointer Re-coding for Creating Definitive MPSoC Models

Pramod Chandraiah
Center for Embedded Computer Systems

University of California, Irvine
pramodc@uci.edu

Rainer Dömer
Center for Embedded Computer Systems

University of California, Irvine
doemer@uci.edu

ABSTRACT
Today’s MPSoC synthesis and exploration design flows start
from an abstract input specification model captured in a
system level design language. Usually this model is created
from a C reference code by encapsulating the computation
and the communication using behaviors and channels. How-
ever, often pointers in the reference code hamper the neces-
sary analysis and transformations. In this paper, we present
an automated approach to re-code and eliminate pointers.
By re-coding the pointer accesses to the actual variables,
MPSoC models with definitive computational blocks that
communicate using explicit channels become possible. Our
pointer re-coding approach not only increases synthesizeabil-
ity, analyzeability and verifiability by system tools, but also
helps the designer in program comprehension. Our experi-
ments show that this approach is not only feasible, but also
effective in creating better models of real-life applications in
shorter time.

Categories and Subject Descriptors
D.1.2 [Programming Techniques]: Automatic Program-
ming

General Terms
Algorithms, Design, Languages

Keywords
MPSoC, Pointers, Re-coding, System Specification

1. INTRODUCTION
The initial abstract model required by System-on-Chip

(SoC) design flows is an executable specification of the de-
sign, and often known as specification model [6] or Trans-
action Level Model (TLM) [7]. This model is typically cap-
tured in a System Level Design Language (SLDL), and its
quality directly determines the effectiveness of the ensuing
synthesis tools and the overall design implementation. Qual-
ity characteristics are stipulated by the underlying design
flow and the individual tools through specification rules,
guidelines and restrictions. Consequently, the system de-
signer invests significant amount of design time in creating
this input model.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’07, September 30–October 3, 2007, Salzburg, Austria.
Copyright 2007 ACM 978-1-59593-824-4/07/0009 ...$5.00.

Today, C reference code obtained from standardizing com-
mittees and open-source projects is widely reused in creating
this initial specification. Despite this reuse, the creation of
the model takes a large amount of time. Re-coding of a
C reference code into a MPSoC model in SLDLs such as
SpecC [6] and SystemC [9] involves more than just syntacti-
cal changes. Separation of computation and communication,
exposing parallelism, and other tool-specific optimizations
are some of the necessary and time-consuming tasks per-
formed. Re-coding a sequential reference C model into an
effective and flexible MPSoC specification poses numerous
challenges.
In this paper, we specifically address the problems posed by
C pointers. We show how these pointers can be re-coded to
create a specification model that is much easier to compre-
hend for the designer and more suitable for the system syn-
thesis tools. We have integrated the necessary pointer anal-
ysis and the code transformations into an interactive SoC
specification re-coder. Our results show that our pointer re-
coding approach is effective and often eliminates ambiguity
created by pointers. This helps significantly in creating a
completely contained, definitive specification model suitable
for design and exploration.

1.1 Motivation
Pointers in a C reference model affect system design mainly

in two ways. First, for the designer who is creating the speci-
fication model from an alien C model, pointer indirection ob-
scures the variable access information and impairs program
comprehension. Secondly, pointers severely limit the effec-
tiveness of system design tools. Pointers make the model
less analyzable and hence negatively affect the synthesize-
ability and verifiability of the system. Many tools expect
models without pointers as it significantly simplifies the de-
sign of the tools. When the input models do not meet these
requirements, depending on the tool, the designer gets a
warning, ineffective solution or even a wrong solution. For
instance, many High-Level Synthesis (HLS) tools, including
SPARK [10, 16], require the input to be free of pointers.
Many system design tools expect an unambiguous and stat-
ically analyzable TLM specification. Since often C reference
models are re-coded into TLM models, any pointer in the
TLM poses problems to the synthesis and refinement tools
by hindering code and data partitioning tasks. This neces-
sitates the designer to manually eliminate pointers which is
time-consuming and error-prone.

2. PREREQUISITE: POINTER ANALYSIS
Before performing pointer re-coding, the variable to which

a pointer binds needs to be determined. Historically this
problem is known as pointer analysis. The pointer analysis

subject is being pursued for the last two decades. Tradition-
ally, it is used by compilers to address data analysis prob-
lems like constant propagation and live variables which are
needed for program analysis, program optimizations and er-
ror detection. Besides these, pointers pose more challenges
when programs meant for single-core single-memory archi-
tectures are used for creating system models of multi-core
multi-memory platforms. In general, precise pointer analy-
sis is undecidable [12, 15, 11] (a precise solution could solve
halting problem), and existing algorithms trade-off between
run-time efficiency and precision. In the next section, we
briefly review different works in this area and then describe
our pointer binding approach which is needed for our recod-
ing. Please note that we are not proposing a new pointer
analysis algorithm here. Pointer analysis is just a prerequi-
site to our pointer recoder.

2.1 Related Work
The general problem of pointer analysis can be divided

into two parts, Points-To and Alias analysis. Points-to
analysis attempts to statically determine the memory lo-
cations a pointer can point to. On the other hand, alias
analysis attempts to determine if two pointer expressions
could point to the same memory location. In the context
of pointer re-coding, we are primarily interested in points-to
analysis. The research in this area over the last two decades
is summarized very well in [11]. Different pointer analysis
algorithms differ in the precision of the analysis, efficiency
of the algorithm, and scalability. Broadly, these algorithms
can be classified based on two independent aspects, flow sen-
sitivity and context sensitivity. Flow-insensitive algorithms
[17, 20, 1] do not consider the control flow of the program
and hence are faster than flow-sensitive algorithms [3], that
can potentially offer more precise results. Flow-insensitive
analysis can again be broadly differentiated as unification -
based [17] or inclusion-based [1], the former being faster but
less precise. The accuracy of such algorithms can be im-
proved by adding context-sensitivity. A context-sensitive
algorithm [19, 4] considers the effect of calling functions
on the callee functions, and vice-versa. On the contrary,
a context-insensitive algorithm is conservative and assumes
that a callee affects all callers. Besides these two aspects,
algorithms differ depending on whether composite data is
considered as one object, or individual multiple objects.
Further, high precision analysis of dynamically instantiated
data structures requires shape analysis techniques [8].
Though the problem of pointer analysis has been widely ad-
dressed by the compiler community, the problem of pointer
recoding has not been addressed. For sequential compilers,
explicit pointer recoding might make little sense. However,
pointer recoding becomes critical for MPSoC design, where
the sequential specification has to be split and mapped onto
multiple processors and multiple memories. The pointers
need to be explicitly recoded in the specification so that the
individual tools, which are otherwise not capable of handling
pointers, can compile/synthesize/analyze/refine the input
models.

2.2 Our Pointer Analysis
In its concluding note, [11] correctly remarks that pointer

analysis must be tailored to meet the accuracy, efficiency
and scalability requirements of the client applications. Since
our pointer re-coder is interactive (for reasons stated in Sec-

(a) Code with pointers

p1 → x

p2 → v1, v2

p3 → ab

p4 → a

p5 → ab

p6 → p4 → a

(b) Points-to list

1. int a[50], ab[50][16];
2. int v1, v2, x, y;
3. int *p1,*p2, *p3, *p4, (*p5)[16], p6;

4. p1 = &x;
5. *p1 = y+1;
6. if(condition) p2 = &v1;
7. else p2 = &v2;
8. *p2 = 5;
9. p3 = &ab[40][10];
10. *p3 = 100;
11. p4 = a;
12. p4++;
13. *p4++ = 1;
14. p5 = &ab[5];
15. p6 = p4+v1;

Figure 1: Points-to list generated by pointer analysis

tion 4), run-time efficiency and scalability are an important
concern. So for our re-coder, we choose a flow-insensitive
and context-insensitive points-to analysis. Specifically, we
chose Andersen’s algorithm which is inclusion-based [1] over
unification-based algorithm [17] as the former gave more pre-
cision to our needs than the later. This algorithm offers rea-
sonable precision and performance suitable for our pointer
recoder. Unlike Andersen’s approach, we have our algorithm
implemented on an Abstract Syntax Tree (AST) representa-
tion of the SoC model (similar to the approach taken by [2]
for source to source transformations). Our points-to analy-
sis determines the set of variables a pointer could point to
in its life time. A points-to list generated by our analysis
is shown in Figure 1. The algorithm assumes that after in-
crementing a pointer in an array, the pointer still points to
the same array. For instance, pointer p4 points only to a
despite being incremented1. Depending on the program, the
points-to list of a pointer can contain one or more variables.
In Figure 1, all pointers except p2 bind to one variable.
Our re-coding is performed after all pointers are analyzed
and bound to their variables. We perform re-coding only
on the pointers which bind to exactly one variable. If there
is a possibility that a pointer could point to more than one
variable (for example p2), then pointer re-coding is not per-
formed. Such pointers are brought to the designer’s atten-
tion and the decision is left to the designer to resolve this
issue. The designer can use his application knowledge and
provide accurate binding information to facilitate re-coding.

2.3 Abstract Syntax Tree
Our pointer analysis and re-coding are performed on the

Abstract Syntax Tree (AST) representation of the program.
The AST is generated from the input program of the design
and captures the complete structure of the program. The
AST preserves all structural information including, blocks,
functions, channels, ports, statements, expressions, and so
on. Figure 2(a) illustrates the amount of information stored
in the AST. This data structure is necessary in order to
reproduce the program back in its original form. Code gen-
erator pays special attention for code formatting, so that
we can recreate the same program. Figure 2(b) shows the
structure of the AST for a simple code snippet. Our pri-
mary pointer re-coding algorithm works at the statement
and expression level of this data structure.

1Only in erroneous/non-portable programs, arithmetic on
pointers can make a pointer point to different variables.

Design

Blocks

Symbol Table

Type Table

Interfaces

Variables

Functions

Ports

Implemented
interfaces
Block
instances
Channel
instances
Variables
Functions

Arguments

Variables

Statements

Expressions

Expression

Constant

Event

Exceptions

Constraints…

…

… …

…

if (x>0)
{
y++;
x=x+y;

}
else
{

x= x-y;
}

Statement: IF

Conditional Expression

Then-Statement

Else-Statement

>
x 0

Statement:
Expressions

+

Statement:
Expressions

x y

++
y

Code Snippet

=
x

-
x y

=
x

(b) AST representation of the code segment

(a) Objects in Abstract Syntax Tree (AST)

•
•

•

Figure 2: Overview of Abstract Syntax Tree (AST)

3. POINTER RE-CODING
Pointers are problematic because they implement multiple

concepts. A programmer can use a pointer as a value, alias,
address, or an offset. It is a value when the absolute value
of the pointer is used, it is an alias when it points to more
than one variable in its life time, an address when it is simply
dereferenced, and an offset when the pointer points into an
array and is manipulated using pointer arithmetic. Pointer
recoding can be performed automatically in the latter two
cases, that is when the pointer is not aliased or used as an
absolute value. Re-coding involves replacing the indirect
access to a variable through a pointer with direct access to
the variable. Before presenting our algorithm, we outline
our general approach to replace pointers:

• A pointer access to a scalar variable is replaced with
the actual scalar. In Figure 3, this re-coding applies
to variable x accessed through pointer p1. Re-coding
mainly affects the dereferencing operation of p1 as
shown in lines 4-5. The pointer initialization in line
4 is deleted as it is no longer necessary.

• For every pointer into an array, an integer is created
which acts as index into the array. Then, a pointer
access to vector variables is replaced with the array
access operator (’[]’) using the actual vector variable
and the newly created index variable. In Figure 3,
this recoding applies to array variables a and ab. The
newly created integers, ip3, ip4, ip5 and ip6 are used
as indices. Arithmetic operations on pointers are re-
placed with arithmetic on the index variables, as shown
in lines 12, 13 and 15 in Figure 3. Pointer initialization
is replaced with initialization of the associated index
variable with an offset expression (lines 9, 11, 14). We
explain later how the offset expression is determined.

Note that, replacing pointer access with array access expres-
sion, though at source-level appear to create computation
overheads, often are compiled away.

3.1 Pointer Expressions
The algorithm to re-code pointers must handle all expres-

sion types and take care of various coding scenarios. Given

1. int a[50], ab[50][16];
2. int v1, v2, x, y;
3. int *p1,*p2, *p3, *p4, (*p5)[16], p6;

4. p1 = &x;
5. *p1 = y+1;
6. if(condition) p2 = &v1;
7. else p2 = &v2;
8. *p2 = 5;
9. p3 = &ab[40][10];
10. *p3 = 100;
11. p4 = a;
12. p4++;
13. *p4++ = 1;
14. p5 = &ab[5];
15. p6 = p4+v1;

1. int a[50], ab[50][16];
2. int v1, v2, x, y;
3. int ip3, ip4, ip5, ip6;

4. //Nothing here
5. x =y+1;
6. if(condition) p2 = &v1;
7. else p2 = &v2;
8. *p2 = 5;
9. ip3 =10;
10. ab[40][ip3] = 100;
11. ip4 = 0;
12. ip4++;
13. a[ip4++] = 1;
14. ip5 = 5;
15. ip6 = ip4+v1;

(a) Code with pointers (b) Code with p1, p3, p4, p5, p6 substituted

Figure 3: Pointer recoding example

a pointer and its type, our algorithm recursively traverses
through the AST in a depth-first manner, searching for the
specified pointer. Since each node in the AST has only local
information, upon traversal, the node returns all possible
results to the node above. The nodes above, which have a
better global picture, choose the appropriate result from the
results returned by the child nodes. Upon traversing a node,
the recursive recoding function returns a tuple of 4 elements
(e1, e2, e3, e4). e1 contains the unmodified original expres-
sion. e2 contains the expression of the index variable (if
the expression processed was a pointer), or an offset expres-
sion (if the expression processed was a regular variable). If
the expression processed is a pointer, e3 contains the target
symbol to which the pointer is bound to. e4 is a boolean
indicating if there was a positive pointer match.
We will now walk through the procedure to recode differ-
ent pointer expressions. Figure 4 shows the way the algo-
rithm operates on the AST when it is invoked to recode the
pointer P for important pointer usages. The 4-element tuple
returned by a node traversal is shown in the curly brackets.
In the example, we assume that P points to either one of 4
variables, scalar a, 1-d vector b, 2-d vector c, or a pointer Q.
At the time of recoding, the pointer binding is already per-
formed and the only variable the pointer points-to is shown
at the bottom of each example in Figure 4.
Pointer initialization to an array is shown in Figure 4(a).
Our recursive recoder starts from the assignment (’=’) node
and reaches the identifier node P. Since P is the pointer to
be recoded, along with the original identifier (P), the index
variable associated with the pointer (iP), the target variable
the pointer binds to (b), and a boolean asserting the pointer
match (True) are returned. Next, the other child node b is
reached. Three elements, the original identifier expression
b, an integer offset of 0 (instead of an index variable, since
b is not a pointer) and a false boolean are returned. After
returning to the assignment node, the pointer assignment is
replaced with a new assignment expression formed using the
index variable iP and the offset expression 0. In all exam-
ples, when the assignment (=) node receives one or all the 3
results (e1, e2, e3) an appropriate choice is made depending
on the node type and e4. When e4 is false e1 is chosen. If
e4 is true then the node type is used to decide between e2
and e3. If the node type is a pointer, e2 is chosen over e3.
Recoding pointer initialization to a scalar variable is shown
in Figure 4(b). The pointer assignment expression is com-
pletely removed as the index assignment makes sense only
for arrays. The necessary binding information (P→a) is re-
membered by the recoder.

P = b

=

P b

{b, 0, --, F}{P, iP, b, T}

iP = 0

(a) Pointer Initialization to Array (P →→→→b)

P = Q

=

P Q

{Q, iQ, b, F}{P, iP, Q, T}

iP = iQ

(c) Pointer Assignment (P→→→→Q→→→→b)

P += 4

+=

P 4

{4, --, --, F}{P, iP, b, T}

iP += 4

(d) Pointer Arithmetic (P→→→→b)

P ++

++

P

{P, iP, b, T}

iP ++

(e) Pointer Increment/Decrement (P→→→→b)

{P++, iP++, b, T}

a=*P

=

a *

P {P, iP, b, T}

{--, --,b[iP], T}{a, 0, --, F}

a = b[iP]

(g) Pointer Dereferencing for Vectors
(P →→→→b)

P = &c[3][15]

=

P &

c

{c[3], 3, --, F}

{&c[3][15], 15, --, F}{P, iP, c, T}

iP = 15

15

{15, --, --, --}

{c[3][15], 15, --, F}

[]

3
{c, 0, --, F} {3, --, --, --}

(i) Pointer Initialization to 2-d Array
(P →→→→c)

[]

x=**P

=

x *

P {P, --, Q, T}

x = a

{x, 0, --, F}

*
{Q, --, a, T}

(h) Dereferencing Pointer to Pointer
(P →→→→Q →→→→a)

{--, --, a, T}

x=*P

=

x *

P
{P, --, a, T}

{--, --, a, T}{x, 0, --, F}

x = a

(f) Pointer Dereferencing for Scalars (P→→→→a)

P = &a

=

P &

a
{a, 0, --, F}

{P,--, a, T}

(b) Pointer Initialization to Scalar (P→→→→a)

{&a, 0, --, F}

Figure 4: Recoding process for different expression types of a pointer P

Pointer assignment in Figure 4(c) is similarly replaced with
an assignment expression of the indices of the two pointers
(iP, iQ). Pointer arithmetic shown in Figure 4(d,e) is simi-
larly replaced with arithmetic of pointer indices.
While recoding pointer dereferencing expressions, 3 main
scenarios need to be addressed (Figure 4(f,g,h)) depending
on the type of the target variable the pointer points to. If the
target is a scalar, the dereferencing node will return just the
target scalar ({–, –, a, T}) as in Figure 4(f). If the target is
an array, an array access expression (b[ip]), formed using the
target array and the index variable of the pointer, is used as
the replacement expression, as shown in Figure 4(g).

If the target variable is another pointer, all 4 elements, the
target pointer, the index variable of the target pointer, the
variable pointed to by the target pointer and the matching
flag ({Q,–,a,T}) are returned, as shown in Figure 4(h). The
offset expression generated while initializing the pointer to
the beginning of an array is simply 0. However, initializing
a 1-D pointer to a specific element in a multi-dimensional
array (as shown in Figure 4(i)), generates an offset expres-
sion based on the assumption that the pointer is used to
access elements only within that dimension. This offset is
propagated upwards through the AST, as shown by dotted
arrows in Figure 4(i), and is used to create the index variable
initialization. When the information at the node is limited,
as in case of expressions ++, +,−, /, ∗, &, ‖ . . . , no decision
is made about choosing the correct result. Under such cir-
cumstances, all the 4 results returned by individual child
nodes are combined using the operation type of the current
expression, as shown for P++ in Figure 4(e), and passed to
the parent node.

3.2 Pointer to Multi-dimensional Array
Recoding a pointer to a multi-dimensional array requires

more attention. When a 1-dimensional pointer is used to ac-
cess a multi-dimensional array, properly replacing the point-

ers with the actual array variable requires separate index
variables for each dimension. However, this would result in
additional overhead, because initialization and arithmetic
on pointers will be translated into multiple initializations
and arithmetic operations involving each index variable. To
avoid this, we associate only one index variable with the
pointer, based on the assumption that the pointer is used
to point to only the elements across one dimension2. For
example, the pointer P in Figure 4(i), is assumed to point
only to 20 elements in row 3 of the array c. Thus, the index
variable iP can only range from 0-19. More specifically, P
is bound to sub-array c[3] and is used to replace any deref-
erence expression of P. Figure 3 shows such a recoding for
pointer p3.

3.3 Pointer Dependents
If it is determined that two pointers are dependent on

each other, then recoding one of them requires recoding the
other. For instance, if we are recoding pointer P and P
depends on Q (as in expression P = Q+4), then this requires
recoding Q along with P . A preparation stage identifies such
dependent pointers and creates a list. The original pointer
and these dependent pointers are then iteratively recoded as
in Listing 1.

Listing 1: Algorithm: Main pointer recoder
MainRecodePointer (Ptr , Type) {

While (Ptr)
a s s e r t (Po interBindsToSing leVar iab le (Ptr))
Recurs ivePointerRecoder (Ptr , Type)
Ptr = GetNextDependentPointer (Ptr)

}

2Please note that this is a safe assumption for proper ANSI-
C code, even if pointer arithmetic is used that crosses from
one dimension to the next.

1. int A, B, *P, *Q;
2. char* R;
3. void* S;
4. P = (int*) malloc(10*sizeofint())
5. if (P) // P cannot be recoded
6. { // Code …}
7. Q = &A;
8. *Q = 1;
9. Q++; //Q cannot be recoded. It points to a scalar and is being incremented
10.R = (char*) (&B) //R cannot be recoded. A char* points to an Integer
11.*R = 0; R++; *R=0;
12.S = (int*)(&B) //S cannot be recoded. A void* points to an Integer

Figure 5: Pointers that cannot be recoded.

3.4 Pointer as Function Arguments
Pointers that appear as function arguments also need re-

coding. A pointer argument is replaced with the target vari-
able and the index variable of the pointer. A dereferencing
pointer argument is replaced with just the variable it points
to. Besides recoding the arguments, the corresponding func-
tion parameter must also be recoded to change the function
signature. This recoding is scheduled and is recoded later
along with the other dependent pointers.
Note that by replacing the pointer arguments with actual
variables, a call-by-reference is changed to a call-by value.
Hence immediately after this recoding, the program, though
syntactically correct, semantically is not the same anymore.
However, this is just an intermediate step. By converting
these functions to modules/behaviors and parameters into
ports, the proper semantics will be restored as the ports con-
tain direction information (in, out, inout). Transformations
to create behaviors and ports is outside the scope of this
paper.

3.5 Restrictions
Though most practical pointer usages can be recoded by

our approach, there are some limitations. We cannot recode
pointers under circumstances as listed in Figure 5.

• Our recoder is meant only for pointers to static or stack
variables, not for dynamically allocated memory.

• It is not possible to recode pointers whose values are
being read for absolute use, for example P in Figure 5
which is read in line 5.

• It is not possible to recode pointer to scalars, if an
arithmetic operation on the pointer is performed. Pointer
Q in Figure 5 shows this case. Note that such opera-
tions are not ANSI-C compliant.

• Operations involving different pointer types are not
recoded. For example, pointer R, a character pointer
and S, a void pointer, are being used to point to an
integer.

Despite these restrictions, we find it possible to recode the
large majority of coding scenarios in practical sources. Most
often pointers are used in the C model for the sake of con-
venience. Such pointers can be recoded.

4. INTERACTIVE SOURCE RECODER
Though some pointers can be recoded fully automatically,

some of the design decisions can only be made by the de-
signer. For instance, since the underlying pointer analysis
algorithm is not precise in all situations, it may not be possi-
ble to automatically recode all pointers. Designer attention
becomes necessary to resolve some of the ambiguity due to
pointers. Besides the limitations in the pointer analysis al-
gorithms, some occasional pointer usage scenarios described

in Section 3.5 are difficult to be recoded. Ideally, the de-
signer would want to recode only the pointers that inter-
fere in creating a specific model. The designer also wants
to have flexibility on the program scope over which the re-
coding is performed. Recoding all the pointers in the pro-
gram will also negatively affect the original readability of the
program. Moreover, since this pointer recoding is used in
the context of MPSoC specification generation, the designer
would want to generate a model most suitable for her/his
design flow and underlying architecture. Meeting these re-
quirements necessitates a designer-controlled environment,
where the designer can make the design decisions and au-
tomation is available to perform the tedious recoding. To aid
the designer in coding and re-coding, we have integrated our
pointer recoding into a source re-coder. The source re-coder
is a controlled, interactive approach to implement analysis
and recoding tasks. It is an intelligent union of editor, com-
piler, and powerful transformation and analysis tools. The
re-coder supports re-modeling of C-based SLDL models at
all levels of abstraction. It consists of 5 main components:

• Textual editor maintaining textual document object
• Abstract Syntax Tree (AST) of the design model
• Preprocessor and Parser to convert the document ob-

ject into AST
• Transformation and analysis tool set
• Code generator to apply changes

With our setup the designer binds all pointers with a single
click of a button, following which she/he invokes the pointer
recoder on individual pointers. The source code transfor-
mations are performed and presented to the designer in-
stantly. The designer uses his application knowledge to re-
solve any unresolvable pointer ambiguities interactively. The
designer can also make changes to the code by typing and
these changes are applied to the AST on-the-fly, keeping it
updated all the time. This intelligent mix of application
knowledge and the automation of the recoding makes our
pointer recoder very effective.

5. EXPERIMENTS AND RESULTS
The main advantage of recoding pointers is to enhance

program comprehension for the designer and to make the
model conducive for tools with limited or no capability to
handle pointers. Our interactive source recoder makes pointer
recoding feasible and enables it to be useful on real-life em-
bedded source codes. To show this, we obtained the openly
available embedded benchmarks listed in Table 1. For each
example, the table lists the number of pointers that we could
recode. Since operations, such as file I/O, typically become
part of the testbench, we examined the above examples in
the context of the kernel functions listed. Some of the point-
ers required user intervention. For example, in case of FFT,
all the 4 pointers were being used as value and could not be
recoded (as explained in Section 3.5). Overall, our pointer
recoder was effective in recoding 83% of the pointers in the
listed examples.

To demonstrate the productivity gains, we applied the
source recoder on industrial strength design examples, such
as a MP3 audio decoder and a GSM vocoder, each spanning,
thousands of lines of code. From these C codes we created a
specification model in SLDL suitable for design exploration
and synthesis using a top-down system synthesis tool-set.
The number of behaviors in the resulting specification mod-
els are given in Table 2. The design tools performed explo-

Table 1: Pointer re-coding on different benchmarks
Example Applicable functions Re-coded pointers

adpcm [13] adpcm coder(), adpcm decoder() 6/6
FFT [13] fft float() 0/4
sha [13] sha transform() 1/1

blowfish [13] BF encrypt(), BF cfb64 encrypt()
BF cbc encrypt() 10/10

susan [13] susan corners(), susan principle()
susan edge() 13/17

Float-MP3 decoder [14] decodeMP3() 14/16
Fix-MP3 decoder [5] III decode(), synth full() 22/23

GSM Across the program 17/17

Table 2: Productivity factor
Quantities GSM Fix-Point MP3 Floating-Point MP3

Lines of C code 13K 8.7K 3.6K
Functions in C Model 163 67 30

Behaviors in Spec. Model 70 54 43
Interfering pointers 17 23 16
Pointers recoded 17 22 14

Automatic Re-coding time ≈ 1.5 min ≈ 1.5 min ≈ 1 min
Estimated Manual time 170 mins 220 mins 140 mins

Productivity factor 113 146 140

ration by mapping code and data partitions in the model to
different processors and memories. This required that the
input model is free of pointers which otherwise would neg-
atively interfere in partitioning code and data. As shown
in Table 2, in case of floating-point MP3 code, there were
totally 16 pointers that interfered in creating the unambigu-
ous specification. Out of 16, 14 could be recoded using our
pointer re-coder. Two pointers could not be recoded be-
cause of two limitations (mentioned in Section 3.5), (a) the
absolute value of the pointer was being read, (b) the pointer
could point to more than 1 variable at run-time.
Using our source recoder, the pointers were eliminated in a
matter of minutes. This automatic re-coding time is shown
in Table 2. In the absence of our pointer recoder, designer
performs this step manually. To obtain the manual time,
we first manually recoded different pointers in different ex-
amples using Vim [18], an advanced text editor with block
editing capability, and arrived at a mean-time of 10 manual
minutes per pointer. The estimated manual time shown in
Table 2 is obtained using this average time. Clearly, using
our source recoder to recode pointers results in productivity
gains3 in the order of hundreds.

6. CONCLUSIONS
Due to the large availability of C reference models, the

design of today’s embedded systems often starts from a C-
reference code typically obtained from open-source projects
and standardizing committees. These C models are reused
to create a system model in the desired system level design
language. Though this code reuse speeds up the design pro-
cess, it poses numerous challenges. Presence of pointers in
the input C models is one such issue. The ambiguity intro-
duced by the use of pointers in the C model presents prob-
lems to the exploration and synthesis design flows. Most
of today’s synthesis and verification tools are not designed
to handle pointers, as their primary goal is to address other
challenging tasks. These tools either cannot handle pointers,
or result in inefficient solutions in presence of pointers. To

3In general, measuring productivity is a difficult task. Fac-
tors such as designer’s experience and tools used must be
considered for accurate measurement of productivity gains.
Since our improvements show multiple orders of magnitudes,
small adjustments to measurement accuracy will not make
any significant difference.

overcome this limitation in the tools, designers invest signif-
icant time and effort to create definitive unambiguous input
models by recoding pointers.
In this paper, we proposed pointer recoding that can replace
the pointers in the input models with actual variables. Re-
solving pointer ambiguity is a hard problem and a complete
solution in general is not available. Hence, to be effective
on real life examples, the pointer recoder needs to be in-
teractive. By making our pointer recoder available in the
form of an intelligent editor, the designer can selectively re-
code selected pointers in the desired scope and realize the
code transformations on-the-fly. Pointers, that cannot be
analyzed, can be manually resolved through the editor. Be-
cause of this interactive nature of our recoder, the recoder
is very effective on real-life design examples.
We have shown the effectiveness of our recoder in recoding
pointers in embedded examples and the resulting produc-
tivity gain in the order of hundreds. Existing tool chains,
which have limited or no capability to handle models with
pointers, will immensely benefit from our pointer recoder.

7. REFERENCES
[1] L. O. Andersen. Program Analysis and Specialization for

the C Programming Language. PhD thesis, DIKU,
University of Copenhagen, May 1994.

[2] M. Buss, S. A. Edwards, B. Yao, and D. Waddington.
Pointer analysis for source-to-source transformations. In
SCAM, 2005.

[3] J.-D. Choi, M. Burke, and P. Carini. Efficient flow-sensitive
interprocedural computation of pointer-induced aliases and
side effects. In POPL, 1993.

[4] M. Fahndrich, J. Rehof, and M. Das. Scalable
context-sensitive flow analysis using instantiation
constraints. In PLDI, 2000.

[5] MAD fix point mp3 algorithm implementation.
http://sourceforge.net/projects/mad/.

[6] D. D. Gajski et al. SpecC: Specification Language and
Design Methodology. Kluwer Academic Publishers, 2000.

[7] F. Ghenassia. Transaction-Level Modeling with SystemC :
TLM Concepts and Applications for Embedded Systems.
Springer-Verlag, 2006.

[8] R. Ghiya and L. J. Hendren. Connection analysis: A
practical interprocedural heap analysis for c. In Languages
and Compilers for Parallel Computing, 1995.

[9] T. Grötker, S. Liao, G. Martin, and S. Swan. System
Design with SystemC. Kluwer Academic Publishers, 2002.

[10] S. Gupta et al. Coordinated parallelizing compiler
optimizations and high-level synthesis. ACM Trans. Des.
Autom. Electron. Syst., 2004.

[11] M. Hind. Pointer analysis: Haven’t we solved this problem
yet? In PASTE, 2001.

[12] W. Landi. Undecidability of static analysis. ACM Lett.
Program. Lang. Syst., 1(4), 1992.

[13] MiBench, A free, commercially representative embedded
benchmark suite. http://www.eecs.umich.edu/mibench/.

[14] MPG123.
http://www.mpg123.de/mpg123/mpg123-0.59r.tar.gz.

[15] G. Ramalingam. The undecidability of aliasing. ACM
Trans. Program. Lang. Syst., 16(5), 1994.

[16] Restrictions on Input ”C” Code for SPARK.
http://mesl.ucsd.edu/spark/download/docs/featureList.html.

[17] B. Steensgaard. Points-to analysis in almost linear time. In
POPL, 1996.

[18] Vim, advanced text editor. http://www.vim.org/index.php.

[19] R. P. Wilson and M. S. Lam. Efficient context-sensitive
pointer analysis for c programs. In SIGPLAN PLDI, 1995.

[20] S. Zhang et al. Program decomposition for pointer aliasing:
a step toward practical analyses. In SIGSOFT, 1996.

