
Center for Embedded and Cyber-Physical Systems
University of California, Irvine

A Loosely-Timed TLM-2.0 Model of a JPEG Encoder on a
Checkerboard GPC

Arya Daroui, Rainer Dömer

Technical Report CECS-22-04
October 7, 2022

Center for Embedded and Cyber-Physical Systems
University of California, Irvine
Irvine, CA 92697-2620, USA

(949) 824-8919

adaroui@uci.edu
http://www.cecs.uci.edu

A Loosely-Timed TLM-2.0 Model of a JPEG Encoder on a
Checkerboard GPC

Arya Daroui, Rainer Dömer

Technical Report CECS-22-04
October 7, 2022

Center for Embedded and Cyber-Physical Systems
University of California, Irvine
Irvine, CA 92697-2620, USA

(949) 824-8919

adaroui@uci.edu
http://www.cecs.uci.edu

Abstract

Common, classical computer architectures are based upon few computational cores that collaborate and
communicate through larger, slower system memory. In this work, we introduce a configurable, checkerboard
grid of processing cells architecture with distributed cores and memories designed to maximize the benefits of
parallelization. We explore the checkerboard model and a classical model at a high level to compare their
behaviors in a moderately parallelized JPEG encoder application benchmark. The models are simulated with a
Loosely-Timed, SystemC TLM-2.0 test platform with timing by processor core, memory, and memory controller,
and transaction. Our experimental results show a 66% faster execution speed and higher memory bandwidth
headroom for the checkerboard architecture, compared to the classical architecture.

Contents

1 Introduction 1
1.1 The Memory Bottleneck . 1

1.1.1 Multi-core processing . 3
1.1.2 Caching . 3
1.1.3 System-level modeling . 3

2 JPEG encoding 5
2.1 Color space transformation . 5
2.2 DCT . 5
2.3 Quantization . 5
2.4 Zigzag . 7
2.5 Huffman entropy encoding . 7

3 Checkerboard architecture 7
3.1 Design features . 7

3.1.1 Distributed memory access . 7
3.1.2 Distributed, parallel processing . 7
3.1.3 Scaleability . 7

3.2 Model layout . 10
3.3 Communication . 10
3.4 Address space . 10
3.5 Timing . 10
3.6 User interface . 13

4 Memory sharing protocol 14
4.1 The memory map and partitions . 14

5 Application mapping 14
5.1 Checkerboard . 17
5.2 Classical multi-core . 17

6 Experiments and results 17
6.1 Setup . 17

6.1.1 Clock speed (processing delay) . 17
6.1.2 Memory latency . 17
6.1.3 Extreme parameters . 17

6.2 Results . 21

7 Conclusion 26
7.1 Future work . 26

References 26

ii

List of Figures

1 A high level view of classical computer architectures . 2
2 A simplified representation of the GPC . 2
3 Timing diagram of multi-core processing . 4
4 Tiered memory caches . 4
5 The basic building blocks of our system-level models . 5
6 The JPEG encoder and its functional stages . 6
7 DCT component representation . 6
8 The zigzag pattern . 8
9 The checkerboard’s processing cells . 9
10 A detailed view of the checkerboard model . 11
11 The hierarchy of the checkerboard’s modules . 12
12 Address map of the checkerboard . 12
13 Timing diagram of multiplexer contention . 14
14 The MemTools memory map . 15
15 Types of data flow through memory . 16
16 The GPC’s mapping of the JPEG encoder . 18
17 The classical multi-core architecture . 19
18 The CMA’s mapping of the JPEG encoder . 20
19 Timing diagrams for no processing or memory delays. 22
20 3D plot of the CMA vs. GPCMM . 23
21 Cross-sectional plots of the CMA vs. GPCMM . 24
22 Bar chart of select parameters for CMA, GPCMM, and GPC 25

iii

List of Tables

1 8×8 quantization divisors for luma and chroma channels . 8
2 Processing delay times for the JPEG application at 1.0 GHz . 18
3 Memory access latency induced by each device in nanoseconds 18
4 Simulated execution times for the CMA . 22
5 Simulated execution times for the GPCMM . 22
6 Simulated execution times for the GPC . 22
7 Select execution times for CMA, GPCMM, and GPC . 23

iv

Listings

1 How the user programs a core. 13
2 The interface for MemTools. 15
3 How the user programs memory access. 15

v

A Loosely-Timed TLM-2.0 Model of a JPEG Encoder on a Checkerboard GPC

Arya Daroui, Rainer Dömer
Center for Embedded and Cyber-Physical Systems

University of California, Irvine
Irvine, CA 92697-2620, USA

adaroui@uci.edu
http://www.cecs.uci.edu

Abstract

Common, classical computer architectures are based
upon few computational cores that collaborate and
communicate through larger, slower system memory.
In this work, we introduce a configurable, checker-
board grid of processing cells architecture with dis-
tributed cores and memories designed to maximize
the benefits of parallelization. We explore the checker-
board model and a classical model at a high level to
compare their behaviors in a moderately parallelized
JPEG encoder application benchmark. The models
are simulated with a Loosely-Timed, SystemC TLM-
2.0 test platform with timing by processor core, mem-
ory, and memory controller, and transaction. Our
experimental results show a 66% faster execution
speed and higher memory bandwidth headroom for
the checkerboard architecture, compared to the clas-
sical architecture.

1 Introduction

Except for in exotic designs, classical computer ar-
chitectures revolve around a processor that commu-
nicates with external devices and internal controllers
to execute program data stored in memory, as shown
in Figure 1. There have been modern developments
expanding on and moving away from this base archi-
tecture, such as multiple processing cores [10], direct
memory access [2], specialized processing units [8],
and tiered memory [6], but designs generally still rely
on the two main, discrete blocks of a computer sys-
tem: the processor and its memory.

In this work [3], we evaluate a proposed checker-

board grid of processing cells (GPC) [5] architecture
with equal, distributed processing cores and memories
that share resources locally, illustrated in Figure 2. In
contrast to classical designs, on the same chip, there
are multiple core-memory pairs grouped into tileable
cells; each cell can contain data unique to the core
within the cell, and it can transfer the data to neighbor-
ing cells as needed. The goals of this distributed de-
sign are to take advantage of parallelizable programs,
and to reduce the memory bandwidth issues found in
classical architectures.

We will explore processor and memory utilization
characteristics of the GPC and compare them to a
classical multi-core architecture (CMA) using simu-
lated, system-level models. They will both be mea-
sured with a moderately parallelized JPEG encoder
benchmark at varying processor and memory speeds
in order to realize their bandwidth behaviors.

1.1 The Memory Bottleneck

In computer architecture, there lies a problem in that
when the processor finishes a task and needs to access
memory, it must wait as the data is transferred over
the bus. The processor, being comparatively much
faster than the data transfer time of the system mem-
ory, waits for many wasted cycles, effectively limiting
processing throughput to that of memory throughput.
Although it is not unique to the Von Neumann Archi-
tecture [7], this is known as the Von Neumann Mem-
ory Bottleneck [6]. There have been modern design
advancements that mitigate the memory bottleneck,
most notably: multi-core processing [14] and mem-
ory caching [6].

1

Processor

Memory Controller

I/O

Figure 1: A high level view of classical computer architectures.

Core Mem

Figure 2: A simplified representation of the GPC [5].

2

1.1.1 Multi-core processing

A typical computer program is written to be executed
sequentially, where there is a single processing thread
that executes instructions on data in order. As men-
tioned, when the processor needs to access to data
in memory, it must wait for the transfer to complete
before it can operate on the data. Likewise, while
the processor is working, the memory is unused and
waiting to be accessed. By adding another process-
ing core, we can perform more memory accesses
when the memory is idle and process parts of the pro-
gram in parallel, increasing the memory and proces-
sor throughput together. This is illustrated in the sim-
ple timing diagram in Figure 3. Modern processors
have begun to use this optimization heavily [14], and
it is an inherent feature of our GPC.

While multi-core processing increases potential
throughput for the processor, and well synchronized
programs can avoid idling the processor as a whole, it
still does not eliminate idling for the component cores
during memory access. It effectively pushes the mem-
ory latency issue down one level in the processor hi-
erarchy. Further, multiple cores opens up contention
issues in the cases that the memory accesses from the
cores overlap.

1.1.2 Caching

Caching prefetches data it expects the processor will
need and writes it onto smaller, faster, and more ex-
pensive tiered caches of memory near the core, shown
in Figure 4. Caches’ much faster access times reduce
idle time for the processor; however, because of their
small size, they must make smart guesses at what data
the processor needs next. When there is an eventual
cache miss, the memory access call goes up through
each tier (level) of cache and up to system memory
until it finds the data it needs.

We intentionally omit the usage of cache in our
models of the GPC and the CMA. Caching is a fine-
level implementation detail outside the scope of what
we are exploring in this work, with prickly details
such as instruction versus data cache that muddy the
waters of our experiments. In terms of fairness, ei-
ther architecture could employ cache1, and there is no

1Each processing cell would have its own cache in the GPC.

clear advantage provided to either architecture with or
without it. With regard to model design, its effects are
localized to memory access times; otherwise, it makes
no difference to the program if the data is transferred
from system memory or cache. So, while cache typ-
ically lies on the chip itself, we can abstract it away
within the memory modules of our model, and keep
our simulation at the system and transaction levels we
desire.

1.1.3 System-level modeling

To simulate both our GPC and the CMA, we use Sys-
temC [17], [11], a C++ library from Accellera Sys-
tems Initiative for system-level modeling [19]. Sys-
temC, like popular hardware description languages,
provides tools to easily specify and implement sys-
tems from the top down: starting with the specifica-
tions and constraints of how a system should operate,
designing its functional modules in the hierarchy, and
finalizing designs by connecting the communication
channels between modules.

The significance of this work lies not just in the
comparison between the GPC and CMA, but also in
the development of the simulation platform. More
specifically, our goal is to develop a generalizable,
configurable, and accurate platform to simulate com-
puter architectures using basic building blocks, and
map real-world applications to them. It is from there
we build our GPC and CMA architectures and run our
experiments, verifying both the test platform and ex-
ploring the architectures’ behaviors, in tandem.

We want to develop our platform at the system
and transaction levels, meaning our SystemC mod-
ules will be composed of basic computer architectural
blocks: external input-output, processor cores, mem-
ories, and memory controllers2. The communica-
tion between these blocks is modeled with ‘Loosely-
Timed’ transactions, as described by SystemC’s TLM-
2.0 standard [11]. This is summarized and color
coded in Figure 5, which holds for all architectural
figures presented in this work.

2Multiplexers and demultiplexers.

3

Memory
access

Core 1

Core 2

Processor
utilization

Single-core processing Multi-core processing

Figure 3: In a well synchronized program, the processor as a whole may not idle, but its individual cores do while
waiting for memory access.

GPU (specialized processor)Classical multi-core processor

L1 cache

CPU coreCPU core

System memory

L1 cache

Shared L3 cache

L1 cache

Shared L2 cache

L1 cache

GPU memory

L2 cache L2 cache

MP core MP core

Figure 4: Tiered caches of memory are used for both general processors and specialized processors like GPUs.

4

External input-output

Processor core

Memory

Memory controller

Transaction binding

Event signal

Figure 5: The basic building blocks of our system-level models, and their transaction.

2 JPEG encoding

The JPEG encoding is a common media file format for
image compression [12]. Its popularity, utility, and
moderate parallelizability make it a good choice to
use as a benchmark for our simulations. The JPEG
standard covers a variety of implementations, but we
will use the typical implementation shown in Figure 6.

2.1 Color space transformation

We start with a simple bitmap color image as input,
composed of red, green, and blue (RGB) channels for
pixel intensity, and read 8×8 blocks of pixels. We
send each block into a color space transformation
function that converts it from RGB to Y, Cb, and Cr
(YCC) channels,

Y
Cb
Cr

=

 0
32768
32768

+ 1
256

 77 150 29
−44 −87 131
131 −110 −21

R
G
B

 .

The Y channel describes grayscale luminosity
which human eyes are more sensitive to, and the Cb

and Cr describe blue and red chromaticity, relative to
green. We continue to operate by 8×8 blocks through-
out the encoding.

2.2 DCT

For each block, we apply the discrete cosine trans-
form (DCT), which yields a block of coefficients cor-
responding to the frequency components of the block,
with the lowest frequency at the top left, and the high-
est at the bottom right, shown in Figure 7. The human
eye is more sensitive to low frequencies, so the next
step is to selectively drop high frequency components,
which is done through quantization. The DCT stage
is mildly lossy due to rounding in the calculation.

2.3 Quantization

The quantization process works by dividing (rescal-
ing) the value of each DCT component by a cor-
responding value in a given quantization table and
rounding the quotient. This rounding causes most

5

Y

Cb

Cr

RGB to
YCbCr

DCT

Quant

Zigzag

DCT

Chrom
quant

Zigzag

DCT

Chrom
quant

Zigzag

Huffman

8×8

blocksBitmap
image

27.5 MB

JPEG
image

589 KB

Figure 6: The JPEG encoder and its functional stages, parallelized by color channel.

Figure 7: DCT component representation [4]. The lowest frequencies are represented at the top left, and the
highest frequencies at the bottom right.

6

of the perceivable quality loss JPEG is known for3.
There are two different quantization tables used, one
for the luma channel, and one for the chroma chan-
nels. These are given in Table 1 and are defined by
the JPEG standard for a quality level of 50 [12].

2.4 Zigzag

Because of the previous quantization step, the high-
est frequency components in the bottom right of the
block are are typically zeroed out. The encoder takes
advantage of this with run length encoding, where the
encoder stores how many ones or zeros there are in
a consecutive sequence, rather that storing the list of
ones and zeros itself. However, to do this, the encoder
must index diagonally instead of by row or column,
which it does by the zigzag pattern illustrated in Fig-
ure 8. The compression from the zigzag run length
encoding is lossless.

2.5 Huffman entropy encoding

The previous three steps were separable by channel,
and could be processed in parallel. But now each
channel is combined and compressed with Huffman
encoding [9], [15]. Huffman encoding works by rep-
resenting variable lengths of data with known prefixes
that are stored in their place. These prefixes are deter-
mined by the frequency of symbols in the data, and
are predefined by the JPEG standard; their tables have
been omitted due to their size.

3 Checkerboard architecture

In contrast to a classical multi-core processor that
would be connected through the system bus to sys-
tem memory, the checkerboard GPC is characterized
by its distributed, alternating core-memory pairs. In
this section, we will describe the features of this de-
sign, the addressing scheme and communication pro-
tocols needed to make it work, the layout and timing
of the model, and the user interface for mapping ap-
plications.

3Chroma subsampling is another considerable factor of per-
ceivable quality loss, but it is not implemented in our encoder.

3.1 Design features

There are three main features to the GPC that distin-
guishes it from the classical architecture: distributed
memory access, distributed processing, and scaleabil-
ity.

3.1.1 Distributed memory access

The greatest difference to classical designs is the
checkerboard’s distributed memory, which negates
the need for a central system bus. Not unlike low-
level cache, each core has a dedicated memory unit
beside it in its processing cell, and has direct access to
slightly farther away memories in neighboring cells,
illustrated in Figure 9. The combination of proxim-
ity and unimpeded access is expected to yield signifi-
cantly lower memory latency and less contention.

3.1.2 Distributed, parallel processing

The checkerboard architecture is inherently multi-
core, and therefore, conducive to parallelization. As
mentioned previously, parallel processing can yield
significant performance benefits to program execution
by distributing workload over cores, and reducing pro-
cessor idle time.

An additional, unique aspect of the checkerboard is
that because each core only communicates with mem-
ory units neighboring it, the program function and
memory access can be further encapsulated, making
the development of pipelined, parallelized programs
more intuitive. For example, for our JPEG encoder,
each functional stage of the encoder is isolated to a
single core, and reads in only the data it needs, and
writes out the data it has processed to its neighboring
memory.

3.1.3 Scaleability

The checkerboard, being composed of smaller compu-
tational cells can be scaled with more or fewer cores
to meet user specification without changing the over-
all design. The scalability is intuitive to see in Fig-
ure 2 and Figure 9, but to be put explicitly, there are
only two patterns to be mindful of:

1. Cell orientation alternates by row.

7

Table 1: 8×8 quantization divisors for luma and chroma channels.

Luma 1 2 3 4 5 6 7 8 Chroma 1 2 3 4 5 6 7 8

1 16 11 10 16 24 40 1 61 1 17 18 24 47 99 99 99 99
2 12 12 14 19 26 58 0 55 2 18 21 26 66 99 99 99 99
3 14 13 16 24 40 57 9 56 3 24 26 56 99 99 99 99 99
4 14 17 22 29 51 87 0 62 4 47 66 99 99 99 99 99 99
5 18 22 37 56 68 109 103 77 5 99 99 99 99 99 99 99 99
6 24 35 55 64 81 104 113 92 6 99 99 99 99 99 99 99 99
7 49 64 78 87 103 121 120 10 7 99 99 99 99 99 99 99 99
8 72 92 95 98 112 100 103 99 8 99 99 99 99 99 99 99 99

0 3 8 0 0 0 0 0

5 2 0 0 0 0 0 0

3 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Figure 8: The zigzag pattern used to diagonally index and encode the block.

8

Cell
1, 0

Memory
on-chip

Core

DemuxMux

Cell
0, 0

Memory
on-chip

Demux Mux

Cell
1, 1

Memory
on-chip

Core

DemuxMux

Cell
0, 1

Memory
on-chip

Demux Mux

Core Core

Figure 9: Component cells of the checkerboard. Red cells are ‘right-handed’, and green cells are ‘left-handed’ to
make a tileable pattern.

9

2. A memory on the edge of the checkerboard will
have an open port for each edge it borders.

Cell orientation refers to whether the core will be
on the left or right of the cell. This alternation allows
more direct access between cell rows without crossing
over connections.

3.2 Model layout

Our model for the checkerboard is broken into several
hierarchical layers using SystemC modules. Modules
serve as a way to encapsulate the core functionality
for a part of a system so that it can be easily reused, re-
encapsulated, and abstracted. They are analogous to
the generic functional blocks in block diagrams. The
layout of the GPC with its component modules are
shown in Figure 10.

The GPC model has three main hierarchical lay-
ers: the top level with the checkerboard chip, off-
chip memory, controllers, and external input-output;
the checkerboard level with its many processing cells;
and processing cell level with the core-memory pairs
and their memory controllers. This hierarchy is
shown in Figure 11.

3.3 Communication

Modules communicate with each other using TLM-
2.0 socket objects which are bound between modules;
each socket is either an initiator or target for commu-
nication transactions. For our GPC, the transactions
are composed of a read or write command, initiating
address, target address, data length, and success sta-
tus; there is delay data passed alongside the transac-
tion for simulation timing. Additionally, each mem-
ory module has an associated event signal, which is
used for communication synchronization on both read
and write. For example, when trying to share data be-
tween cores, a core module will send a write transac-
tion to a memory module. After the write is complete,
the core module will use an event to signal a waiting,
receiving core that it can send a read transaction for
the data that was just written.

3.4 Address space

Even though the GPC heavily utilizes local memory
access, there is a defined, absolute address space; it
does not use a relative addressing scheme between
cells. The currently implemented model specifies a
32-bit machine with a maximum of four rows by four
columns of cells, and four off-chip memories. The 4
GB memory capacity is halved between the on-chip
and off-chip memories, where the maximum size of
each memory is 128 MB for on-chip, and 512 MB for
off-chip. The address map is shown in Figure 12.

The most significant bit determines if the address
is on-chip or off chip. For on-chip memory, the ‘row’
and ‘col’ are the bits that determine the row and col-
umn of the cell. For off-chip memory, ‘pos’ are the
bits determine the position, with 00 as upper, 01 as
left, 10 as right, and 11 as lower.

3.5 Timing

In our experiments, our focus is to analyze the interac-
tion between processor delay and memory latency, for
which the main measure is simulated execution time.
To do this, our SystemC model has timing annotations
that simulate and combine delay,

1. per core (processor speed),

2. by memory type,

3. by transaction size,

4. by memory controller (multiplexer).

Each core’s delay depends upon the functional
block programmed onto the core, and memory latency
will be different depending on whether the unit is
on or off of the chip, and whether it is being read
from or written to. To delay by transaction size, we
consider the size of the data bus (typically the same
as the word size) and the burst length of the mem-
ory. Our level of abstraction sits above the details of
memory clock speed and CAS latency, so we gener-
alize this by adding up memory latency per chunk of
word size×burst length that fits in the transaction,

10

Top

Stimulus

Monitor

Memory
off-chip, 1

Memory
off-chip, 2

Memory
off-chip, 3

Memory
off-chip, 0

Checkerboard

Mux

M
u
x

M
u
x

Mux

Cell
1, 0

Memory
on-chip

Core

DemuxMux

Cell
0, 0

Memory
on-chip

Demux Mux

Cell
1, 1

Memory
on-chip

Core

DemuxMux

Cell
0, 1

Memory
on-chip

Demux Mux

Cell
1, 2

Memory
on-chip

Core

DemuxMux

Cell
0, 2

Memory
on-chip

Demux Mux

Cell
1, 3

Memory
on-chip

Core

DemuxMux

Cell
0, 3

Memory
on-chip

Demux Mux

Cell
3, 0

Memory
on-chip

Core

DemuxMux

Cell
2, 0

Memory
on-chip

Demux Mux

Cell
3, 1

Memory
on-chip

Core

DemuxMux

Cell
2, 1

Memory
on-chip

Demux Mux

Cell
3, 2

Memory
on-chip

Core

DemuxMux

Cell
2, 2

Memory
on-chip

Demux Mux

Cell
3, 3

Memory
on-chip

Core

DemuxMux

Cell
2, 3

Memory
on-chip

Demux Mux

Core Core Core Core

Core Core Core Core

Figure 10: A detailed view of the checkerboard model.

11

Top

Stimulus

Monitor

Off-chip
memories

Off-chip memory
multiplexers

Off-chip memory
events

Checkerboard

On-chip memory
events

Computational
cells

On-chip memory

On-chip memory
multiplexer

Core

Core
demultiplexer

Figure 11: The hierarchy of the checkerboard GPC’s component modules.

0

31 30 29 28 27 26 25 24 23 0

1

row col

pos rest of address

Bit

On-chip memory

Off-chip memory

...

rest of address

Figure 12: Address map of the checkerboard.

12

transaction delay =

(
incfloor(

transaction size
word size×burst length

)
+1

)
×memory latency.

The incfloor(x) function is the same as a normal
floor(x) function except the right edge of each step is
inclusive4, preventing an extra access delay if the data
size is a perfect multiple of the chunk. For example,
if we have a transaction that is 1024 bits wide and a
burst length of four,

transaction delay =

(
incfloor

(
1024

32×4

)
+1

)
×memory latency

= 8×memory latency.

Without considering transaction size, it would take
one memory latency delay to execute the entire 1024
bit transaction; without considering burst length, it
would take 32 memory latency delays; both are less
realistic.

In addition to these individual delays, we also em-
ploy memory multiplexer timing delay and contention
from Malekzadeh and Dömer [13]. Contention is crit-
ical in accurately simulating the dynamic effects dif-
ferent timing delays have on resource utilization and
simulated execution time. It ensures only one transac-
tion and its associated delays are occupying the mem-
ory controller at a time. If multiple transactions are
received, they are performed in FIFO order, and the
waiting transaction will induce additional idling for
the cores. As can be seen in Figure 13, without con-
tention, even though the delays of individual transac-
tions are processed, the memory would be performing
multiple memory accesses concurrently, potentially
even multiple from the same core, which is unrealistic
both in terms of execution time, and data volatility.

3.6 User interface

In our goal of making this generalizable platform, it is
important to have an intuitive interface for when the

4I.e., it will round a perfect integer down, incfloor(8) = 7.

Listing 1: How the user programs a core.

1 // ... For each core used ,
2 class Core12 : public Core {
3 public :
4 void main(void) {
5 // Main program loop goes here
6 // Should read input from

neighoring memory at start
7 // And write to output memory

at end
8 }
9

10 Core12 (sc_module_name n,
11 int _y ,
12 int _x ,
13 sc_event & _S_UP ,
14 sc_event & _S_LEFT ,
15 sc_event & _S_RIGHT ,
16 sc_event & _S_DOWN):
17 Core(n, _y , _x , _S_UP , _S_LEFT

, _S_RIGHT , _S_DOWN) {
18 SC_THREAD (main);
19 }
20 };
21
22 // ... Each core is bound to its

cell , the DUT , and the top
module . This is given to the
user

user constructs and tests their own models and appli-
cations. For the checkerboard, the user only needs to
interact with one file that dictates the processing loop
for each core. When mapping a generic program, the
user would divide the program into independent, com-
ponent parts, and place them in the provided main()
functions for each core, with care taken for the core’s
position and its memory connections, like in Listing 1.
The only additional code would be to write to and read
from the adjacent memory addresses, which is simpli-
fied to single function calls with the provided Mem-
Tools memory sharing library. Whereas one would
have to manually record each location in the address
space for their data and manage the event signals, the
MemTools library keeps track of addresses and sig-
nals events for the automatically. This is described in
greater detail in Section 4.

13

Memory
access

Core 1

Core 2

Processor
utilization

Contention No contention

Figure 13: With contention on, overlapping memory access transactions must wait for each other to finish. With-
out contention, they can all simultaneously occupy the memory controller.

4 Memory sharing protocol

Because of the direct data sharing between cores, the
memory modules act more as channels for commu-
nication, rather than generic data storage. Conse-
quently, it is helpful to use a standard data transfer and
synchronization protocol to prevent common multi-
threaded pitfalls like data overwrites and deadlock.
The protocol used is a simple FIFO queue with syn-
chronized counters, and its tooling is provided in the
given MemTools library, allowing the user to simply
push and pop from memory, without having to worry
about individually tracking addresses and events. The
MemTools user interface is shown in Listing 2, with
example code in Listing 3.

4.1 The memory map and partitions

The memory map used by MemTools is illustrated in
Figure 14. The shared memory is split into two por-
tions, the counters and the queue. Counters keep a
copy of how many slot positions have been sent and
received in the queue. When pushing data to a mem-
ory module, the counters are checked to see if the
queue is saturated. If so, it waits for a signal from
the receiving queue that it has popped the slot. Once
a slot is available, it is overwritten, the receiving core
is signaled, and the counters updated.

It can sometimes be useful to use a single memory
for multiple channels and cores. When this is the case,
the memory is divided into equal partitions, with each
partition adhering to the memory map outlined above.
The most typical multi-channel patterns are to sepa-
rate, combine, and parallelize data flow, as shown in
Figure 15. The lattermost is done in the first stage of
the JPEG encoder for the RGB channels. These fig-
ures show only two partitions, but the number of pos-
sible partitions in the protocol is limited only by the
memory space needed to manage the counters and the
queue. Additionally, the number of slots in the queue
is adjustable, leaving unused memory in the partition,
if desired.

5 Application mapping

We have mapped the JPEG encoder application to
both the checkerboard, and a classical multi-core
architecture with parallelization by channel, and
pipelined by the functional blocks in Figure 6. They
are composed of the same building blocks described
in Figure 5 and both use the MemTools memory shar-
ing protocol; the only difference is their architectural
layout.

14

sent rcvd slot 0 slot 1 slot 2 unused

Partition 0

Counters

Bit

Memory

Queue

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

sent rcvd slot 0 slot 1 slot 2 unused

Partition 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 14: The memory map used for the FIFO protocol.

Listing 2: The interface for MemTools.

1 // MemTools public (user - facing)
method signatures

2 MemTools (tlm :: tlm_initiator_socket
<> &socket , // Constructor

3 sc_event &signal ,
4 unsigned startAddr_ ,
5 unsigned memSize_ ,
6 unsigned numPartitions_ ,
7 unsigned slotLen_ ,
8 unsigned numSlots_);
9 void PushData (void *data ,

10 unsigned dataLength ,
11 unsigned

partitionIndex);
12 void PopData (void *data ,
13 unsigned dataLength ,
14 unsigned

partitionIndex);

Listing 3: How the user programs memory access.

1 // In the user ’s checkerboard code
:

2 class Core12 : public Core {
3 public :
4 void main(void) {
5 int in_data ;
6 int out_data ;
7
8 MemTools memIn(CoreBus , sig_up

, id_to_memAddress (0, 2),
MEMORY_SIZE , 1, sizeof (int)
, NUM_SLOTS);

9 MemTools memOut (CoreBus ,
sig_down , id_to_memAddress
(2, 2) , MEMORY_SIZE , 1,
sizeof (int), NUM_SLOTS);

10
11 while (1) {
12 // Read from memory
13 memIn. PopData (& in_data , sizeof

(int), 0);
14
15 // Data processing goes here
16
17 // Write to memory
18 memOut . PushData (& out_data ,

sizeof (int), 0);
19 }
20 }
21 // ...
22 };

15

Parallelized

Separated

Combined

Figure 15: The memory map allows for data splitting from one processing core to many, from many processing
cores to one, and for parallel passthrough.

16

5.1 Checkerboard

For the checkerboard, as seen in Figure 16, we chose
the 4×4 implementation per the current maximum
specification. This lead to an interesting side effect in
our mapping, where we had to utilize an extra cell that
does nothing but forward data to the next core. Be-
cause our YCC block pushes into three channels, and
the Huffman block pops from three memories, there
is no arrangement such that the 3 blocks in three chan-
nels all meet, surrounding the targeted Huffman block.
The forwarding block will incur extra memory delay,
but no extra processing delay. The stimulus and mon-
itor blocks are considered external to our experiments
and have no timing annotations to incur any delay.

5.2 Classical multi-core

On the classical multi-core architecture, we had 11
cores for the 11 functional blocks, all connected to
a single multiplexer that interfaces with a single sys-
tem memory with an event system connected to every
block, as shown in Figure 17 and mapped in Figure 18.
Similar to the GPC, the stimulus and monitor do not
incur any processing delay that is counted in the sim-
ulator. However, it also does not need or use the extra
forwarding block.

6 Experiments and results

The goals of our experiments are to find how sensi-
tive the CMA and GPC architectures are to memory
and processor bottlenecks, and to verify that our test
platform yields reasonable results. Our main experi-
mental metric is the simulated execution time for en-
coding a JPEG image, as detailed in Section 2, while
changing the clock speed and memory latency of the
model. We will dive deeper into the setup of these
experiments and their accompanying results.

6.1 Setup

As mentioned, there are only two parameters we ad-
just: clock speed and memory latency. To make sure
we evaluate a wide breadth of possible scenarios, we
started with a standard, practical value for each, and
evaluate at 0.25×, 0.5×, 1×, 2×, 4× that value. Lastly,

we evaluate at the extreme cases of untimed process-
ing delay and no memory latency.

6.1.1 Clock speed (processing delay)

The clock speed of the processor is emulated by ap-
propriately choosing the timing delay within the pro-
gram of each core. For our JPEG encoder with each
of its stages mapped to a core, we found the timing for
the single 8×8 pixel block each stage operates on. The
timings were recorded from a real-world 3.0 GHz x86
processor [1], which we scaled down to 1.0 GHz for
our standard value so that we have more range when
varying the parameter. The timings are shown in Ta-
ble 2.

6.1.2 Memory latency

The memory latencies chosen for the simulation were
based off of estimations of real-world values for each
type of hardware. The CMA’s system memory and
the GPC’s off-chip memory are both expected to be
using DRAM technology and we assume a latency of
70 ns [16, p. 378]. For the GPC’s on-chip memory,
we assume SRAM-like performance and give it a 4 ns
latency [16, p. 378]. Because the GPC predominantly
uses on-chip memory to communicate between cores,
this immediately puts it at an advantage. For a more
fair comparison between the architectures, we also
considered a memory latency of 70 ns for the on-chip
memory, which we denote as GPC Memory-matched
(GPCMM). Lastly, we assumed a multiplexer latency
of 4 ns [18], kept contention on, and set a burst size of
four. We do not alter the multiplexer’s latency when
varying memory latency. These values are tabulated
in Table 3.

6.1.3 Extreme parameters

We also run our experiments at the extreme values of
no processing delay, and no memory latency. Each
represent an important behavior that we build off of
in our discussion of the results. This is illustrated by
the simple timing diagram in Figure 19. More specif-
ically, when the memory latency is set to zero, it rep-
resents the maximum performance capable of the pro-
cessor because the memory instantly reads and writes

17

DCT

Quant

Zigzag

RGB
to

YCbCr

DCT

Huff

DCT

Chrom
Quant

Zigzag

Forward

Chrom
Quant

Zigzag

Stimulus

Monitor

Figure 16: The mapping of the JPEG encoder application to the checkerboard GPC.

Table 2: Processing delay times for the JPEG application at 1.0 GHz.

Block Delay (µs)

RGB to YCbCr 2.336
DCT 2.164
Quantize 1.431
Zigzag 1.013
Huffman 1.014

Table 3: Memory access latency induced by each device in nanoseconds.

CMA GPC GPCMM

Off-chip memory 70.0 70.0 70.0
On-chip memory - 2.5 70.0

Multiplexer 4.0 4.0 4.0

18

E
v
e
n
t
s

Memory
off-chip
(system)

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

M
u
x

Figure 17: The CMA architecture.

19

DCT

Quant

Zigzag

RGB to
YCbCr

DCT

Huffman

DCT

Chrom
Quant

Zigzag

Chrom
Quant

Zigzag

Stimulus

Monitor

Figure 18: The mapping of the JPEG encoder application to the CMA.

20

the necessary data. In other words, it is 100% pro-
cessor bottlenecked, 0% memory bottlenecked, and
represents the theoretical ideal of the application in
terms of minimum execution time for a given clock
speed. We expect this to yield the same results across
all architectures since they are all running the same
application.

When there is no processing delay (we refer to this
more briefly as ‘untimed’), the processor effectively
has infinite clock speed. It instantly computes the in-
put data and outputs it to the next stage. This rep-
resents the maximum possible memory throughput of
the architecture; it is 100% memory bottlenecked, and
practically removes the application as a parameter of
execution time. This will provide a measure of how
the configurations compare at total memory access
saturation.

6.2 Results

Our experiments on three architecture configurations
yielded three tables of data, shown in Table 4, Table
6, and Table 5 that we will draw all of our plots from.
First, we wish to draw direct comparisons between the
CMA and the GPCMM.

The results of Table 6, and Table 5 have been pro-
jected onto a 3D surface in Figure 20. Cross sec-
tional plots of this surface are plotted in Figure 21;
the top row shows the the simulated times for the
CMA, the bottom row shows the simulated times for
the GPCMM, and the middle row shows their mid-
dling traces superimposed. From the 3D surface, we
find that the GPCMM is faster than the CMA under
most similar conditions, and especially as the proces-
sor and memory slow down. From the cross-sectional
plots, we find that the GPCMM enjoys moderate gains
as the clock speed increases, but has some diminish-
ing returns, although not as severe as the CMA. Addi-
tionally, as the memory latency slows (increases), the
GPCMM takes a slight hit to its simulated execution
times compared to the drastic increase for the CMA.

Next, we compare all three of our architecture con-
figurations at the extreme values of no memory la-
tency and untimed processing delay, and at our stan-
dard, practical values to verify we are obtaining rea-
sonable results. We take samples from our original

data in Table 4, Table 6, and Table 5 and populate Ta-
ble 7, from which we plot Figure 22.

For no memory latency, we find that the simulated
execution times are the same between all configura-
tions. This is expected, as each configuration has the
same application mapped to it and that there is fair-
ness between the experiments. Additionally, this es-
tablishes the ideal 0% memory bottleneck baseline.
For the untimed processing delay, the GPC/MM con-
figurations perform significantly better than the CMA.
This shows that the GPC/MM operate much more ef-
fectively even at total memory saturation. Lastly, for
the practical parameters of 1 GHz and 2.5, 70 ns5

memory latency, we see that the GPC is around 66%
faster than the CMA. Another important takeaway is
that the GPC’s simulated execution time is very near
its value for no memory latency. Under these practical
parameters, the GPC is experiencing almost no mem-
ory contention, and is running near the ideal minimum
for simulated execution time.

5The 2.5 ns on-chip memory latency only applies to the GPC.
The other configurations remain at 70 ns.

21

Memory
access

Core 1

Core 2

Processor
utilization

No memory access delay No processing delay

Figure 19: Timing diagrams for no processing delay, and no memory access delay.

Table 4: Simulated execution times for the CMA in seconds.

Memory latency
0 ns 17.5 ns 35 ns 70 ns 140 ns 280 ns

C
lo

ck
sp

ee
d

250 MHz 1.31 1.32 1.34 1.40 1.59 2.21
500 MHz 0.65 0.67 0.70 0.79 1.10 1.92

1 GHz 0.33 0.35 0.40 0.55 0.96 1.87
2 GHz 0.16 0.20 0.28 0.48 0.93 1.84
4 GHz 0.08 0.14 0.24 0.47 0.92 1.82

Untimed 0.00 0.11 0.23 0.45 0.90 1.80

Table 5: Simulated execution times for the GPCMM in seconds.

Memory latency
0 ns 17.5 ns 35 ns 70 ns 140 ns 280 ns

C
lo

ck
sp

ee
d

250 MHz 1.31 1.32 1.33 1.35 1.40 1.49
500 MHz 0.65 0.67 0.68 0.70 0.75 0.90

1 GHz 0.33 0.34 0.35 0.37 0.45 0.68
2 GHz 0.16 0.18 0.19 0.23 0.34 0.56
4 GHz 0.08 0.09 0.11 0.17 0.28 0.51

Untimed 0.00 0.03 0.06 0.11 0.23 0.45

Table 6: Simulated execution times for the GPC in seconds.

Memory latency
0 ns 17.5 ns 35 ns 70 ns 140 ns 280 ns

C
lo

ck
sp

ee
d

250 MHz 1.31 1.31 1.31 1.31 1.31 1.33
500 MHz 0.65 0.65 0.66 0.66 0.66 0.74

1 GHz 0.33 0.33 0.33 0.33 0.37 0.51
2 GHz 0.16 0.16 0.16 0.19 0.25 0.41
4 GHz 0.08 0.08 0.09 0.13 0.21 0.38

Untimed 0.00 0.02 0.05 0.09 0.18 0.36

22

2.0

1.5

1.0

0.5

250 MHz500 MHz
1 GHz

2 GHz

4 GHz

Untimed 0
17.5

35

Memory
latency

(ns)
C
lock

speed

Si
m
ul
at
ed

ex
ec
ut
io
n
tim

e
(s
)

70
140

280

CMA
GPCMM

Figure 20: Simulated execution times of the CMA and GPCMM by processor speed and by memory latency.

Table 7: Simulated execution time in seconds for all three configurations at extreme and practical values (see
Footnote 5).

CMA GPCMM GPC
1 GHz

0 ns 0.33 0.33 0.33
Untimed
2.5, 70 ns 0.45 0.11 0.09

1 GHz
2.5, 70 ns 0.55 0.37 0.33

23

CMA
GPCMM

Simulated execution time
by memory latency

0.5

1.0

1.5

2.0 250 MHz
500 MHz

1 GHz
2 GHz
4 GHz

Untimed

Simulated execution time
by clock speed

Si
m

ul
at

ed
ex

ec
ut

io
n

tim
e
(s
)

0.5

1.0

1.5

2.0 280.0 ns
140.0 ns
70.0 ns
35.0 ns
17.5 ns
0.0 ns

Si
m

ul
at

ed
ex

ec
ut

io
n

tim
e
(s
)

0.5

1.0

1.5

2.0

Clock speed

250 MHz

500 MHz

1 GHz
2 GHz

4 GHz
Untimed

280.0 ns
140.0 ns
70.0 ns
35.0 ns
17.5 ns
0.0 ns

0.5

1.0

1.5

2.0

Memory latency (ns)

0 17.5 35 70 140 280

250 MHz
500 MHz

1 GHz
2 GHz
4 GHz

Untimed

0.5

1.0

1.5

2.0 500 MHz
1 GHz
2 GHz

500 MHz
1 GHz
2 GHz

Si
m

ul
at

ed
ex

ec
ut

io
n

tim
e
(s
)

0.5

1.0

1.5

2.0 140 ns
70 ns
35 ns

140 ns
70 ns
35 ns

C
M

A
only

G
P
C
M

M
only

M
iddling

C
M

A
and

G
P
C
M

M

Figure 21: Cross-sectional simulated execution times of the CMA and GPCMM by processor speed and by
memory latency.

24

Simulated execution time
by architecture model

Si
m
ul
at
ed
ex
ec
ut
io
n
tim
e
(s
)

0.15

0.30

0.45

0.60

Clock speed and
memory latency

1 GHz
0 ns

Untimed
2.5, 70 ns

1 GHz
2.5, 70 ns

CMA
GPCMM
GPC

Figure 22: Comparison of the architecture configurations at extreme and practical values (see Footnote 5).

25

7 Conclusion

In this work [3], we have introduced a checkerboard
grid of processing cells architecture, with distributed
processors, memories, and memory controllers, de-
signed to maximize the benefits of parallelization. We
had two goals: first, to develop a robust platform with
which to build the checkerboard and a classical multi-
core model, and second, to verify and compare these
models’ behavior. We proved to be successful on both
fronts.

Our platform proved to be robust in that we eas-
ily mapped a JPEG encoder application onto the pro-
cessing cores for both the checkerboard and classi-
cal architecture, varied the speed and timing parame-
ters of their component modules for our experiments,
and yielded expected results. The experimental data
shows that the checkerboard was generally faster in
its execution than the classical multi-core architecture
under the same conditions, and it suffered less from
slower processor and memory speeds. At the practi-
cal parameters of 1 GHz processor clock speed, 2.5 ns
on-chip memory latency, and 70 ns off-chip memory
latency, the checkerboard’s simulated execution time
was 66% faster, and experienced almost no memory
contention.

7.1 Future work

While these models were explored at a high level, the
work presented here provides a foundation for deeper
research into the grand challenge of hardware band-
width bottlenecks. Further work with the current code
base for the simulation platform may include explor-
ing different applications, and checkerboard sizes. A
useful addition would be a tool to visualize the uti-
lization of the processors, memories, and controllers
throughout the simulation. Diving deeper, future
work should concern moving from Loosely-Timed to
Approximately-Timed TLM and fleshing out imple-
mentation details we omitted such as caching and
more accurate burst mode memory. The final form of
this platform would ideally emulate a full instruction
set such as RISC-V [20].

References

[1] Weiwei Chen. Out-of-order Parallel Discrete
Event Simulation for Electronic System-level De-
sign. Springer International Publishing, 2015.

[2] Jonathan Corbet, Alessandro Rubini, and Greg
Kroah-Hartman. Direct Memory Access. In
Linux Device Drivers, pages 440–442. O’Reilly
Media, 3 edition, February 2005.

[3] Arya Daroui. A loosely-timed tlm-2.0 model of
a jpeg encoder on a checkerboard gpc. Master’s
thesis, 2022.

[4] Devcore. DCT-8x8.png, 2012.

[5] Rainer Dömer. A grid of processing cells (gpc)
with local memories. Technical report, UCI,
Center for Embedded and Cyber-Physical Sys-
tems, April 2022. Technical Report 22-01.

[6] Danijela Efnusheva, Ana Cholakoska, and Aris-
totel Tentov. A Survey of Different Approaches
for Overcoming the Processor-Memory Bottle-
neck. AIRCC Journal of Computer Science and
Information Technology, 9:151–163, 2017.

[7] Rudolf Eigenmann and David J. Lilja. Von Neu-
mann Computers. January 1998.

[8] Howard Gilbert. The GPU (Specialized Proces-
sors). Yale University, February 2010.

[9] David A. Huffman. A Method for the Construc-
tion of Minimum-Redundancy Codes. Proceed-
ings of the IRE, 40(9):1098–1101, 1952.

[10] IBM. Power4: The First Multi-core, 1GHz Pro-
cessor.

[11] IEEE. Ieee standard for standard systemc lan-
guage reference manual. IEEE Std 1666-2011
(Revision of IEEE Std 1666-2005), pages 1–638,
2012.

[12] International Telecommuncation Union. Digi-
tal Compression and Coding of Continuous-tone
Still Images. Technical Report T.81, 1993.

26

[13] Emad Malekzadeh and Rainer Dömer. Fast
Loosely-Timed System Models with Accurate
Memory Contention. 2022.

[14] Rick Merritt. CPU designers debate multi-core
future. EE Times, February 2008.

[15] Alistair Moffat. Huffman Coding. ACM Comput.
Surv., 52(4), August 2019. Place: New York,
NY, USA Publisher: Association for Computing
Machinery.

[16] David A. Patterson and John L. Hennessy. Com-
puter Organization and Design, Fifth Edition:
The Hardware/Software Interface. Morgan
Kaufmann Publishers Inc., San Francisco, CA,
USA, 5th edition, 2013.

[17] Stuart Swan and Cadence Design Systems. An
Introduction to System Level Modeling in Sys-
temC 2.0. Technical report, Open SystemC Ini-
tiative (OSCI), May 2001.

[18] Texas Instruments. CDx4HC405x,
CDx4HCT405x High-Speed CMOS Logic
Analog Multiplexers and Demultiplexers.
Technical report, 2019.

[19] The European Space Agency. System-Level
Modeling in SystemC.

[20] Andrew Waterman, Yunsup Lee, David A. Pat-
terson, and Krste Asanovi. The risc-v instruc-
tion set manual, volume i: User-level isa, ver-
sion 2.0. Technical Report UCB/EECS-2014-
54, EECS Department, University of California,
Berkeley, May 2014.

27

