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Abstract

In this position paper, we briefly review traditional single-, multi-, and many-core computer architectures
which suffer from the well-known memory bottleneck between the processor(s) and the single shared main mem-
ory. After establishing the fact that the memory bottleneck delays many-core processors for thousands of cycles,
we then propose an alternative Grid of Processing Cells (GPC) structure of many cores with local memories
that are arranged in a scalable 2-dimensional array with only local interconnect. We then specify three variants
of the proposed GPC with hierarchical, “checkerboard”, and 3D connectivity between the cells of processors
with local memories. These GPC variants can serve as a starting point for studying, modeling, simulating, and
exploring the vision of future computing platforms without a shared memory bottleneck.
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Abstract

In this position paper, we briefly review traditional
single-, multi-, and many-core computer architectures
which suffer from the well-known memory bottleneck
between the processor(s) and the single shared main
memory. After establishing the fact that the mem-
ory bottleneck delays many-core processors for thou-
sands of cycles, we then propose an alternative Grid
of Processing Cells (GPC) structure of many cores
with local memories that are arranged in a scalable
2-dimensional array with only local interconnect. We
then specify three variants of the proposed GPC with
hierarchical, “checkerboard”, and 3D connectivity
between the cells of processors with local memories.
These GPC variants can serve as a starting point for
studying, modeling, simulating, and exploring the vi-
sion of future computing platforms without a shared
memory bottleneck.

1 Introduction and Motivation

Ordinary and embedded computer systems have a
profound impact on our everyday life and society.
With applications ranging from video-enabled mobile
devices to real-time automotive applications and reli-
able medical devices, we interact with and depend on
computer systems on a daily basis.

General-purpose and in particular special-purpose
embedded computer systems are designed with mul-
tiple conflicting goals and requirements, including
high speed, complex functionality, strict timing, low

power, high reliability, as well as efficient produc-
tion and maintenance. At the same time, customers
constantly demand lower prices and a shorter time-to-
market for the multitude of digital computer systems
around us.

Among the many constraints and limitations of to-
day’s computing devices, one of the biggest open
problems is the memory bottleneck. Observed already
in the first single-processor architectures, the sin-
gle lane through which data and instruction streams
are transferred to and from the main memory im-
pedes the traffic flow and often results in heavy con-
gestion, limiting the processing speed severly. This
problem is only multiplied in today’s shared-memory
multi- and many-core architectures and, despite so-
phisticated multi-level cache hierarchies, remains as
a grand challenge that stands in the way of efficient
parallel processing.

While Moore’s law is coming to an end due to the
physical limits on further increasing clock frequen-
cies, the demand for parallel computing will only in-
crease with the advance of big data and deep learn-
ing applications. Realizing the required computing
performance with efficient processor architectures re-
quires novel parallel platforms that do not suffer from
a central memory bottleneck (and ideally do not need
any costly cache hierarchies).

In this report1 we briefly review the main mem-
ory bottleneck in current single-, multi-, and many-

1This report is a position paper (or white paper) that formally
documents an idea that the author has shared [1] and discussed [2]
with the students in his laboratory since March 2021.
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Figure 1: Classic computer architectures.

core computer architectures (Section 2), establish the
severe delays it causes (Section 2.1), and then pro-
pose an alternative Grid of Processing Cells (GPC)
approach (Section 3) where pairs of cores and local
memories are arranged in a scalable 2-dimensional ar-
ray. After a generic GPC is defined in Section 3.1,
three GPC variants are specified in detail with local
interconnect only, namely a hierarchical GPC (Sec-
tion 3.2), a “checkerboard” GPC (Section 3.3), and a
3D GPC (Section 3.4). We finally conclude this report
in Section 4 with possible future work where the pro-
posed GPC variants can serve as a starting point for
studying, modeling, simulating, and exploring future
computing platforms with local memories.

2 The Main Memory Bottleneck

The traffic congestion of data and instruction streams
through a single memory bus has already been ob-
served in the classic von-Neumann computer archi-
tecture [3], as depicted in Figure 1(a). While the orig-
inal Harvard architecture [4] featured separate memo-
ries for instructions and data, its modern implementa-
tion, the so-called modified Harvard architecture [5],
also uses only a single shared bus to the main memory
(despite its internally separated instruction and data
caches), as shown in Figure 1(b).

While today’s computers are typically organized
as symmetric multiprocessors (SMPs) [6] and fea-
ture multiple (or many) processing cores on a single
chip, they still use a single shared memory connected
through a bottleneck bus interface. Even in modern
computer architectures with multi-channel memory,
as depicted in Figure 2, the processor cores share a

M 2

C P U

C ore C ore C ore

C ore C ore C ore

M 1 M 4M 3

Figure 2: Multi-core architecture with multi-channel
memory.

single bus interface to the memory controller2.
In order to compensate for the traffic congestion

created by the shared memory bottleneck, usually a
memory hierarchy is deployed with multiple levels of
cache3 memories between the processing cores and
the main memory. A typical situation is shown in Fig-
ure 3 where three levels of caches are used. Each core
has a private L1 cache, shares a L2 cache with a neigh-
bor, and finally shares a L3 cache with all other cores
on the same chip.

Note that the memory hierarchy is ordered by ac-
cess speed. The closer the cache is to the core, the
faster it must deliver data for cache hits. As a ref-
erence, Table 1 lists typical access times and storage
sizes for different memories in the hierarchy [4].

The on-chip cache memories are typically imple-
mented as static random access memory (SRAM),
whereas the shared main memory typically consists
of dynamic random access memory (DRAM) and is
placed off-chip due to the differences in manufactur-
ing technology. Here it is important to note that the
caches occupy a significant amount of area on the
processor chip which is very expensive (despite be-
ing logically redundant).

While in multi-core architectures typically all cores
have the same uniform access to the shared memory,
as depicted in Figure 3(a), special non-uniform mem-
ory access (NUMA) architectures exist as well, as il-

2Here multiple parallel communication channels exist only
between the main memory and the memory controller, not be-
tween the controller and the cores.

3A cache is a small fast memory that can exploit data locality
by keeping most recently used data available on-chip and thus
reduce the traffic to the main memory.
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Computer Register L1 Cache L2 Cache L3 Cache Memory

Server Size 1000 B 64 KB 256 KB 2–4 MB 4–16 GB
Speed 300 ps 1 ns 3–10 ns 10–20 ns 50–100 ns

Mobile Size 500 B 64 KB 256 KB 256–512 MB
Device Speed 500 ps 2 ns 10–20 ns 50–100 ns

Table 1: Typical memory hierarchy with multiple levels of caches [4].
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Figure 3: Multi-core architectures with hierarchical levels of caches.

lustrated in Figure 3(b). With NUMA, multiple mem-
ories (which cover different ranges in the shared ad-
dress space) are available with different distances to
the processors. As a result, each processor can access
its closest memory quickly and such local accesses
can occur in parallel. Accesses to non-local memories
are possible too, but need to go through the intercon-
nect (e.g. crossbar) and thus are significantly slower.

2.1 Intel Xeon Phi Example

As one real-world example, we quantify the main
memory bottleneck for an industrial many-core pro-
cessor, namely the Intel Many Integrated Core (MIC)
architecture. Specifically, Figure 4 depicts the struc-
ture of the Xeon Phi coprocessor chip [7] which can
be classified as a symmetric multiprocessor (SMP)
with shared uniform memory access (UMA) [8].

The single die of the Xeon Phi 5120D chip inte-
grates 60 processing cores, each based on the x86
instruction set architecture (ISA). The parallel pro-
cessing cores communicate via a high performance
bidirectional ring interconnect. Each core includes

Figure 4: Intel Xeon Phi coprocessor architecture
with bidirectional ring interconnect [7].

a 32 KB L1 instruction and data cache, as well as a
private 512 KB L2 cache and can fetch and decode
instructions in-order from four hardware thread con-
texts. Thus there are in total 240 logical cores avail-
able for highly parallel processing.

We have measured the main memory access latency
using a simple ping-pong algorithm for an idle situa-
tion (2 cores communicate, all other cores are idle)
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and also for a busy situation (half of the cores are
communicating, the other half are idle) [9]. Our sta-
tistical evaluation of the measurement results shows
that the memory access latency for the Xeon Phi co-
processor reaches hundreds to thousands of cycles.
Especially when multiple pairs of communication oc-
cur concurrently, the core-to-memory communication
becomes very expensive and unpredictable.

Figure 5 plots the core-to-memory-to-core dis-
tances from core 0 to core 4n + 1 (0 ≤ n ≤ 59) on
a busy coprocessor (green line), in comparison to the
idle situation when only two cores communicate with
each other (blue line). On an idle chip, the core-to-
core latency is relatively stable between 1,000 and
1,500 cycles. The corresponding core-to-memory la-
tency is more than 600 cycles on average. On the
other hand, when half of the chip is busy and 120
cores compete for access to the memory, the core-to-
core communication latency varies widely and grows
up to 10,000 cycles for one round trip [9].

Figure 5: Intel Xeon Phi memory latencies measured
from core 0 to memory to other cores at 1% (blue) and
50% (green) core utilization [9].

3 Grid of Processing Cells (GPC)

In order to avoid the traffic jam through the memory
bottleneck which persists despite costly cache hier-
archies, we propose a scalable multiprocessing ap-
proach where processing cores are paired with local
memories. Placing many such pairs on the chip can
ultimately eliminate the need for expensive caches. In
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Figure 6: Proposed Grid of Processing Cells (GPC).

other words, we envision many-core processors where
on-chip caches are replaced with local memories4.

Similar to standard logic cells which paved the
way to scalable digital circuits design, we propose
a Grid of Processing Cells (GPC) structure where
processor-memory pairs are arranged on-chip in a
two-dimensional array with local interconnect. Using
Flynn’s taxonomy [12], such a GPC processor clas-
sifies as a multiple instruction streams, multiple data
streams (MIMD) architecture.

3.1 Generic GPC Architecture

In a generic GPC as shown in Figure 6, each cell con-
sists of a fully equipped general-purpose processing
core Ci j with its own local memory Mi j of substan-
tial size and high speed (SRAM). Pairs of processing
cores and local memories are placed on the chip in a
two-dimensional array of x by y cells and can be iden-
tified by row and column indices i and j, respectively.

In addition to its own local memory, each process-
ing core also has access to the local memories of
some of its closest neighbors. Subject to the spe-
cific GPC configuration chosen (three variants are de-
scribed below), the access latency to the reachable
memories will generally vary (NUMA). A core’s own

4In embedded systems design, a similar approach is the use of
scratchpad memory (SPM) for embedded processors [10, 11].
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local memory has the highest priority, followed by
the neighbors’ memories. The cores at the edges of
the chip also have access to slower off-chip memory
(large DRAM and/or memory-mapped I/O units).

While all GPCs are expected to follow a regular
overall structure, the grid size (number of rows and
columns), the cell parameters (e.g. homogeneous or
heterogeneous core types and local memory size), and
the connectivity among neighbor cells can be config-
ured differently, for example, to match the desired ap-
plication characteristics. The following sections spec-
ify three scalable GPC configurations that vary in the
number of memories a processing core can access.

3.2 Hierarchical GPC Architecture

The on-chip connectivity between the processing cells
of a GPC can be arranged hierarchically, for exam-
ple, using an H-pattern. Figure 7 shows a hierarchi-
cal GPC architecture with 16 processing cells (PCs).
Each PC is a pair of a processing core and a local
memory, as indicated for cell 12 by the red border
around Core12 and M12. Pairs of neighboring PCs
are connected by a bus, and so are pairs of PC pairs,
and so on. At the top of the interconnect hierar-
chy a large off-chip memory (DRAM) is available as
well. Note that this hierarchical architecture techni-
cally allows every core to access every memory via

the bus-based interconnect5, but the access is faster
the closer the memory is located to the processing
core (NUMA).

3.3 “Checkerboard” GPC Architecture

The GPC on-chip interconnect can also be established
as a regular 2D mesh of alternating processing cores
and local memories. Figure 8 shows the so-called
“checkerboard” GPC architecture in a 4-by-4 cell
configuration. Due to the alternating placement pat-
tern, we distinguish between L-type (green border)
and R-type (red border) processing cells (PCs). Each
PC again contains a processing core with local mem-
ory, but the core is located either at the left (L-type)
or at the right side (R-type). In other words, odd row
numbers are composed of R-type cells, even rows are
L-type cells.

The 2D mesh interconnect allows each processing
core to directly access its own and the memories of
three of its neighbor cells, enabling extremely fast
data transfer among neighboring processing cores. In
Figure 8 for instance, Core11 owns its local memory
M11, but also has immediate access to the neighbor
memories M01, M12, and M21. At the chip edges,

5The access to every memory from every core in the proposed
hierarchical GPC is in contrast to the “checkerboard” and 3D
GPC architectures where access to memories outside of a cells
immediate neighborhood can only be established indirectly with
the explicit assistance of other cores’ forwarding the data.
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Figure 8: 4-by-4 “checkerboard” GPC with L-type (green) and R-type (red) processing cells.

we again connect additional large off-chip memories
(DRAM) and/or memory-mapped I/O units.

On a “checkerboard” GPC in general, every pro-
cessing unit CR

i, j in a R-type PC has direct access to
its own memory Mi, j, as well as to its neighbor mem-
ories Mi−1, j, Mi, j+1, and Mi+1, j, whereas a core CL

i, j in
a L-type PC has direct access to its own memory Mi, j,
as well as to its neighbor memories Mi−1, j, Mi, j−1,
and Mi+1, j. Whenever any index becomes negative or
larger than the corresponding GPC chip dimension,
the off-chip memories are accessed.

The “checkerboard” GPC connectivity can be es-
tablished by priority-based multiplexing interconnect,
as depicted for an R-type6 PC in Figure 9. Shown
by use of SystemC TLM-2.0 [13] initiator and target
sockets, the PC Core is connected to its local memory
via a de-multiplexer and a multiplexer (with highest
priority). Surrounding neighbor memories are con-
nected to the blue target sockets to the North, East,
and South (with lower priority). Vice versa, surround-
ing neighbor cores can access the memory M via the
gray initiator sockets from the North, West, and South
(also with lower priority).

We note that the multiplexer-based interconnect in
the “checkerboard” GPC goes hand in hand with the

6The corresponding L-type PC is a mirror image of the R-type
figure.

M Core

Figure 9: R-type processing cell (PC) in the “checker-
board” GPC with SystemC socket connectivity.

mapping of physical addresses assigned to the memo-
ries on- and off-chip. For example, a 32-bit address
space can reserve 1 bit for on- vs. off-chip mem-
ory addresses, as well as 2 bits each for the on-chip
memory indices of a 4-by-4 GPC. This way, the de-
multiplexing logic needed in each cell can be of min-
imum complexity [2].

3.4 3D GPC Architecture

While the “checkerboard” GPC specified in Sec-
tion 3.3 allows each processing core direct access to
four memories (in North, East, South, and West direc-
tion), it can be easily extended with access to another
local memory that may be placed conceptually (or
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physically, if fabrication technology allows it7) atop
(or below) each core. Such a 3D GPC architecture
extends the number of accessible memories for each
processing core to five (namely the own local memory
in addition to the neighbors’ memories in North, East,
South, and West direction) and no distinction between
L-type and R-type PCs is necessary any more. Con-
sequently, the multiplexing interconnect for the 3D
GPC can be established with a trivial extension of the
“checkerboard” scheme (Figure 9) by adding one ex-
tra port at the multiplexer and de-multiplexer.

4 Conclusion and Future Work

In this position paper, we have reviewed the main
memory bottleneck in computers which causes se-
vere performance degradation and, despite decades
of research in computer architecture design, still per-
sists with today’s multi- and many-core processors.
In order to address this grand challenge, we propose
an alternative computer organization called Grid of
Processing Cells (GPC) where processing cores are
paired with local memories and are placed on the
same chip in a scalable 2-dimensional array. In ad-
dition to a generic GPC, we specify three GPC vari-
ants in more detail, namely a hierarchical, a “checker-
board”, and a 3D GPC.

While the proposed GPC approach jeopardizes the
notion of a globally shared memory space and thus
poses significant challenges to established software
design and programming practices8, it promises to
largely remove the need for expensive multi-level
caches and corresponding waste of precious chip area
and high power consumption. Moreover, the GPC or-
ganization is scalable and thus can serve as a fabric
for long-term growth in computing performance and
truly parallel processing.

We are optimistic that the specified architecture
variants can serve as valuable starting points for fruit-
ful research to further study, model, simulate, evalu-
ate, refine, and extend the proposed GPC as a promis-

7The physical challenges to 3D chip manufacturing due to
limitations in process and fabrication technology are outside the
scope of this work.

8Such software design challenges are a promise of exciting
future work.

ing future computing platform.
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Wang, and Rainer Dömer. Modeling of a 4-by-4
checkerboard GPC in SystemC. Personal com-
munication, October 7 2021.

[3] John von Neumann. First draft of a report on the
EDVAC. Technical report, University of Penn-
sylvania, June 1945.

[4] John L. Hennessy and David A. Patterson. Com-
puter Architecture, Fifth Edition: A Quantitative
Approach. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 5th edition, 2011.

[5] Wikipedia contributors. Modified harvard
architecture — Wikipedia, the free encyclo-
pedia. https://en.wikipedia.org/w/index.
php?title=Modified Harvard architecture&
oldid=1070083742, 2022. [Online; accessed
13-April-2022].

[6] David A. Patterson and John L. Hennessy. Com-
puter Organization and Design - The Hardware
/ Software Interface (Revised 4th Edition). The
Morgan Kaufmann Series in Computer Archi-
tecture and Design. Academic Press, 2012.

[7] Intel Corporation. Intel(R) Xeon Phi Coproces-
sor. Datasheet, Reference Number: 328209-
001EN, November 2012.

[8] Intel Corporation. Intel(R) Xeon Phi Coproces-
sor System Software Developers Guide. Report,
SKU# 328207-001EN, November 2012.

[9] Guantao Liu, Tim Schmidt, Ajit Dingankar,
Desmond Kirkpatrick, and Rainer Dömer. Op-
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