Center for Embedded and Cyber-physical Systems
University of California, Irvine

RISC Compiler and Simulator, Release V0.6.0:
Out-of-Order Parallel Simulatable SystemC Subset

Guantao Liu, Tim Schmidt, Zhonggi Cheng, Daniel Mendoza andé&d&dmer

Technical Report CECS-19-04
September 30, 2019

Center for Embedded and Cyber-physical Systems
University of California, Irvine
Irvine, CA 92697-2620, USA
+1 (949) 824-8919

http://www.cecs.uci.edu/~doemer/risc.html

http://www.cecs.uci.edu/~doemer/risc.html

RISC Compiler and Simulator, Release V0.6.0:
Out-of-Order Parallel Simulatable SystemC Subset

Guantao Liu, Tim Schmidt, Zhongqgi Cheng, Daniel Mendoza and&d&dmer

Technical Report CECS-19-04
September 30, 2019

Center for Embedded and Cyber-physical Systems
University of California, Irvine
Irvine, CA 92697-2620, USA
+1 (949) 824-8919

http://www.cecs.uci.edu/~doemer/risc.html

Abstract

The IEEE SystemC standard is widely used to specify and aenklectronic System Level (ESL) design
models. Despite the wide availability of multi-core pragashosts, however, the Accellera reference simulator
is still based on sequential Discrete Event Simulation (P&l executes only a single thread at any time.

Parallel SystemC simulators have been proposed which rutipteuthreads simultaneously based on syn-
chronous Parallel Discrete Event Simulation (PDES) seticantSynchronous PDES, however, limits parallel
execution to threads that run at the same time and delta cylelereover, most approaches require manual
preparation of the SystemC model and rely on the designegrfopn difficult conflict analysis.

In this report, we describe the Recoding Infrastructure &ystemC (RISC) approach where a dedicated
SystemC compiler and advanced parallel simulator impla@en-of-Order Parallel Discrete Event Simulation
(000 PDES) for SystemC. Using automatic conflict analysggetdan Segment Graph (SG) abstraction, OoO
PDES can execute threads safely in parallel and out-of+ofaleead of time) and thus achieves fastest simulation
speed, but nevertheless maintains the standard Systermahsesrwith maximum compliance.

This report describes the RISC Compiler and Simulator andildethe SystemC subset supported by the
open source RISC Release V0.6.0, as of September 30, 20¢8mparison to the previous V0.5.0 release in
2018, RISC is more efficient and robust, and now supportsrnfysis and safe simulation of TLM-2.0 models,
as well as the integration with Simics virtual platforms.

http://www.cecs.uci.edu/~doemer/risc.html

Contents

1 Introduction\

2 Out-of-Order Parallel Simulation

2.1 Notations e e e

\2.2 Discrete Event Scheddler
\2.3 Parallel Discrete Event Scheduler.
\2.4 Out-of-Order Parallel Discrete Event Scheduler

3 RISC Compiler and Simulator

3.1 SegmentGraph e
3.2 Partial SegmentGraph
3.3 Conflict Analysis
3.3.1 Static Analysis e
3.3.2 Dynamic ANalySiSot e
3.4 Source Code INStrumentationo
35 Library Support
3.6 Support for Data-Level ParallelisSm oo
3.7 Support for SystemC TLM-2.0 o o e
3.8 CompilerBackend

3.9 Simulator

4 Out-of-Order Parallel Simulatable SystemC Subset
\4.1 SystemC Hierarchical Structure of Modules and Channels

4.2 SystemC Threads

4.3 SystemC Transaction Level Modeling (TLM)
4.4 SystemCDAtATYPES . . . o o o oo
4.5 SystemC Utilities and Other Constructs

5 RISC Analysis and Transformation Tools

51 RISCVISUAITOO!ottt
5.2 Simicg)Virtual Platform Integration

6 RISC Open Source Software

6.1 Open Source Code and Documentation.
6.2 Binary Image for “Plug-and-Play” Evaluation

7 Conclusion

\7.1 Future Work e e

Acknowledgementé

References

o ww N

0o N o O

16
17
17
26
26
27

27
27
28

29
29
30

30
30

31

31

A Appendix: RISC Manual Pages

A.1 Manual Page of the RISC Compiler and SIMUIAtOTr . « . o v o
A.2 Manual Page ofthe RISC Elaborator i e
A.3 Manual Page of the RISC SIMD AdVISOI o oot e e
A.4 Manual Page ofthe RISC Visual Tool o ..
A.5 Manual Page of the RISC Tree ﬂ)ol
A.6 Manual Page of the RISC LISt TOO . . .+« v v voe et e e e e e e

B Appendix: RISC Software Package Documentation

B.1 Overview of the RISC Software Packbge
B.2 Copyright of the RISC Compiler and SImulator oo iees .
B.3 Open Source License of the RISC Compiler and Simulator
B.4 Installation Instructions of the RISC Compiler and Simulator
B.5 Change Log of the RISC Compilerand Simulator«.c....

35
35
40
43
46
48
49

52
52
54
55
56

List of Figures

1 Traditional Discrete Event Simulation (DES) scheduler for Systme 3
2 Synchronous Parallel Discrete Event Simulation (PDES) schedul8y&temC. 4
3 Out-of-Order Parallel Discrete Event Simulation (OoO PDES) schethr&ystemC. 5
4 RISC Compiler and Simulator for Out-of-Order PDES of SystemC. 6
5 RISC software stack. e e 6
6 RISC internal representation. e 7
7 Scaled RISC tool flow with Partial Segment Graph technology. 8
8 RISC Elaborator feeds dynamic elaboration information to RISC Compilgurmise conflict
analysis. e e e 9
9 Control-flow abstractions fowait _in library functions. 12
10 Different source code domains of a design model. 12
11 SystemC TLM-2.0 modelofaDVDplayer. uu.... 14
12 Module hierarchy visualization of a SystemC model of a Canny edgetdefec 27
13 Module hierarchy visualization of a TLM-2.0 DVD player example. 28
14 Two different Simics simulations of the same model with the left-side using daBt:hSystemC
\ kernel and t\he right-side featuring RISC kernel for out-of-ordealpel multithreading of Sys-
temCthreads e 29
15 Linux commands to quickly evaluate RISC in a Docker container 30

List of Tables

1 RISC V0.6.0 Out-of-Order Parallel Simulatable SystemC Subset 18
2 RISC V0.6.0 Out-of-Order Parallel Simulatable SystemC Subset (con)mued 19
3 RISC V0.6.0 Out-of-Order Parallel Simulatable SystemC Subset (conjinued. 20
4 RISC V0.6.0 Out-of-Order Parallel Simulatable SystemC Subset (conjinued. 21
5 RISC V0.6.0 Out-of-Order Parallel Simulatable SystemC Subset (conjinued. 22
6 RISC V0.6.0 Out-of-Order Parallel Simulatable SystemC Subset (conjinued. 23
7 RISC V0.6.0 Out-of-Order Parallel Simulatable SystemC Subset (conjinued. 24
8 RISC V0.6.0 Out-of-Order Parallel Simulatable SystemC Subset (con}inued. 25
9 RISC V0.6.0 Out-of-Order Parallel Simulatable SystemC Subset, TLM-I@tRes 26

RISC Compiler and Simulator, Release V0.6.0:
Out-of-Order Parallel Simulatable SystemC Subset

Guantao Liu, Tim Schmidt, Zhongqi Cheng, Daniel Mendoza and Raner Domer
Center for Embedded and Cyber-physical Systems
University of California, Irvine
Irvine, CA 92697-2620, USA
http://www.cecs.uci.edu/~doemer/risc.html

Abstract

The IEEE SystemC standard is widely used to specify and simulate Electystéo@_evel (ESL) design models.
Despite the wide availability of multi-core processor hosts, however, telldca reference simulator is still
based on sequential Discrete Event Simulation (DES) and executes sintyl@thread at any time.

Parallel SystemC simulators have been proposed which run multiple thigadiltaneously based on syn-
chronous Parallel Discrete Event Simulation (PDES) semantics. Synchs PDES, however, limits parallel
execution to threads that run at the same time and delta cycle. Moreowst, approaches require manual
preparation of the SystemC model and rely on the designer to perforputiffonflict analysis.

In this report, we describe the Recoding Infrastructure for SystemQORiSproach where a dedicated Sys-
temC compiler and advanced parallel simulator implement Out-of-Ordeallea Discrete Event Simulation
(000 PDES) for SystemC. Using automatic conflict analysis based oreSe@raph (SG) abstraction, OoO
PDES can execute threads safely in parallel and out-of-order (ahetimhef and thus achieves fastest simulation
speed, but nevertheless maintains the standard SystemC semantics xittumaompliance.

This report describes the RISC Compiler and Simulator and details then8gstebset supported by the open
source RISC Release V0.6.0, as of September 30, 2019. In comp@arigee previous V0.5.0 release in 2018,
RISC is more efficient and robust, and now supports the analysis &disaulation of TLM-2.0 models, as well
as the integration with Simics virtual platforms.

1 Introduction

As an IEEE standard [1], the SystemC System Level Description Laegi®dL) is widely used for the spec-
ification, modeling, validation and evaluation of Electronic System Level jESbdels. Under the Accellera
Systems Initiative [2], the SystemC Language Working Group [3] maintaihemig the official SystemC lan-
guage definition, but also provides an open source proof-of-goriteary [4] that can be used to simulate
SystemC design models. However, implementing the classic scheme of Disceste3twiulation (DES), this
reference simulator runs sequentially and cannot utilize the parallel corgpatources available on multi-core
(or many-core) processor hosts. This severely limits the execution sp&ydtemC simulation.

In order to provide faster simulation, Parallel Discrete Event Simulation &[& has recently gained again
significant attraction (examples include [6], [7], [8], [9], [10], aridl]). The PDES approach issues multiple
threads (i.eSCMETHODSC. THREADandSC CTHREADconcurrently and runs them on the available proces-
sor cores in parallel. In turn, the simulation speed increases significantly.

http://www.cecs.uci.edu/~doemer/risc.html

Regular PDES is synchronous, however. That is, time advances glaipalgll threads execute in lock-step
fashion. Here, the total order of time imposed by synchronous PDES still linsitsghortunities for parallel ex-
ecution. When a thread completes its evaluation phase, it has to wait untileltbibads finish their evaluation
phases as well. Earlier completed threads must stop at the simulation cyate dadravailable processor cores
are left idle until all runable threads reach the cycle barrier.

In order to overcome this problem, we have developed a novel techridjad ©ut-of-Order Parallel Discrete
Event Simulation (OoO PDES) [12, 13, 14, 15]. By localizing the simulation time dovidual threads and
carefully handling events at different times, the simulation kernel can thseads in parallel and ahead of time,
following a partial order of time without loss of accuracy. Thus, Ooo PBIgS8ificantly reduces the idle time
of available parallel processor cores and results in maximum simulation,spleée maintaining the traditional
language and modeling semantics.

The O00 PDES technique was originally implemented based on the SpecCdarj@6al7, 18, 19]. In this
report, we document our efforts to apply OoO PDES to the IEEE System@ §@ 21, 1] which is both the
de-facto and official standard for ESL design today. In particulardeseribe our Recoding Infrastructure for
SystemC (RISC) [22] which consists of a dedicated SystemC compiler argsponding out-of-order parallel
simulator and implements OoO PDES with prediction for SystemC [23].

The remainder of this report is organized as follows: After a brief dgson of the simulator scheduling
algorithms used for DES, PDES and OoO PDES in Section 2, we describd 3tz Gmpiler and Simulator
proof-of-concept prototype in Section 3. In Section 4, we then list inildb@SystemC subset that is supported
by the current RISC Release V0.6.0 (2019-09130) Section 5, we describe additional analysis and transfor-
mation tools built on top of RISC, and outline the open source distribution o€RMISSection 6. We finally
conclude this report in Section 7.

2 Out-of-Order Parallel Simulation

In this section, we briefly outline the scheduling algorithm used in out-ofrgpdeallel simulation. We do
this incrementally, starting from the traditional Discrete Event Simulation (DEBgduler, then describe the
synchronous Parallel DES (PDES) extension, and finally define thef@Dtder PDES (OoO PDES) scheduling
algorithm.

2.1 Notations

To formally describe the discrete event scheduling algorithms, the followdtagions are introduced.

1. Each SystemC threa@C METHODSC. THREADand SC.CTHREADIs assigned a localized time stamp
(tthl 6Ih)

2. Each eventgc _event) is assigned a notification time stantg Qe), whereEVENT S= UEVENT $;.
3. Threads are grouped into different queues. Specifically,

(a) QUEUES= {READY, RUN, WAIT, WAIT TIME}.
(b) READY= Uth; s where Threadh is ready to run at timet ().
(c) RUN= Uth, 5 where Threadh is running at timet(,d).

1 Earlier versions of this technical report document the prior alphaselen2015/[24], the beta release in 2016 [25], the release
v0.4.0 in 2017/[26], and the release v0.5.0 in 2018 [27].

(d) WAIT = Uth, 5 where Threadh is waiting since timet(d).
(e) WAITTIME= Uth; o where Threadh is waiting for simulation time advance to Q).

READY == 27

th =Pick(READY); Run(th);

vch e PRIM_CHANNEL if ch's update method
is requested; perform ch's update method;
v
vth e WAIT, if th's event is triggered; Remove(th,
WAIT); Insert(th, READY); clear triggered events;

READY == 27

advance the simulation time;
move the first the WAITTIME to READY;

No
READY == @7

Figure 1: Traditional Discrete Event Simulation (DES) scheduler for &ySte

2.2 Discrete Event Scheduler

The Accellera reference simulation library of SystemC [4] is based on Blg8re 1 depicts such a traditional
DES scheduling algorithm. In DES, a single thread is running at all times. \&th#meads in thdREADY and
RU N queues complete their current delta cycle, the root thread resumesréoninsehe update and notification
phase. Then threads are woken up and moved frorMRAET queue back into thREADY queue. A new delta
cycle begins.

If no threads are ready after the update and notification phase, thenttime cycle finishes. The simulation
kernel advances the simulation time and processes the earliest timed evethé&/NAIT TIME queue. A new
cycle begins for the updated simulated time.

Finally, when both th&/AIT TIMEandREADY queues are empty, the simulation terminates.

2.3 Parallel Discrete Event Scheduler

In comparison to DES, regular synchronous PDES issues multiple thr&&BIETHODSC THREADand
SC CTHREADconcurrently in a delta cycle. These threads can then execute trulyatigban the multiple
available processor cores of the host.

Figure 2 shows the regular synchronous PDES scheduling algorithme levéiluation phase, as long as the
READY queue is not empty and an idle core is available, the PDES scheduler willassew thread from the

3

READY == @7

No

IRUNI < #CPUs
&& READY = 27 Immediate

Notification

th =Pick(READY);
Run(th);

AN

vch € PRIM_CHANNEL, if ch's update method
is requested; perform ch's update method;
]
vth e WAIT, if th's event is triggered; Remove(th, Delta Cycle
WAIT); Insert(th, READY); clear triggered events;

No
READY == @7

advance the simulation time;
move the first th e WAITTIME to READY;

Timed Cycle

No
READY == @7

Figure 2: Synchronous Parallel Discrete Event Simulation (PDES) atdrddr SystemC.

READY queue. If a thread finishes earlier than other threads in the same cyels,raady thread is assigned to
the idle processor core, unless there is no thread available RE#DY queue, in which case the core is kept
idle until the next delta cycle.

It should be emphasized that synchronous PDES implies an absolute bathie end of each delta and time
cycle. All threads need to wait at the barrier until all other runable tleréiadsh their current evaluation phase.
Only then the synchronous PDES scheduler resumes and performgitte apd notification phases, and finally
advances to the next delta or time cycle.

For the SystemC language in particular, there is yet another very imposjaettato consider when applying
PDES. For semantics-compliant SystemC simulation, complex inter-dependealggis over all variables in
the system model is a prerequisite to parallel simulation [28].

The Standard SystemC Language Reference Manual (LRM) [1] clstatys thatprocess instances execute
without interruption”. This requirement is also known as cooperative (or co-routine) multitgskimich is
assumed by the SystemC execution semantics. As detailed in [28], the pampicdbem of parallel simulation
is specifically addressed in the SystemC LRM [1]:

“An implementation running on a machine that provides hardware sugfeorconcurrent processes
may permit two or more processes to run concurrently, provided tieab@mavior appears identical to
the co-routine semantics defined [...]. In other words, the implementatiofdvibe obliged to analyze
any dependencies between processes and constrain their executiatthothe co-routine semantics.”

We will describe the required dependency analysis in more detail belove(itiod 3.3), as it is also needed
for out-of-order PDES.

2.4 Out-of-Order Parallel Discrete Event Scheduler

In 00O PDES, we break the strict order of time (the synchronous bahyelocalizing time stamps to each
thread. Figure 3 shows the out-of-order parallel DES schedulingitiigor Since each thread has its own
time stamp, the OoO PDES scheduler relaxes the event and simulation time uptiatéag more threads (at

different simulation cycles!) to run in parallel and ahead of time. This resulishigher degree of parallelism
and thus higher simulation speed.

v
vth € WAIT, if th's event is triggered at (te, d¢);
Remove(th, WAIT .5,); Insert(th, READYt, 5_+1); update

th's local time stamp to (te, de+1); clear triggered events;

move vth € WAITTIMEt, o to READY4, o;
update th's local time stamp to (t, 0);

No
READY == 27

Yes

IRUNI < #CPUs
&& READY != 27

No
| th =Pick(READY); | RUN == 27

Yes
<o

Yes
Remove(th, READYt, 5);
Insert(th, RUNt, 5); E—
Run(th); end

Figure 3: Out-of-Order Parallel Discrete Event Simulation (OoO PDE)daler for SystemC.

In comparison to the synchronous PDES in Figure 2, Figure 3 moves ghfiread theW AIT andWAITTIME
queues into th&@EADY queueas soon as possihléAlso, there is no specific point in the scheduling flow any
more for the classic delta and time cycles. Both delta and time updates arerpetflmcally for each thread,
provided that there are no possible conflicts in the way Ktb€on flictgth) condition is explained below).

In contrast to Figure |2 which performs requested update methods in primitarenels in each delta cycle,
Figure 3 does not contain this step any more. Due to the out-of-ordeddaig and the eliminated central
scheduling point for delta cycles, it is difficult to determine an efficientsafd point in the OoO PDES scheduler
when primitive channel update requests can be served. However, htagsapossible to safely fall back to
synchronous PDES when primitive channel updates are requested.

Note theNoConflictgth) condition shown in Figure 3. As already mentioned above for the synobson
PDES, detailed dependency analysis is needed to avoid data or evitiste&or any shared variables among the
parallel threads. Only iNoConflictgth) is true, a new thread is issued for parallel execution (moved from the
READYto theRUN queue).

We will be using advanced static compile-time analysis (and optionally dynamitmenanalysis, see Sec-
tion|3.3.2) to identify all such potential conflicts. Based on this information (alsitaple look-up is sufficient),
the O0O PDES scheduler can then at run-time quickly decide whether arseitof threads has any conflicts
with each other.

3 RISC Compiler and Simulator

To realize the OoO PDES approach for the IEEE SystemC language, senprew our Recoding Infrastructure
for SystemC (RISC) and describe the overall RISC Compiler and Simulaiof-pf-concept prototype (Release
V0.6.0 as of 2019-09-30).

Input Model Instrumented Model Executable
- systemc - Model
RISC Compiler ypa, h Target Compiler

systemc.h \ -)

L > Segment Graph || Source Code || | Model | | C++ n O”;;’:ﬁ;?er
i i i ar.c i
Modelcpp V] Conflict Analysis || Instrumentation ii, Compiler Simulation
7 RISC
SystemC
\Library

Figure 4: RISC Compiler and Simulator for Out-of-Order PDES of SystemC.

To perform parallel SystemC simulation in maximum compliance with the IEEE stdsganantics, we in-
troduce adedicated SystemC compilérhis is in contrast to the traditional SystemC simulation where a regular
SystemC-agnostic C++ compiler includes the SystemC headers and links theniogel directly against the
SystemC library.

As shown in Figure 4, our RISC compiler acts as a frontend that praed¢issdnput SystemC model and
generates an intermediate model with special instrumentation for OoO PDE®sttumented parallel model
is then linked against the extended RISC SystemC library by the target cortgilegular C++ compiler) to
produce the final executable output model. OoO PDES is then performedy dipmpunning the generated
executable model.

From the user perspective, we essentially replace the regular SysigmoStia C++ compiler with the
SystemC-aware RISC compiler (which in turn calls the underlying C++ compil@herwise, the overall Sys-
temC validation flow remains the same as before. It is just faster due to tHiepsiraulation.

For reference, the detailed Linux manual page of the RISC comisler and simulator is included in Ap-
pendix A.1 of this report.

Internally, the RISC compiler performs three major tasks, namely Segmeph &) construction, conflict
analysis, and source code instrumentation.

RISC
Segment Graph
SystemC IR
ROSE IR \
C/C++ Foundation

Figure 5: RISC software stack.

3.1 Segment Graph

RISC relies on a comprehensive software stack composed of complestdataures, as illustrated in Figure 5.
On top of the C/C++ standard libraries and the internal representation Bioe compiler [29], RISC builds a
SystemC internal representation which, in turn, carries the segmentdgmégobtructures.

6

The first task of the RISC compiler is to parse the SystemC input model intostirmetsyntax tree (AST) by
use of the Rose IR. Next, RISC creates a SystemC internal represeffitatiothe AST which reflects the Sys-
temC module and channel hierarchy, connectivity, and other Systenu@ispelations, as depicted in Figure 6.
This is similar to the SystemC-clang representation [30, 31]. For details onahi®fthe RISC application
programming interface (API), please refer to the Doxygen-generatashaentation [32].

Definition
iype_pointer_: Sglype*
+ast_pointer_: AstPointerV
+get_name(

int
): dnt
T 1
Object Function Class
= T 7 ~variables_: VariableVector
) 'g',_:—:r‘r"::#zn.""_‘\ :21“';: it smodule_definitions_: MoguleDefinitisnvectar
+get_arguments(]: SgArgumentl: sprimit ions_: PrimitiveChannelDefinitionVector
+hicrar han nitiens_: HicrarchicalChannelDefinitienVector
L
| | e ventvector
-1 InPortvectar
|Event‘ Variable ‘Instan:el |'I'hrend| |CThreud| |Mathud| +inoutports_; InbutParts
— = i . 1 | 1 | | ‘eutperts : OutPorts
—] — AstPointervariadleDeclaration k 3 3. 1t 1 T
[InPort] [OutPort| [InoutPort] [Modulelnstance | [channelinstance | Module [Channel]|
e] e | 1 Tes_: Medulelnstancevector —
PrinitivachannelInstanceVector Fal
HierarchicalChannelInstanceVector
+threads_: Threa
~cthreads_: CThre
+methods_ MethedVector

PrimitiveChannellnstance | [HierarchicalChannellnstance HierarchicalChannel [PrimitiveChannel]
I . |
| | e

tiveChannelInstanceVector
- ChannellnstanceVector

Figure 6: RISC internal representation.

On top of this, the RISC compiler then buildSagment Graph (S@gata structure for the model. A Segment
Graph (SG) [12, 15] is a directed graph that represents the code segemecuted during the simulation between
scheduling steps. That is, every segment is associated with a schealjepe@int, i.e. await statement in
SystemC.

At run time, threads switch back and forth between the stateswiing (threads irREADYandRU N queues)
andwaiting (threads inWAIT andWAIT T IME queues). Whernunning, they execute specific segments of their
code. These code segments make up the nodes in the Segment Gragasvduges in the graph indicate the
possible transitions from one segment to another. In other words, tles @uighe Segment Graph reflect an
abstraction of the model’s control flow.

For a formal description of the Segment Graph and its construction algotilenmterested reader may refer
to [15]. For details on the RISC compiler API, please refer to the Doxygarerated documentation [32].

3.2 Partial Segment Graph

The segment graph is the foundation data structure for the static analysigeVvet, there are restrictions: the
entire source code for the input design must be available in one file, whiehrbt scale. This disables the use
of Intellectual Property (IP) and hierarchical file structures.

To solve this problem, we have proposed and implemented a Partial Segrapht(BEG) as the representation

7

of the behavior model for each separate translation unit or IP. By congof8Gs, our tool is able to reconstruct
the complete SG for the input model [33].
The extended tool flow is shown in Figure 7.

IP Provider 1]
I |
IP.h M1.h Mn.h

I |

| Source Code |

IP.cpp I M1.cpp Provider Mn.cpp |

I |

Partial | Partial Partial I

Design Design Design I

Generator I Generator Generator
1 pso IP.pd I Ml.o) Ml.pg Mn.o Mn.pg |
L |
RISC main.cpp
redacted.pd

C++ Executable

Compiler 7

-——-—II‘

|
|
Compiler | 71
|
|
|

Figure 7: Scaled RISC tool flow with Partial Segment Graph technology.

A PSG is recursively built by traversing the AST of the current translaiimnh The main difference between
PSG and SGis that PSG is built based on an incomplete AST, where definitfanstion calls may be unknown.

To deal with this uncertainty incurred by the non-defining function callsjntr@duce three types of PSG
nodes, which facilitate the integration of PSGs. They @egment NodePartial Segment Nodand Partial
Function Call Node

The PSG is constructed by the IP provider. It is stored as a PSG file anthjzatible with the Dot format
so that the PSG can easily be visualized. The PSG file is shipped togetheravith fites to the user. On the
user’s side, the RISC compiler is able to load and parse the PSG files. thedoaded PSGs are integrated to
form a complete SG. During integratidmartial Function Call Nods are replaced by the corresponding PSGs of
the functions.Partial Segment Nodeare merged int&egment Node After the integration, the graph becomes
a valid and complete SG.

An IP provider can also inspect and redact the automatically generatedile$ so that the implementation
details remain hidden. This way the IP users will not be able to obtain the innégnmaptation and the IP
remains protected, while the correctness of behavior model of the destjihnsaintained [33].

3.3 Conflict Analysis

The Segment Graph data structure serves as the foundation for segmgict analysisAs outlined earlier, the
000 PDES scheduler must ensure that every parallel thread to be fszsied conflicts with any other threads
currently in theREADY andRUN queues. Here, we utilize the RISC compiler to detect any possible conflicts
between these threads already at compile time.

Potential conflicts in SystemC include data hazards, event hazards, angl hiaziards, all of which may exist
among the segments executed by the threads considered for parallgi@xeBlease refer to [15] for a detailed
discussion of these hazards which, if ignored, would become dargyexos conditions at run time.

Both possible hazard detection approaches, nastalyc analysis at compile time anmdlynamicanalysis at
run time, are supported by the RISC Compiler and Simulator. It should be smptahat the accuracy of this
analysis has significantly improved with the RISC release V0.5.0. As outlinestail ah [34], the RISC compiler
now supports Port Call Path (PCP) sensitive conflict analysis whichsiiekeare of the actual channel instances
used by threads from different modules. This much more precise analysiavoid false positive conflicts in
many cases and thus increases the efficiency of the simulation which, inunsfaster.

3.3.1 Static Analysis

Static analysis relies purely on the available information in the SystemC soudeeofaghe design model at
hand. In this case, the RISC compiler carefully performs conservatirdifitation of the potential hazards in
the model.

Identifying all possible hazards is a complex analysis task that requiréglthenderstanding” of the module
hierarchy. One option is to statically extract the module hierarchy and antigzndividual threads. Here, the
RISC compiler follows the approach outlined in [15].

In many cases, however, not all of the needed information can be gdtbtatically. For instance, design
parameters may be passed via the command line, for example, to define the nmbdules, certain channel
characteristics, or other configuration information. In such SystemC muadthls dynamic elaboration phase,
the instantiated modules, channels, and ports are typically created bylaspoéndew operators in a dynamic
fashion. Thus, the structural parameters of the model are only availahie ime, so they cannot be statically
analyzed. In these cases, dynamic analysis is needed.

3.3.2 Dynamic Analysis

Dynamic analysis takes run-time information into account and then augmentka$isec cstatic analysis. The
combination of static and dynamic analysis is here caildatid analysig35].

Input Model Executable Model

Out-of-Order
S)'\/Astzrr}c > RISC Compiler Parallel
ode Simulation
RISC Instance
Elaborator Elaboration Model Congzglvny

Dynamic
Elaboration

Figure 8: RISC Elaborator feeds dynamic elaboration information to RIS@p8er for precise conflict analysis.

Figure 8 shows the extended RISC design flow with support of dynamigsisaAs in the regular compilation
flow discussed above in Figure 4, the input SystemC model is processgbe BRISC Compiler to generate an
executable model for out-of-order parallel simulation, as shown on thieaibpf Figure 8 from left to right.

The dynamic analysis step, shown on the bottom half of Figure 8, extendsniglation flow by a prepro-
cessing step. The input SystemC model is fed into the RISC Elabaator which produces an executable

9

model that only performs the SystemC elaboration phase when run. At thefethe elaboration, the ex-
ecutable model automatically traverses the created module hierarchy via dteam&yintrospection API and
dumps this detailed structural design information, shown as Instance QiwityeData in Figure 8, into a file
(model _nane.elab). This file is in turn provided as an input to the RISC compiler, so that therdigadly
created design hierarchy and specific instance connectivity can defarsprecise conflict analysis. The in-
stance connectivity data file includes the actual module hierarchy, thispect mapping, and the actual target
variable mapping of references.

Note that the use of the RISC Elaborator is optional. Design models whichec&ully analyzed in static
fashion can be fed directly into the RISC Compiler without any pre-praogsy the RISC Elaborator.

For reference, the detailed Linux manual pages of the RISC Comjsiter and RISC Elaboratoglab are
included in Appendix A.1 and Appendix A.2, respectively.

3.4 Source Code Instrumentation

As a result of the conflict analysis (static, dynamic, or hybrid [35]), tH@QRcompiler generates several conflict
tables that describe all possible conflicts between threads in any two sisgridsing this conservative conflict
information, the simulator can then at run-time quickly determine by a simple tablaup@khether or not it is
safe to issue any given thread in parallel or ahead of time.

As shown above in Figure 4, the RISC compiler and simulator work closelyhtegerhe compiler performs
conservative conflict analysis and passes the analysis results to thetsimilizh then can make safe scheduling
decisions quickly.

To pass information from the compiler to the simulator, we use automatic modelmesitation. That is,
the intermediate model generated by the compiler contains instrumented (auttyngénarated) source code
which the simulator can then rely on. At the same time, the RISC compiler also instisinser-defined SystemC
channels with automatic protection against race conditions among communicadiadsh

In total, the RISC source code instrumentation includes four major components

1. Segment and instance IDs: Individual threads are uniquely idenkfieal creator instance ID and their
current code location (segment ID). Both IDs are passed into the simiktoel as additional arguments
to scheduler entry functions, includingait and thread creation.

2. Data and event conflict tables: Segment concurrency hazarde gatential data conflicts, event conflicts,
or timing conflicts are provided to the simulator as two-dimensional tables indexedsegment ID and
instance ID pair. For efficiency, these table entries are filtered foresdnptance path, and reference and
port mappings.

3. Current and next time advance tables, and thread state prediction tablesimulator can make bet-
ter scheduling decisions by looking ahead in time if it can predict the possibleefthread states. This
optimization is discussed in detail in [14] and is available in the RISC Compiler andl&or in ver-
sions 0.4.0 and later. Since thread state prediction for most models reqguiiydite additional compile
time but results often in higher simulation speed, it is enabled by default (ibeamrned off with the
SYSCDISABLE_PREDICTIONenvironment variable, see below).

4. User-defined channel protection: SystemC allows the user to designels for custom inter-thread com-

munication. To ensure such communication is safe also in the OoO PDES situatioa threads execute
truly in parallel, the RISC compiler automatically inserts locks (binary semaphor® these channels,

10

if needed, so that mutually-exclusive execution of the channel methods is guadan@herwise, race
conditions could exist when communicating threads exchange data.

Note that the source code instrumentation is performed automatically by the @8piler and no user-
interaction is necessary. However, the interested user may inspecttiueiested source code. It is stored in a
file namedrisc _nodel _name.cpp which serves as the input file to the compiler backend which in turn then
generates the final executable.

With RISC version 0.6.0, source code instrumentation is optimized for larggndesdels with many seg-
ments. Here, the conflict, time, and prediction tables can become fairly lahyeh wnnecessarily slows down
the code generation step during compilation. To avoid such inefficien@paate filerfodel _nanme.risc)
is automatically generated with binary images of the tables. This file is then read @he (automatically, just
like a shared library) to fill the conflict, time, and prediction tables neededdgithulator.

3.5 Library Support

In absence of PSG support (Section 3.2), there exists a significant limifatitime described conflict analysis
and source code instrumentation. It only works if the compiler has accéss émtire source code of the design
model. This is typically fine for smaller SystemC benchmark examples, but dbésld true for more complex
SystemC models where multiple translation units and/or library files are usededa tlases, the compiler has
access only to the function signatures (function declarations in head®t filet not to their implementation
(function bodies which are pre-compiled in the library or object files). sTithe compiler cannot analyze the
function bodies for potential conflicts, neither can it instrument any segbmemdaries (i.ewait calls) in the
library code with segment and instance IDs.

In its initial alpha version [24], the RISC Compiler and Simulator operatednthdeassumption that all library
code is thread-safe without any conflicts and does not contain any segmandaries (nevait statements).
This is reasonable for the standard C/C++ libraries used in a modern Linuicoement, as well as for the
specially prepared RISC SystemC simulator library. However, this assunpuig®s a significant limitation for
more complex SystemC models built around custom application libraries.

In order to mitigate this limitation, the beta version [25] and the RISC Compiler andl&onwersion 0.4.0
offered basic support for library code by usduriction annotationsThis annotation scheme for library functions
provides abstract information for both conflict analysis and segmemtdaoies|[35].

Specifically, the user can annotate function declarationspvdgma directives which specify whether or not
the function poses any potential conflicts. Tiotagma directives can also describe common situationsait
calls that the control flow in the function body contains.

For example, the standard math functegrt and the blockingead function of the SystemGc _fifo
channel can be annotated as follows:

/I standard math square-root function
#pragma RISC sqrt conflict-free no-wait
double sqgrt(double x);

/I sc_fifo blocking read function
#pragma RISC read conflict-free looped-wait event
virtual T read();

2 As of version 0.5.1, explicit mutex locks in user-defined channelsara@eeded any more when the channel methods can be fully
analyzed with PCP [34] and SCP [36] techniques. Such redundarst émekot instrumented any more.

11

Here, thesgrt function is declaredonflict-free because it is thread-safe and has no dangerous side
effects. Since this is true for many functions (e.g. most functions in the @atatibrary), the RISC Compiler
assumes this by default. Thus, thimgma statement is not explicitly needed.

Thesc _fifo::read function is also declarecbnflict-free because it operates in a standard SystemC
channel that is safely protected by a lock in the RISC simulator library. Meryvthis blockingsc _fifo::read
function is annotated deoped-wait because it does containnait statement in the body of a loop that is
waiting for available data, which is indicated by somnt . Thus, the RISC Compiler can take this segment
boundary into account when building the Segment Graph for a threadahethis function.

In general, a function is considerednflict-free if the corresponding function body contains no poten-
tial read/write access conflicts to any shared state with the other threadssimitilation model. Otherwise, it

must be annotated awt-conflict-free

no wait unconditional conditional looped
wait wait wait

Figure 9: Control-flow abstractions ferait in library functions.

For the annotation of segment boundaries contained in library functioms,e® shows the different control-
flow abstractions with regards twait function calls in the corresponding function body. In the first case,
no_wait , the function contains nwait statement and thus is a non-blocking function during the SystemC
simulation. The next two casespnditional _wait andunconditional _wait , apply to functions with
a conditional or non-conditionabait statement, respectively. The last case covers the possible encouater of
wait statement in a loop, such as the blockiegd call to asc _fifo channel discussed above.

The last parameter in the RIS€@agma annotation specifies the type of thait statement in the function
body, eitherevent for waiting for any notified event, or the minimum time increment that the simulator will
incur when executing the corresponding function, sucécagero-time or(42,SC _MS).

Sender Receiver
\)
setId(42) [~ . " “set1d (43
send(...l,___ ,Iw;lt("') \ ___,\recei\(re(; /S
// \\ Vprintf()/ 1
/ 3rd Party \ Standard
User Domain _ | IP Library) User Domain) C Library
RISC - i g
Parallel SystemC void waitO)
Library { ... = getID(); ... }

Figure 10: Different source code domains of a design model.

Figure 10 ([35] illustrates the different domains of source code in a Systemdzl where only the code
in the user domain is available for the instrumentation described above in S8ctiorfror library code, any

12

containedwait() calls cannot be instrumented. Here, the RISC Compiler and Simulator (vérgidhand
above) instruments the code before such library function calls s&tiD(SeglD) functions that store the
upcoming segment IDs for theait statements in the library in thread-local data. Then, whaih statements
without explicit segment ID arguments are executed in the library, the seédbeare obtained from the thread-
local data by use of getID() function in the RISC simulation library.

Note that the library support by use pfagma directives remains available (for backward compatibility
reasons) in the RISC Compiler and Simulator beyond version 0.4.0. Hovilegd?artial Segment Graph (PSG)
technology described in Section 3.2 offers an alternative solution that is moie general. In particular, the PSG
technology resolves two prior limitations. First, the annotations shown in F&jondy cover the cases of zero or
onewait statement in a library function. Multipleait statements were not covered. Thus, PSG technology
was designed in order to cover general control-flow inside of libramgtions which are now represented by their
own partial segment graphs. Second, PSG technology supports muligletetranslation units by building
and storing PSG files together with generated object files that then can geatetbagain into a complete SG
when the final simulation executable is being built [33].

3.6 Support for Data-Level Parallelism

As of version 0.4.0, the RISC Compiler and Simulator comes with support fidloiéing data-level parallelism,
also known as Single-Instruction-Multiple-Data (SIMD) vectorization [3Here, an advanced analysis tool,
namely the SIMD Advisosimd (see Appendix A.3), can identify possible locations in the SystemC model’'s
source code where data-level parallelism may be exploited for faster siomulan top of the thread-level paral-
lelism already exploited due to OoO PDES).

The SIMD Advisor adds a pre-analysis step to the RISC Compiler and Simtaidtow wheresimd pro-
vides the designer with candidates for loop vectorization. Specificathg performs advanced thread control-
flow and variable access analysis and then reports to the user the sodeckne numbers where loops qualified
for SIMD vectorization are found. The user confirms suitable locatioriadsrting#pragma simd directives
in front of the chosen loops. Finally, the design model is then compiled withntied dompilericpoc which
performs the vectorization and builds the executable for simulation with bothdhesd data-level parallelism.

Note that the manual confirmation by the designer is necessary. An exartipefadlowing C function:

void add(float xa, float x b, float *C, int n)
{
for(int i=0; i<n; i++)
{ ali] = afi] + b[i] + c[i];}
}

Here, arrays passed as pointers can only be vectorized if the useisdbat there is no vector dependence in the
way. This confirmation step is only possible with application knowledge, ntbjustatic compiler analysis. The
RISC SIMD Advisor is aware of SystemC and its concurrent multi-thread#ngasitics, and thus can identify
certain loops as potential candidates, but the final data independesa&cas must come from the user who
knows the application specifics (i.e. that the pointers point to non-ovénigaprays).

Exploiting both thread- and data-level parallelism can be very effeativeniny design models. Experimental
results in [37] show a nearly linear speedud\ok M, whereN andM denote the thread and data-level factors,
respectively.

The SIMD Advisor is documented in detail in the manual pagesiod listed in Appendix A.3.

13

3.7 Support for SystemC TLM-2.0

As of version 0.6.0, the RISC Compiler and Simulator comes with support fete8yC TLM-2.0 models, in-
cluding blocking transport interface (BTI), non-blocking transpottiface (NBTI), and direct memory access
interface (DMI) [36]. As an example, Figure |11 shows a SystemC TLMr2o@el of a DVD player which
decodes a stream of H.264 video and MP3 audio data using separatiedecall communications are mod-
eled using TLM-2.0 sockets and APIs. With the SystemC TLM-2.0 supportSyiseemC compiler is able to
accurately analyze the behavior of each process.

stimulus
T Video T_Audio_Left T_Audio Right

vFrame i alFrame s arFrame i

E .entanéledg E

. meml . mem2 1. mem3
ptr ptr ptr
mem mem mem

i vDecoder alDecoder arDecoder

.Main_ Thread

inFrame i

. Main_Thread

é

Figure 11: SystemC TLM-2.0 model of a DVD player.

“Main_ Thread

inFrame g

For TLM-2.0 model analysis, RISC uses the Socket Call Path (SCP)iteeh[B6] to increase the accuracy
of the static analysis for SystemC TLM-2.0 communication. SCP provides therBgscompiler with the
information regarding how a target is reached by the initiator through the-ZIMnterface. The idea is similar
to the Port Call Path (PCP) [34]. One main difference is that PCP is bagsatbto-channel connections whereas
SCP is for analyzing socket-to-module connections. Also different @R, a SCP is represented by a list of
sockets. When used together with Segment Graph, SCP helps the Systmpiecto perform instance-aware
conflict analysis, which provides similar benefits as to the use of PCP.

SCP is important for the SystemC compiler to understand the variable entantgadmender to reduce the
number of false data conflicts. Take BTl as an example, the variable ést@gt analysis happens in three
steps:

1. Identify original and alias variable: In this step, the compiler identifieseaptlginal variable encapsulated
in a generic payload bget _data _ptr , and b) the alias variable extracted from a generic payload by
get _data _ptr .

2. Reference analysis for generic payload with SCP: In the secondtkseepompiler analyzes the mapping
betweerparametric generic payloa(PGP) andeferred generic payloa@RGP).

14

3. Variable access analysis for entangled variables: Through theR&FPreference mappings, the corre-
sponding alias and original variables are entangled. Algorithm 1 in [3&]rdees this step in details.

Note that while BTI, NBTI and DMI communication is supported, our analysisschot support Blocking-to-
Non-Blocking nor Non-Blocking-to-Blocking communication styles. Ourlgsia does support different com-
munication structures, including direct communication, hierarchical comntigrigand interconnected commu-
nication. Our experiments [36] demonstrate the correctness and effeesiy of the approach with demonstra-
tion examples from Accellera [4] and three real world examples: DVD P|&§andelbrot Renderer and Bitcoin
miner.

3.8 Compiler Backend

After the automatic source code instrumentation, the RISC compiler passesntraigd intermediate model in
file risc _nopdel _name.cpp to the underlying regular C++ compiler. That target compiler then prodihees
final simulation executable by linking the instrumented code against the Ri8@Gded SystemC library.

By default, the RISC Compiler and Simulator rely on the GNU C++ commglet for the backend code
generation. Alternatively, the Intel C++ compiliepc may be used to generate a simulation executable that
is optimized for Intel processors with Single-Instruction-Multiple-Data (B)Mapabilities or the Intel Many-
Integrated-Core (MIC) architecture. Please refer to the command-limensgrisc:icpc and-risc:mic
respectively, which are documented in the manual pagesidor (see Appendix A.1) anélab (see Ap-
pendix A.2).

3.9 Simulator

Same as the classic Accellera proof-of-concept implementation [4], th€ BilBulator is not an explicit tool,
but a run-time library [38] that the generated executable SystemC model ésl ladainst. Thus, simulation is
performed by execution of the compiled model, the same way as in the clasdioto(lst faster).

The RISC simulator identifies itself by its log message at the beginning of the sinmutatio announcing
RISC 0.6.0 execution after the SystemC language version numBgstémC 2.3.1). It also adds the
Center for Embedded and Cyber-physical Systems (CECS) as a ctmtiibihe RISC-extended SystemcC li-
brary.

A simple HelloWorld model is shown running in the following example:

sh % ./Helloworld

SystemC 2.3.1-RISC 0.6.0 --- Sep 30 2019 09:42:00
Copyright (c) 1996-2019 by CECS and all Contributors,
ALL RIGHTS RESERVED

Hello World!

There are several environment variables which the RISC out-of-gralallel SystemC library recognizes.
These are logged at the beginning of the simulati@SCPRINT_MODBEMESSAGIHE defined.

ook RISC simulator mode: out-of-order parallel with predictio N %k
ook SYSC_PRINT_MODE_MESSAGE is defined ook
*kk SYSC_SYNC_PAR_SIM is not defined *hk
sk SYSC_VERBOSITY_FLAG_1 is not defined sk

15

*kk SYSC_VERBOSITY_FLAG_2 is not defined kk

Hokk SYSC_VERBOSITY_FLAG_3 is not defined ok
*kk SYSC_VERBOSITY_FLAG 4 is not defined *kk
Hokk SYSC_DISABLE_PREDICTION is not defined Hokk
ok SYSC_PAR_SIM_CPUS is 64 ok

The environment variabl8YSCSYNCPARSIM can be used to force the default out-of-order parallel sched-
uler to fall-back to synchronous parallel execution. By default (whedetined),SYSCSYNCPARSIM is
assumed to b&alse , so out-of-order parallel simulation (OoO PDES) with prediction is perfokm@n the
other hand, ISYSCSYNCPARSIM is defined, the simulator will execute in synchronous PDES fashion.

Also, as indicated above in Section 2.4, the RISC simulator automatically fallsdagkchronous execution
as soon as primitive SystemC channels are used with requests to updétanfnthus, such models will execute
in safe synchronous manner.

The variableSYSCVERBOSITYFLAG 1 throughSYSCVERBOSITYFLAG4 are used by the RISC simu-
lator at run-time to print debugging information about the simulator queuent processing, and time advances.
Such debugging lines are only printed when the corresponding variatfireed. Please refer to the manual
page of the RISC Compiler and Simulator for details (see Appendix Seéction A.1)

The variableSYSCDISABLE _PREDICTIONIs used by the RISC simulator to switch back to non-predictive
conflict detection. This avoids scheduling overhead at run time, butlysaaults in slower simulation due to
more false conflicts. IBYSCDISABLE_PREDICTION is defined, thread state prediction is not used during
out-of-order scheduling.

The environment variabl&YSCPARSIM_CPUS specifies the maximum number of parallel threads al-
lowed in out-of-order parallel simulation (nameCPUs in Figurel 3). For efficient simulation, this variable
should be set to a value suitable for the simulation host, e.g. the number ofbsa&RU cores. If unset,
SYSCPARSIM_CPUSdefaults to 64.

4 Out-of-Order Parallel Simulatable SystemC Subset

Over more than a decade, the SystemC language [21], which technically-s @gplication programming
interface (API) with a corresponding simulation library, has evolved foasic constructs for modeling parallel
modules connected by signals and channels to a highly complex set of mypes, classes, templates, and
functions for very advanced modeling (i.e. Transaction Level Modeliigdv) [39, |40]) and highly optimized
simulation of SystemC models. Usually these optimization steps have aimed at highktion speed, i.e. by
minimizing context switches in the simulator, or at higher levels of abstractiomadoerposely relaxed timing.
Often, the uninterrupted (sequential) execution semantics on a singlespood®st have been presumed or are
explicitly required.

Along these lines, it has been recognized that there is considerabléonstedy and adjust @volvethe Sys-
temC language towards better support of parallel execution (following $mmmeof suitable PDES semantics).
One example of the ongoing discussion within the SystemC community is a preseiatiatie SystemC Evo-
lution Day 2016 where significant obstacles in the current languageasthhdve been identified [41]. These
seven obstacldsave then been documented also in a letter to the editor of IEEE Embeddenh Systers [42].

The RISC Compiler and Simulator aims for advanced parallel execution on mutmany-core hosts, max-
imizing the compliance with the current SystemC standard [1]. Changing suenptons about SystemC
simulator execution consequently affects a number of SystemC constracisPds which need to be revisited
and evaluated anew. The goal of this section is to document this proassadins, and enable fruitful discus-
sions.

16

Below, we describe and list the out-of-order parallel simulatable Systern§essupported by the current
RISC Compiler and Simulator, Release V0.6.0. In particular, Table 1 throagke/B list for each SystemC
construct whether or not it is supported at this time. If applicable, an eapita note is provided that briefly
outlines the status and/or the plans for the given feature.

Overall, the current RISC proof-of-concept prototype supportsldmsic SystemC constructs for hierarchical
modeling with modules and interconnected channels by featuring fast mukidéaleexecution. Modern TLM-
2.0 style communication is also supported (as of RISC version 0.6.0). Haoweveral specific SystemC features
are not supported yet or left undecided at this stage. The statuscidedé in particular indicates that further
study is needed to decide whether or not the given construct can persegbin efficient and reasonable manner
by RISC and its OoO PDES approach.

4.1 SystemC Hierarchical Structure of Modules and Channels

RISC supports the regular hierarchical and structural composition @ystemC design model. This includes

the SystemC program stagd _main, sc _start) and the general static or dynamic compositi&CCTOR

of modules §c _.module , SCMODULEsc _behavior) and channelss¢ _channel , sc _prim _channel).
Connectivity and communication of the instantiated components is supporteztlydioe hierarchically

through ports ¢c _port , sc_in, sc_inout , sc_out) and interfacessc _interface). Also, modern

TLM-2.0 style communication is supported (as of RISC version 0.6.0) directiierarchically through

sockets {lm _utils::simple _initiator _socket tim _utils::simple _target _socket |,
tim::tim _initiator _socket , and tim:tim _target _socket), with or without interconnect
components.

In contrast to the traditional Accellera library, which only provides a tyimsdtypedef) sc _channel
for sc _module , the RISC header files explicitly distinguish channel and module classes, Heweparate
sc _channel class is inherited fronsc _module , providing the same functionality, but making the two class
types explicit.

Most of the SystemC predefined primitive char{Eeimch asc _fifo) are supported for OoO PDES, except
sc _fifo::operator= which is not supported yet. For more details, please refer to Tables lgth&and
the Doxygen-generated documentation of the RISC simulation library [38].

4.2 SystemC Threads

The explicit and statically or dynamically [35] analyzable multi-threading ofst&yC design model is naturally
supported in RISC Oo0O PDES. This includes SystemC proceSEHASPROCESSsc _process _handle ,

sc _thread _process) and the corresponding thread®Q THREAD. For basic inter-thread synchronization,
SystemC event notificationsg _event.notify) and waiting for events or simulation time advanoait)
are supported.

However, dynamic SystemC thread creation and deletiongpawn, SCFORKSC.JOIN) are not supported
at this time.

While the application programming interface (API) for these constructs renaimodified from the SystemC
user perspective, the RISC SystemC kernel internally supports extameters or arguments for several of
these constructs which are utilized after the automatic source code instrtiorebtathe RISC compiler (see
Section 3.4 above). In particular, segment and instance identifiersokeslwith each of these function calls so
that the simulator kernel is aware of the exact thread state upon evergudehentry. This includes in particular

3 As described in Section 2.4 and Secfion 3.9, the RISC Compiler and SimRatease V0.6.0 falls back to synchronous PDES
execution when primitive channels with update requests are used in flge dexdel.

17

Table 1: RISC V0.6.0 Out-of-Order Parallel Simulatable SystemC Subset

Name Type Supported or not Notes
. . This function may not work with
scabs function Undecided . .
some arithmetic SystemC datatypes.
scactions typedef Supported typedef unsigned sactions
scargc function Supported
scargv function Supported
scassemblevector function Undecided Work on this function in the future
scassert macro Undecided Work on this macro in the future
scattr base class Undecided Work on this class in the future
scattr_cltn class Undecided Work on this class in the future
scattribute class Undecided Work on this class in the future
sc.behavior typedef Supported typedef scmodule scbehavior
scbigint class template Supported
sc.biguint class template Supported
sc.bind_proxy class Undecided
scbind macro Undecided Work on this macro in the future
scbit type (deprecated Undecided Work on this type in the future
sc bitref_r class template Undecided Work on this class template in the future
sc bitref class template Undecided Work on this class template in the future
sc buffer class Undecided
sc bv_base class Undecided Work on this class in the future
schbv class template Undecided Work on this class template in the future
sc.channel class Supported
scclock class Not Supported Yet sc.clock::beforeend of_elaboration()
calls scspawn().
scclosevcd. tracefile function Initial support as of v0.5.(
scconcatref class Undecided Work on this class in the future
sc.concrefr class template Undecided Work on this class template in the future
sc.contextbegin enumeration Undecided
sc.copyright function Supported
sc.cor class Supported
sc.cor pkg class Supported
sc.cor_pthread class Supported
sc.cor_pkg pthread class Supported
sc createvcd tracefile function Initial support as of v0.5.(
sccref macro Undecided Work on this macro in the future
sc.cthreadprocess class Limited Support Supported up to Internal Representation
SC.CTHREAD macro Limited Support Supported up to Internal Representation
SC.CTOR macro Supported

18

Table 2: RISC V0.6.0 Out-of-Order Parallel Simulatable SystemC Subssir{ued)

Name Type Supported or not Notes
sccycle() calls scsimcontext::cycle(),
function which is not supported in
sccycle (deprecated) Not Supported Yet the out-of-orderpsFi)muIation
in the current release.
scdeltacount function Modified semantics This function returns_the local
delta count of the running process.
scelabandsim function Supported
scendof_simulationinvoked function Undecided Work on this function in the future
sceventandexpr class Supported Initial support as of v0.5.0
sceventandlist class Supported Initial support as of v0.5.0
sceventfindert class template Undecided Work on this class template
in the future
sceventfinder class Undecided Work on this class in the future
sceventor_expr class Supported Initial support as of v0.5.0
sceventor._list class Supported Initial support as of v0.5.0
sceventqueueif class Not Supported Yet
The constructor function is not
sceventqueue class Not Supported Yet supported by the out-of-order
simulation in the current release.
The immediate notification is not
scevent class Limited Support supported by the out-of-order
simulation in the current release.
sc.exception typedef Undecided Work on this typedef in the future
scexportbase class Not Supported Yet| No port following in compiler analysis
scexport class Not Supported Yet| No port following in compiler analysis
scfifo_blocking.in _if class Supported
scfifo_in_if class Supported
scfifo_in class Supported
scfifo_nonblockingin_if class Supported
scfifo_out.if class Supported
scfifo_out class Supported
. I scfifo::operator= is not supported;
scfifo class Limited Support execution falls back to synchronous PDES
scfind_event function Undecided Work on this function in the future
scfind_object function Undecided Work on this function in the future
sc fix_fast class Undecided Work on this class in the future
scfix class Undecided
sc fixed_fast class template Undecided Work on this class template
in the future
scfixed class template Undecided

19

Table 3: RISC V0.6.0 Out-of-Order Parallel Simulatable SystemC Subssir{aed)

Name Type Supported or not Notes
SCFORK macro Undecided Work on this macro in the future
scfxcastcontext class Undecided Work on this class in the future
sc fxcastswitch class Undecided Work on this class in the future
sc fxnum_bitref class Undecided Work on this class in the future
sc fxnum_fast bitref class Undecided Work on this class in the future
scfxnum_fastsubref class Undecided Work on this class in the future
scfxnum_ fast class Undecided Work on this class in the future
scfxnum_subref class Undecided Work on this class in the future
scfxnum class Undecided
sc fxtype_context class Undecided Work on this class in the future
sc fxtype params class Undecided Work on this class in the future
sc fxval_fast class Undecided Work on this class in the future
scfxval class Undecided Work on this class in the future
scgenuniquename function Undecided Work on this function in the future
scgenericbase class Undecided Work on this class in the future
function
scgetcurr_processhandle (deprecated Supported
scgetcurrentprocesshandle| function Supported
. . function
scgetdefaulttime_unit (deprecated Supported
scgetstatus function Supported
scgetstopmode function Supported
sc gettime_resolution function Supported
sc gettop_level events function Undecided Work on this function in the future
scgettop_levelobjects function Undecided Work on this function in the future
SCHAS_PROCESS macro Supported
sc hierarchicalnameexists function Undecided Work on this function in the future
scin_clk typedef Undecided
scin_resolved class Undecided
scin_rv class Undecided
scin class Supported
scin<bool> class Supported
scin<scdt:sclogic> class Supported

20

Table 4: RISC V0.6.0 Out-of-Order Parallel Simulatable SystemC Subssir{oed)

Name Type Supported or not Notes
S function
scinitialize (deprecated) Supported
scinoutclk type (deprecated Undecided
scinoutresolved class Undecided
scinoutrv class Undecided
scinout class Supported
scint_base class Supported
scint_bitref r class Undecided Work on this class in the future
scint_bitref class Undecided Work on this class in the future
scint class template Supported
scinterface class Supported
scinterrupthere function Undecided Work on this function in the future
scis_prerelease function Undecided Work on this function in the future
SCIS_.PRERELEASE macro Supported
scis_running function Supported
scis_unwinding function Supported
SCJOIN macro Undecided Work on this macro in the future
sclength context class Undecided Work on this class in the future
sclengthparam class Undecided Work on this class in the future
sclogic class Undecided Work on this class in the future
sclv_base class Undecided Work on this class in the future
sclv class template Undecided Work on this class template in the future
sc.main function Supported
Time is currently represented
scmaxtime function Limited Support as a signed integer of 64 bits
(not scdt::uint64)
sc.max function Supported
sc.methodprocess class Limited Support Initial basic support as of v0.6.0
SCMETHOD macro Limited Support Initial basic support as of v0.6.0
sc.min function Supported
scmodulename class Supported
scmodule class Supported
SC.MODULE macro Supported
This class is not supported
scmutexif class Not Supported Now by the risc compiler
in the current release.
This class is not supported
sc.mutex class Not Supported Now by the risc compiler
in the current release.
scobject class Supported
scoutclk type (deprecated Undecided

21

Table 5: RISC V0.6.0 Out-of-Order Parallel Simulatable SystemC Subssir{ued)

Name Type Supported or not Notes
scoutresolved class Undecided
scoutrv class Undecided
scout class Supported
scpause function Undecided Work on this function in the future
scpendingactivity_at currenttime function Limited Support | Supported when called inside_atain()
scpendingactivity_at futuretime function Limited Support | Supported when called inside_atain()
sc pendingactivity function Limited Support | Supported when called inside_stain()

scphash class (deprecated) Undecided Work on this class in the future
scplist class (deprecated) Undecided Work on this class in the future
scport class Supported
scportbase class Supported
scppq class (deprecated) Undecided Work on this class in the future
scprim_channel::update()
sc_prim_channel class Supported is performed in synchronous manner;
execution falls back to synchronous PDE:!
scprocessh type (deprecated Supported
scprocesshandle class Supported
scpvector class (deprecated) Undecided Work on this class in the future
scref macro Undecided Work on this macro in the future
screlease function Supported
screporthandlerproc typedef Undecided Work on this typedef in the future
screporthandler class Undecided Work on this class in the future
sc.report class Undecided Work on this class in the future
This class is not supported
sc semaphoref class Not Supported Yet by the risc compiler
in the current release.
This class is not supported
sc.semaphore class Not Supported Yet by the risc compiler
in the current release.
This class is not supported
sc.sensitiveneg class (deprecated)Not Supported Yet by the risc compiler
in the current release.
This class is not supported
sc.sensitivepos class (deprecated) Not Supported Yet by the risc compiler
in the current release.
sc.sensitive class Supported Initial basic support as of v0.5.0
. . function
sc setdefaulttime_unit (deprecated) Supported
scsetstopmode function Limited Support Initial basic support as of v0.6.0

22

Table 6: RISC V0.6.0 Out-of-Order Parallel Simulatable SystemC Subssir{ued)

Name Type Supported or not Notes
sc settime_resolution function Supported
scsetvced time_unit m?&%?;:;?gg;’ : Supported Initial support as of v0.5.0
scsignalin_if class Limited Support | Supported up to Internal Representation
scsignalin_if <bool> class Limited Support | Supported up to Internal Representation
scsignalin_if <sclogic> class Limited Support | Supported up to Internal Representation
scsignalinout.if class Limited Support | Supported up to Internal Representation
scsignaloutif type (deprecated) Limited Support | Supported up to Internal Representation
scsignalresolved class Limited Support | Supported up to Internal Representation
scsignalrv class Limited Support | Supported up to Internal Representation
scsignalwrite_if class Limited Support | Supported up to Internal Representation
scsignal class Limited Support | Supported up to Internal Representation
scsignakbool> class Limited Support | Supported up to Internal Representation
scsignaksclogic> class Limited Support | Supported up to Internal Representation
scsignedbitref.r class Undecided Work on this class in the future
sc.signedbitref class Undecided Work on this class in the future
scsignedsubrefr class Undecided Work on this class in the future
scsignedsubref class Undecided Work on this class in the future
scsigned class Supported
sc.simcontext::initialcrunch(), cycle()
: class - and other functions are partiall
scsimeontext (deprecated) Limited Support supported by the out-oiE)-ordery
simulation in the current release.
, L function
sc.simulationtime (deprecated) Supported
sc.spawnoptions class Undecided
sc.spawn() is not supported
sc.spawn function Not Supported Now by the out-of-order simulation
in the current release.
scstartof_simulationinvoked function Undecided Work on this function in the future
scstart function Supported
scstart(double) function Supported Support as of v0.6.0
scstatus enumeration Supported

23

Table 7: RISC V0.6.0 Out-of-Order Parallel Simulatable SystemC Subssir{ued)

Name Type Supported or not Notes
scstophere function Undecided Work on this function in the future
sc.stop function Supported Stable support as of v0.6.0
scstring class Undecided Work on this class in the future
(deprecated)
scsubrefr class template Undecided Work on this class template
in the future
scsubref class Undecided Work on this class in the future
scswitch enumeration Supported
scthreadprocess class Supported
SCTHREAD macro Supported
sctime class Supported
sctime_stamp function Supported
sctime_to_pendingactivity function Limited Support | Supported when called inside_sain()
sctracedeltacycles function Undecided Work on this function in the future
(deprecated)
. Initial support as of v0.5.0;
scracefile class Supported execution falls back to synchronous PDES
. Initial support as of v0.5.0;
sctrace function Supported execution falls back to synchronous PDES
sc ufix_fast class Undecided Work on this class in the future
sc.ufix class Supported
sc ufixed fast class template Undecided Work on this class template in the future
sc.ufixed class template Supported
sc.uint_base class Supported
scuint_bitref r class Undecided Work on this class in the future
scuint_bitref class Undecided Work on this class in the future
sc.uint_subrefr class Undecided Work on this class in the future
sc.uint_subref class Undecided Work on this class in the future
sc.uint class template Supported
scunsignedbitref_r class Undecided Work on this class in the future
scunsignedbitref class Undecided Work on this class in the future
sc.unsignedsubrefr class Undecided Work on this class in the future
sc.unsignedsubref class Undecided Work on this class in the future
sc.unsigned class Supported
sc.unwind.exception class Undecided Work on this class in the future
scvaluebase class Undecided Work on this class in the future
scvectorassembly class Undecided Work on this class in the future
scvectorbase class Undecided Work on this class in the future
scvector class Undecided Work on this class in the future

24

Table 8: RISC V0.6.0 Out-of-Order Parallel Simulatable SystemC Subssair{uned)

Name Type Supported or not Notes
sc.versionmajor function Supported
sc.versionminor function Supported
sc.versionoriginator | function Supported
scversionpatch function Supported
scversionprerelease | function Supported
sc.versionreleasedate | function Supported
scversionstring function Supported
scversion function Supported
wait(events) function Supported Full support as of v0.5.0
wait(time) function Supported Full support as of v0.5.0
This function is not supported
wait(int clockticks) | function | Not Supported Now by the risc compiler
in the current release.
This function is not supported
resetsignalis function | Not Supported Now by the risc compiler
in the current release.
This function is not supported
asyncresetsignalis | function | Not Supported Now by the risc compiler
in the current release.
This function is not supported
sensitive function | Not Supported Now by the risc compiler
in the current release.
This function is not supported
dontinitialize function | Not Supported Now by the risc compiler
in the current release.
This function is not supported
setstacksize function | Not Supported Now by the risc compiler
in the current release.
This function is not supported
nexttrigger function | Not Supported Now by the risc compiler
in the current release.
This function is not supported
halt function | Not Supported Now by the risc compiler

in the current release.

25

Table 9: RISC V0.6.0 Out-of-Order Parallel Simulatable SystemC Subset; ZDNPrimitives

Name Type Supported or not Notes

tim_utils::simpleinitiator_socket| object Supported Support as of v0.6.0
tim_utils::simpletargetsocket | object Supported Support as of v0.6.0
tim::tim_initiator_socket object Supported Support as of v0.6.0
tim::tim_targetsocket object Supported Support as of v0.6.0
b_transport function Supported Support as of v0.6.0
nb_transportfw function Supported Support as of v0.6.0
nb_transportbw function Supported Support as of v0.6.0

transportdbg function | Not Supported Now Future work
getdirectmemptr function Supported Support as of v0.6.0
invalidatedirect mem.ptr function Supported Support as of v0.6.0

the thread creation constructSG THREAD and wait statementsv@it), as well as standard communication
interface methods (e.gc _fifo _in _if.:read).

4.3 SystemC Transaction Level Modeling (TLM)

While traditional abstract modeling at the transaction level is a natural éestynported by OoO PDES [15], the
modeling and implementation choices made by SystemC TLM 2.0 [40] pose sighdilzstacles for supporting
it efficiently in RISC. The root problem here lies in the elimination of explicitratals, which were a key
contribution in the early days of research on system-level design [18,81.7 As most researchers agreed, the
concept of separation of concerns was of highest importance, aggdiem-level design in particular, this meant
the clear separation of computation (in behaviors or modules) and communi@atthannels).

Regrettably, SystemC TLM-2.0 chose to implement communication interfaceslylmecsockets in modules
[43] and this indifference between channels and modules thus breakssthmption of communication being
safely encapsulated in channels. Without such encapsulating chaheetsis little opportunity for safeguarding
and protecting parallel execution [42].

While a discussion of this obstacle is still ongoing at the SystemC Languadang/géroup [3, 41] and in
the overall ESL community [42], we have chosen for RISC Compiler and Storuia make the best of it and
support TLM-2.0 style models to the maximum extend of possible compliance wiyitemC IEEE standard
1666 [1].

As a result, well-designed TLM-2.0 models are supported by RISC vei®f® and later. This sup-
port includes blocking transport interface (BTI, i.b.transport()), non-blocking transport interface

(NBTI, i.e. nb_transport _fw() and nb_transport _bw()), and direct memory interface (DM, i.e.
get _direct _memptr() andinvalidate _direct _memptr()). Please see Table 9 and Section 3.7
for details.

4.4 SystemC Data Types

A large part of the SystemC language covers special data types designduit-accurate hardware
modeling, simulation time representation, and other ESL specifics. Thesem®ydata types include
sc _bigint , sc_biguint , sc_bit , sc_bv, sc_fix , sc_ufix , sc_fixed , sc_ufixed , sc_.int |,
sc _uint , sc _logic ,andsc _lv .

26

While all these SystemC data types are available in RISC, only a few of theenblean validated and tested
for being safe in a truly parallel multi-threading context. At this point, RIS@psutssc _int , sc _uint
sc fixed , andsc _ufixed (which appear as MT-safe). All other data types are so far untestkdhayg or
may not be safely used in OoO PDES.

4.5 SystemC Utilities and Other Constructs

As listed in Tablel 1 through Table 8, there is a plethora of other SystemC ARifalzle. Some of
these are easily supported in RISC (suctsascopyright , sc _version _major , sc _version _minor ,
sc _version _patch , sc version), others are not supported yet at this time.

At this point, there is also a large number of special SystemC constructshiochw is unclear whether
or not these can be supported in an OoO PDES context with reasonéditeaeid efficiency. An example
of such constructs are those functions which involve or allow to inspectitnelator state at run-time,
such assc find _event , sc find _object , sc_get _current _process _handle , sc _get status ,
sc _get _top _level _events , sc_get _top _level _objects , sc _hierarchical _name_exists
sc_is _running ,sc_is _unwinding , sc _simcontext , andsc _status

On the other hand, access to the current simulated smdifne , sc _simulation _time , an essential part
of every SystemC model evaluation, is fully supported by RISC OoO PDOE&Idition, there is partial support
for the delta-cycle count (i.esc _delta _count). This inherently non-deterministic APl accurately counts the
number of delta-cycles incurred within a SystemC process, but shoultbngted across different processes, as
these may run out-of-order.

5 RISC Analysis and Transformation Tools

Besides the compiler and the simulator, the RISC Release V0.6.0includes alddimla for analysis and trans-
formation of SystemC models which we will briefly describe in the following sestion

5.1 RISC Visual Tool

Utilizing the RISC Internal Representation, the RISC framework can aiddbiger in the analysis of SystemC
models. As of version 0.5.0, the RIS@sual tool [44] is available which enables the user to visualize the
SystemC module hierarchy and connectivity. As an example, Figure 12ssth@wmodule visualization of a
Canny edge detector application.

TTop top
q1

q2

*> >

& 'S
HSthmulus TimgOut P atform platform Imgin ImgOut ZMomtor - lmglin
stimulus q1 monitor

q2

Datain Tlmgin ImgOut upuT Imgin ImgOut DataOwut Imgin ImgOut
din canny dout

Figure 12: Module hierarchy visualization of a SystemC model of a Cangg ddtector.

27

Thevisual tool supports a graphical user interface implemented with the Gtk API amgrel specified
SystemC source file’s module hierarchy, which is drawn using the Cairo R tool obtains module data
from the SystemC IR in the RISC software stack which contains informationtaiested modules and thus can
recursively iterate through nested lists of child modules in order to obtaimgenimformation to visualize the
hierarchy of the entire SystemC source file. The input SystemC source fileontain thousands of lines of code
which can make manually drawing a representation of the modules, portshandels described by the code a
difficult and time-consuming task. Thus thisual tool was created to address this issue. It can automatically
generate a visual representation of a SystemC model in a very shod pétime.

As of version 0.6.0, RIS@isual has support for TLM-2.0 models with socket-based connectivity and is
able to visualize the SystemC threads inside modules. As an example, [Figutevis the visualization of a
DVD player application with separate video and audio codecs. Notice thabnimast to the ports shown in
Figure 12, here the modules are connected by sockets. Also, the timahdsnitiators are illustrated as curvy
arrows in the modules.

Figure 13: Module hierarchy visualization of a TLM-2.0 DVD player example

The RISCvisual tool is documented in detail in its manual page which is provided in the Appendix A
For a pure textual representation, a similar command-linetteel is available as well, which is documented
in Appendix A.5).

5.2 SimicsR)Virtual Platform Integration

SimicgR)is a tool for development and simulation of virtual platforms and is used tdesafiware development
earlier in the product development process. With the introduction of the SBytemC Library in Simics 5, it
supports IP block, device and subsystem models modeled in SystemC.

Each SystemC device in a Simics simulation is linked to its own SystemC kernel. In a Simickation
with an instantiated SystemC device, Simics will periodically interface with the Simisge®yC Library to
synchronize the SystemC models simulation time with the global simulation time. The Sinsiesr&yLibrary
makes calls to the SystemC kernel to run the local SystemC simulations of edemSydevice.

As of version 0.6.0, RISC Compiler and Simulator can be easily integrated intosSjgit. Typically, a
standard SystemC kernel is linked to a SystemC device. However, link ti@kli®el instead in order to enable
out-of-order parallel SystemC thread scheduling. Simics provides compilatiipts for SystemC devices that
contain configurable flags so that a model developer can simply set a ctompiflag in order to link the RISC
kernel instead of a standard SystemC kernel.

Figure 14 exemplifies the switch between the standard SystemC kernelghtlighe RISC kernel (red). The
Simics SystemC Library callsc _start , which then schedules threads in the SystemC kernel. In order to
enable out-of-order parallel SystemC thread scheduling, the user simigdyttia RISC kernel with the devices
such that the Simics SystemC Library will interface with the RISC kernel ingitti standard SystemC kernel.

28

Simics Simulation
Manager Thread

—

Simics Simulation
Manager Thread

Simics Devices | Adapter Adapter

g, g ! SystemC Model

. ! = th, th, thy th,

Simics Devices

¥

RISC SystemC Model

§ thy th, ths thy

TET

! :

'

il $ Y Y Y
i

1’| Time

|

End of
Simulation

Time

I
I
|
¥
End of
Simulation

Figure 14: Two different Simics simulations of the same model with the left-sithg s standard SystemC
kernel and the right-side featuring RISC kernel for out-of-ordeala multithreading of SystemC threads

6 RISC Open Source Software

We make RISC available for free as open source software which camw@ahded from the following web site:
http://www.cecs.uci.edu/~doemer/risc.html[22] RISC is provided in both source codar ball) and binary
format (Docker image).

RISC is a software artifact [46] to facilitate evaluation, promote parallel 8yStsimulation, and achieve
fruitful collaboration. Generally, an artifact is a software program tiogrewith an applicable data set and test
suite that accompanies a research publication for the purpose of intlei@valuatioh The point here is that
the proposed algorithms and data structures are made available as facoozept implementation and can be
used and evaluated by others. Experimental results may be replicatedl@miaded. The proposed approach can
also be compared against related work, and in the presence of sodeeeven be extended. Otherwise, great
challenges are posed in repeatability [49].

RISC can be used without restrictions or limitations, as it is published with B&D spurce license terms.
Please refer to Appendix Section B.3 for details.

6.1 Open Source Code and Documentation

In its current version 0.6.0, the RISC open source package consigigpodximately 206,000 lines of code
and includes the C++ source code for the RISC compiler and simulator, lbnilck scripts and installation
instructions, as well as comprehensive documention of the compiler and gimAiRls and tool manual pages.
Example SystemC models, such as an abstract DVD player and a Mandetideter applications, are included
as well, as is a comprehensive regression test suite.

Given a suitable Linux platform, such as RedHat Enterprise or CentOS kimgion 6 and 7, the RISC source
code package can be easily installed and tested. After downloading pustiregithe installatiorMakefile
a simplemake all command builds and installs the RISC framework and runs a number of deatmrstr
examples. The user can then fully evaluate the software with other Systeamipkes and even extend our
proof-of-concept implementation with new features.

4 Because of its importance, artifact evaluation has been adopted asigiagrof the review process in several computer science
areas, such as Software Engineering and Programming Languaqes].

29

http://www.cecs.uci.edu/~doemer/risc.html

Please refer to Appendix Section B.1 for specific details on the RISC ConapiteBimulator Release V0.6.0.

6.2 Binary Image for “Plug-and-Play” Evaluation

For a quick test run without compilation and installation, we also provide a &amntainer [50] for using RISC
in “plug-and-play” fashion. The Docker image contains RISC (and added libraries) in binary format and
allows the user to test it with just a few Linux commands, as shown in Fig. 15.

bash# docker pull ucirvinelecs/risc060
bash# docker run -it ucirvinelecs/risc060
[dockeruser]# cd demodir

[dockeruser]# make play _demo

Figure 15: Linux commands to quickly evaluate RISC in a Docker container

7 Conclusion

While SystemC is the de-facto and official standard language for ESLrje3ygtemC simulation largely is still
performed sequentially following classic DES semantics. Thus, SystemC simutatimot utilize the parallel
processing capabilities available on today’s multi- and many-core host ¢erapu

In this report, we have described the Recoding Infrastructure faeB8ys (RISC), an aggressive simulation
approach beyond traditional parallel DES, where a dedicated Systemgllenand advanced parallel simulator
implement Out-of-Order Parallel Discrete Event Simulation (OoO PDES) wikigtion for SystemC. This
approach can exploit parallel computing resources at the thread-adadiestel to the maximum extend and thus
reaches fastest simulation speed. At the same time, RISC OoO PDES largelginsatine traditional SystemC
modeling semantics.

This technical report documents the RISC Compiler and Simulator and sungptmols, and details the Sys-
temC subset supported by the RISC Release V0.6.0. In contrast to theusrelpha [24], beta [25], and version
0.4.0 [26] and 0.5.0 [27] releases, the open source RISC Compiler anda®mRelease V0.6.0 is more stable
and robust, and features TLM-2.0 support and Simics virtual platformriatien.

7.1 Future Work

We plan future work in several areas of technical extensions ancefurtisearch. Technical improvements in-
clude addressing the limitations in the currently supported SystemC subsghandaintenance tasks including
improved documentation and, of course, bug fixes.

In terms of future research, one main limitation needs to be addressedlsMad@ver levels of abstraction
(below TLM) must be efficiently supported. In particular, this includes thst&nC constructs for modeling
at the High-Level Synthesis (HLS) and Register Transfer Level {RifLabstraction, such aSSCMETHOD
SC.CTHREADNd corresponding lower-level primitives for signals and clock-cycteigte simulation. While
the prior focus was on highly abstract modeling at the Embedded Systesh(ESL), the large amount of legacy
HLS and RTL models demands support for efficient parallel simulation ds we

An integral research problem to solve in this context is the efficient stppomany small SystemC pro-
cesses. While RISC offers excellent performance for few thread® () with high computational demands, the
simulator does not perform well for many threads (hundreds or thds}arith low computation load. Research

30

is necessary to combine these workloads into clusters with minimal conflictstseffibeent parallel simulation
becomes possible.

As we move on in these future endeavors, we will update and extend tlogliRgdnfrastructure for SystemC
(RISC) and this corresponding technical report accordingly.

Acknowledgements

The RISC project has been supported in part by substantial fundinglfitel Corporation under an initial seed
grant and a following three year grant for the project titl@dit-of-Order Parallel Simulation of SystemC Virtual
Platforms on Many-Core Architectures'The recent improvements documented in this report have been sup-
ported by funding for the project titletbcaling the Recoding Infrastructure for Parallel SystemC Simulation”
The authors thank Intel Corporation for the valuable support anceeg@pecial gratitude to Ajit Dingankar,
Desmond Kirkpatrick and Abhijit Davare for fruitful discussions, protike feedback and invaluable insights.

References

[1] IEEE Computer SocietylEEE Standard 1666-2011 for Standard SystemC Language Refdviarugal
IEEE, New York, USA, 2011.

[2] Accellera Systems Initiativehttp://www.accellera.org.
[3] SystemC Language Working Group (LW@\tp://accellera.org/activities/working-groups/systemc-language.

[4] SystemC Language Working Group. SystemC 2.3.1, Core SystemC &gegand Examples.
http://accellera.org/downloads/standards/systemc.

[5] Richard Fujimoto. Parallel Discrete Event SimulatioBommunications of the ACM3(10):30-53, Oct
1990.

[6] Christoph Schumacher, Rainer Leupers, Dietmar Petras, and anbieffmann. parSC: Synchronous Par-
allel SystemC Simulation on Multi-Core Host ArchitecturesPinceedings of the International Conference
on Hardware/Software Codesign and System Synthesiges 241-246, 2010.

[7] Dukyoung Yun, Jinwoo Kim, Sungchan Kim, and Soonhoi Ha. Simulatiomi&nment Configuration for
Parallel Simulation of Multicore Embedded SystemsPtaceedings of the Design Automation Conference
(DAC), pages 345-350, 2011.

[8] Ezudheen P, Priya Chandran, Joy Chandra, Biju Puthur SimonDaegak Ravi. Parallelizing Sys-
temC Kernel for Fast Hardware Simulation on SMP MachinesPADS '09: Proceedings of the 2009
ACM/IEEE/SCS 23rd Workshop on Principles of Advanced and Distril&itadlation pages 80-87, 2009.

[9] Rohit Sinha, Aayush Prakash, and Hiren D. Patel. Parallel simulatimixed-abstraction SystemC models
on GPUs and multicore CPUs. Rroceedings of the Asia and South Pacific Design Automation Conference
(ASPDAC) 2012.

[10] Weiwei Chen, Xu Han, and Rainerdner. Multi-Core Simulation of Transaction Level Models using the
System-on-Chip EnvironmentEEE Design and Test of Compute28(3):20-31, May/June 2011.

31

http://www.accellera.org
http://accellera.org/activities/working-groups/systemc-language
http://accellera.org/downloads/standards/systemc

[11] J.H. Weinstock, C. Schumacher, R. Leupers, G. Ascheid, ahddaratto. Time-decoupled parallel systemc
simulation. InProceedings of the Design, Automation and Test in Europe (DATE) @owcke Dresden,
Germany, March 2014.

[12] Weiwei Chen, Xu Han, and Rainerder. Out-of-Order Parallel Simulation for ESL Design.Proceed-
ings of the Design, Automation and Test in Europe (DATE) Confeyéharch 2012.

[13] Weiwei Chen and Rainer @ner. An Optimizing Compiler for Out-of-Order Parallel ESL Simulation
Exploiting Instance Isolation. IRroceedings of the Asia and South Pacific Design Automation Conference
(ASPDAC) pages 461-466, February 2012.

[14] Weiwei Chen and Rainer@ner. Optimized Out-of-Order Parallel Discrete Event Simulation using Predic
tions. InProceedings of the Design, Automation and Test in Europe (DATE) féoicke March 2013.

[15] Weiwei Chen, Xu Han, Che-Wei Chang, Guantao Liu, and Rairian&. Out-of-Order Parallel Discrete
Event Simulation for Transaction Level ModellEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems (TCABB(12):1859-1872, December 2014.

[16] Jianwen Zhu, Rainer @mer, and Daniel D. Gajski. Syntax and semantics of the SpecC language. |
Proceedings of the International Symposium on System SyntBssika, Japan, December 1997.

[17] Daniel D. Gajski, Jianwen Zhu, Rainebner, Andreas Gerstlauer, and Shuging ZtgpmecC: Specification
Language and Design Methodolodyluwer Academic Publishers, 2000.

[18] Andreas Gerstlauer, Rainener, Junyu Peng, and Daniel D. Gajs8ystem Design: A Practical Guide
with SpecC Kluwer Academic Publishers, 2001.

[19] Rainer Dmer, Andreas Gerstlauer, and Daniel GajsBpecC Language Reference Manual, Version 2.0
SpecC Technology Open Consortiunttp://www.specc.org, December 2002.

[20] Open SystemC Initiativehttp://www.systemc.org. Functional Specification for SystemC 22000.

[21] Thorsten Gotker, Stan Liao, Grant Martin, and Stuart Swa&ystem Design with SystemKluwer Aca-
demic Publishers, 2002.

[22] Guantao Liu, Tim Schmidt, Zhongqgi Cheng, Daniel Mendoza, ariddk@®oemer. Recoding Infrastructure
for SystemC (RISC)http://www.cecs.uci.edu/~doemer/risc.html.

[23] Rainer Mmer, Guantao Liu, and Tim Schmidt. Parallel simulation. In Soonhoi Ha argkd Teich,
editors,Handbook of Hardware/Software Codesigrages 1-32. Springer Netherlands, Dordrecht, 2017.

[24] Guantao Liu, Tim Schmidt, and Raineber. RISC Compiler and Simulator, Alpha Release V0.2.1: Out-
of-Order Parallel Simulatable SystemC Subset. Technical Report CREE702, Center for Embedded
and Cyber-physical Systems, University of California, Irvine, Oct@ge 5.

[25] Guantao Liu, Tim Schmidt, and Raineber. RISC Compiler and Simulator, Beta Release V0.3.0: Out-
of-Order Parallel Simulatable SystemC Subset. Technical Report CRE8706, Center for Embedded
and Cyber-physical Systems, University of California, Irvine, Septrdb16.

[26] Guantao Liu, Tim Schmidt, Zhongqgi Cheng, and Rainénigr. RISC Compiler and Simulator, Release
V0.4.0: Out-of-Order Parallel Simulatable SystemC Subset. Technical ReR@S-TR-17-05, Center for
Embedded and Cyber-physical Systems, University of California,éndaly 2017.

32

http://www.specc.org
http://www.systemc.org
http://www.cecs.uci.edu/~doemer/risc.html

[27] Guantao Liu, Tim Schmidt, Zhongqgi Cheng, Daniel Mendoza, anddrdDomer. RISC Compiler and
Simulator, Release V0.5.0: Out-of-Order Parallel Simulatable SystemC Sulesgtnidal Report CECS-
TR-18-03, Center for Embedded and Cyber-physical Systems, tditivef California, Irvine, September
2018.

[28] Rainer Dbmer, Weiwei Chen, Xu Han, and Andreas Gerstlauer. Multi-Core Pb&fteulation of System-
Level Description Languages. Rroceedings of the Asia and South Pacific Design Automation Conference
(ASPDAC) pages 311-316, January 2011.

[29] Daniel J. Quinlan. ROSE: Compiler support for object-orientethéwaorks. Parallel Processing Letters
10(2/3):215-226, 2000.

[30] Anirudh Kaushik and Hiren D. Patel. SystemC-clang: An Openeam&ramework for Analyzing Mixed-
abstraction SystemC Models. Rroceedings of the Forum on Specification and Design Languages)(FDL
Paris, France, September 2013.

[31] Hiren Patel. "SystemC-clang: SystemC parser using the clang fralit-e
https://github.com/hdpatel/systemcclang.

[32] Tim Schmidt. Recoding Infrastructure for SystemC (RISC) API, siar 0.6.0.
www.cecs.uci.edu/~doemer/risc/v060/html_risc/index.html.

[33] Zhongqi Cheng, Tim Schmidt, and Raineromer. Enabling IP Reuse and Protection in Out-of-
Order Parallel SystemC Simulation. Rroceedings of the International Embedded Systems Symposium
Friedrichshafen, Germany, September 2019.

[34] Tim Schmidt, Zhonggi Cheng, and Rainedider. Port Call Path Sensitive Conflict Analysis for Instance-
Aware Parallel SystemC Simulation. Rroceedings of the Design, Automation and Test in Europe (DATE)
ConferenceDresden, Germany, March 2018.

[35] Tim Schmidt, Guantao Liu, and RainefoBer. Hybrid Analysis of SystemC Models for Fast and Ac-
curate Parallel Simulation. IRroceedings of the Asia and South Pacific Design Automation Conference
(ASPDAC)January 2017.

[36] Zhonggi Cheng and Rainerdiner. Analyzing variable entanglement for parallel simulation of SystemC
TLM-2.0 models.ACM Transactions on Embedded Computing Systems

[37] Tim Schmidt, Guantao Liu, and Rainebber. Exploiting Thread and Data Level Parallelism for Ultimate
Parallel SystemC Simulation. Proceedings of the Design Automation Conference (DA@)e 2017.

[38] Guantao Liu. Out-of-Order Parallel SystemC (OOPSC) API, Versio0.6.0.
http://www.cecs.uci.edu/~doemer/risc/vO060/html_oopsc/index.html.

[39] Frank Ghenassidlransaction-Level Modeling with SystemC: TLM Concepts and Applicatioistibed-
ded SystemsSpringer, 2005.

[40] Open SystemC Initiative (OSCIDSCI TLM-2.0 Language Reference ManuaSCl, July 2009.

[41] Rainer Dbmer. Seven Obstacles in the Way of Parallel SystemC SimulatPmresentation at SystemC
Evolution Day 2016, Munich, Germany, May 2016.

33

www.cecs.uci.edu/~doemer/risc/v060/html_risc/index.html
http://www.cecs.uci.edu/~doemer/risc/v060/html_oopsc/index.html

[42] Rainer Dbmer. Seven obstacles in the way of standard-compliant parallel SystemGtsamu IEEE
Embedded Systems LetteB¢4):81-84, December 2016.

[43] David C. Black. The Definitive Guide to SystemC: TLM-2.0 and the IEEB6-2011 Standard. Tutorial
at Design Automation Conference, San Francisco, California, Jurie 201

[44] Daniel Mendoza and Rainerdiner. A Tool for Visualization of SystemC Models. Technical Report CECS
TR-17-06, Center for Embedded and Cyber-physical Systems, tditivef California, Irvine, November
2017.

[45] Daniel Mendoza, Ajit Dingankar, Zhongqgi Cheng, and Rainénier. Integrating Parallel SystemC Simu-
lation into Simics(R) Virtual Platform. IProceedings of the Design and Verification Conferehenich,
Germany, October 2019.

[46] Rainer dmer, Zhonggi Cheng, Daniel Mendoza, and Ajit Dingankar. RIS@oddmg Infrastructure for
SystemC, Open Source Framework for Parallel Simulatioménkshop on Open-Source EDA Technology
(WOSET) at ICCADPNovember 2018.

[47] Shriram Krishnamurthi. Artifact Evaluation Procesdtp://www.artifact-eval.org/.
[48] Evaluate Collaboratory. Artifact Evaluatiohttp://evaluate.inf.usi.ch/artifacts.

[49] Shriram Krishnamurthi and Jan Vitek. The real software crisigpeRéability as a core valueCommun.
ACM, 58(3):34-36, February 2015.

[50] Irvine Lab for Embedded Computer Systems (LECS), University aff@nia. RISC Docker Container.
https://hub.docker.com/r/ucirvinelecs/risc060/.

[51] Tim Schmidt, Guantao Liu, and RaineBer. Automatic Generation of Thread Communication Graphs
from SystemC Source Code. Rroceedings of the International Workshop on Software and Compilers fo
Embedded Systeniday 2016.

[52] Guantao Liu, Tim Schmidt, and RainerdBer. A Segment-Aware Multi-Core Scheduler for SystemC
PDES. InProceedings of the IEEE International High Level Design Validation aest WorkshopOctober
2016.

[53] Kasra Moazzemi, Rainer@ner, and Aparna Chandramowlishwaran. A SystemC Model for N-boaly-Pr
lems and its Parallel Design Space Exploration. Technical Report CEEE609, Center for Embedded
and Cyber-physical Systems, University of California, Irvine, Noven#916.

[54] Zhonggi Cheng and Rainerdiner. A SystemC Model of a Bitcoin Miner. Technical Report CECS-TR-16
04, Center for Embedded and Cyber-physical Systems, Universitgldbia, Irvine, September 2016.

[55] Farah Arabi and Rainer&mer. A Light Weight SystemC Library for Faster Compilation. Technical Re-
port CECS-TR-16-07, Center for Embedded and Cyber-physick8ys, University of California, Irvine,
October 2016.

34

http://www.artifact-eval.org/
http://evaluate.inf.usi.ch/artifacts
https://hub.docker.com/r/ucirvinelecs/risc060/

A Appendix: RISC Manual Pages

A.1 Manual Page of the RISC Compiler and Simulator
NAME

risc — Recoding Infrastructure for SystemC (RISC) Compiler and Simulator

SYNOPSIS

risc [options] design[options]

DESCRIPTION

risc is a dedicated compiler for the SystemC language. The purposscas to parse, analyze, in-
strument, and compile a SystemC source program into an executable prifog@umt-of-order parallel
simulation.risc is a frontend source-to-source compiler for SystemcC built on top of theER8piler
infrastructure with GNU or Intel C++ as backend target compiler. As stistirelies on and supports
also most of the ROSE and GNU compiler options.

Using the command syntax shown in the synopsis above, the speatifséghis compiled. By de-
fault, risc reads the SystemC source file, performs preprocessing and builds mralimepresentation
(abstract syntax tree) and a Segment Graph (SG) of the model. Nextesegonflict analysis is per-
formed and the design model is instrumented for Out-of-Order ParalletddsEvent Simulation (00O
PDES). Finally, instrumented C++ code is generated, compiled, and linkednrexegutable file that
can be run for fast parallel simulation.

On successful completion, the exit value O is returned. In case okatuwing processing, an error
code with a brief diagnostic message is written to the standard error strehtheucompilation is
aborted with an exit value greater than zero.

For preprocessing and C++ compilation into an executablerfile relies on the availability of an
external C++ compiler which is used automatically in the background. Byutethe GNU C++
compilerg++is used. Alternatively (see optionsisc:icpcand—risc:micbelow), the Intel C++ compiler
icpc may be used to generate an executable optimized for Intel processorsiMiEhcapabilities or
the Intel Many-Integrated-Core (MIC) architecture.

ARGUMENTS
design specifies the file name of the input SystemC design model; by default, the hase of
designis used as base name for the intermediate and output files;

OPTIONS

—h | —-help print therisc compiler version and a brief usage information message to standard output
and quit;

—v | —-verbose increment the verbosity level so that all tasks performed are logged tdastherror
(default: be silent); at level 1, high-level messages about the tast@amped are dis-
played; at level 2, additional details such as input and output file naredsstad; at
level 3, very detailed information about each executed task is printed;

35

A

—VVvVv

increment the verbosity level by two counts (same\asv);

increment the verbosity level by three counts (samevasv —V);

—w | —-warningsincrement the warning level so that compiler warning messages are eiidbfadit:

-0 | -0 level

—Idir

—Ldir

—llib

—0 output file

—Psg

warnings are disabled); four levels are supported ranging from onlgritaupt warnings
(level 1) to pedantic warnings (level 4); for most cases, warning Bigtecommended
(—w —w);

increment the warning level by two counts (same-as-w);
increment the warning level by three counts (samevasw —w);

add a symbol table suitable for debugging (e.g. usgidiy) to the generated object files
and simulation executable (default: no debugging symbols);

optimize the generated simulation executable for higher execution speed &sd/or
memory usage (default: no optimization);

add the specifiedir to the include path (extend the list of directories to be searched
for including source files); include directories are searched in ther asfigheir
specification; the standard include path ($SYSTEME_HOME/include or $SYS-
TEMC_OOP.HOME/include) is automatically appended to this list; by default, only
the standard include directories are searched;

add the specifiedir to the library path (extend the list of directories to be searched for
linker libraries); the library path is searched in the specified order; tinelatd library
path ($SYSTEMCOOP.HOME/lib) is automatically appended to this list; by default,
only the standard library path is searched;

add the specifietb to the list of libraries for the linker so that the executable is linked
againstlib; libraries are linked in the specified order; the standard libraries (i.e. -
Isystemc) are automatically appended to this list; by default, only standardidibrar
are used;

perform only the preprocessing, analysis, instrumentation, and compitasks; skip
the final linking stage so that only an object file is created (default: perfdl tasks
including linking);

specify the name of the final output file explicitly (default: a.out);

switch to partial segment graph (PSG) generation mode (and do not lifkgjetherates
a file with suffix .psg for the current translation unit; PSG files follow the D®@dpb
description language and can be processed with DOT file tools (e.g. didphath the
xdot.py tool); for 3rd-party IP components, PSG files may be edited with aetbtar
for further fine-tuning and IP protection;

—psginput PSG filespecifies the name of a PSG input file; the specified file will be loaded and@s PS

will be integrated with the current translation unit to form a complete segmephgr

36

—psgoutput output filein PSG generation mode (see above), this specifies the name of the PSG out-
put file explicitly; by default, the output PSG file has the same basename agtlte in
SystemC file;

—risc:dump output the computed segment graph (SG) and conflict tables as HTMLd@éaut: no
HTML files are generated); these files may be viewed by a user in a browseder to
inspect the out-of-order execution conditions of the model and improveardingly;

—risc:icpc use the Intel C++ compildcpc in the backend for generating the executable (default:
GNU C++ compilerg++);

—risc:mic use the Intel C++ compilécpc with option—micin the backend for cross-compiling an
executable for the Intel Many Integrated Core (MIC) architectureafglefgenerate an
executable for the same processor the compiler is running on);

—risc:elab filenameimport the elaboration result produced by the RISC elabortdy from file file-
nameand use it for segment conflict analysis based on a dynamic elaboratse ph
(default: pure static analysis);

—<rose:option> pass this option through to the underlying ROSE compiler (default: none);

—<GNU option> pass this option through to the underlying GNU compiler (default: none);

ENVIRONMENT
SYSTEMAQ.W_.HOME

SYSTEMGOOP-HOME

SYSTEMQMIC_HOME

is used at compile-time to find the RISC light-weight SystemC header files
which are expected in directory $SYSTEM® _HOME/include (default:
none);

is used at compile-time to find the RISC out-of-order SystemC header files
which are expected in directory $SYSTEM®OP HOME/include, and the
RISC out-of-order SystemC library which is expected in directory $SYS-
TEMC_OOPHOME/lib (default: none);

is used at compile-time to find the RISC SystemC header files and li-
brary files for the Intel many-integrated-core (MIC) architecture wigid
expected in directory $SYSTEM®IIC _HOME/include and and $SYS-
TEMC_MIC_HOME/lib, respectively (default: none); this is used only when
the option—-micis used (see above);

SYSCPRINT.MODE MESSAGEIs used by the RISC simulator at run-time to print the mode

SYSCSYNCPARSIM

of simulation and also the actual values of the environment variables
listed below; these log lines start with "™***” and are only printed when
$SYSCPRINT_.MODE_MESSAGE is defined (default: no messages are
printed);

is used by the RISC simulator at run-time to force the RISC out-of-order
SystemC simulation to fall back to synchronous (in-order) PDES execution;
note that this mode is also automatically selected when SystemC primitive
channels with update requests are used (default: out-of-ordertexgcu

37

SYSCVERBOSITYLAG._1 is used by the RISC simulator at run-time to print debugging information
about the thread state, segment id, instance id, time; such debugging lines
are only printed when $SYSUERBOSITY_FLAG_1 is defined (default:
no debugging infos are printed);

SYSCVERBOSITYLAG_2 is used by the RISC simulator at run-time to print debugging information
about the event notification times, listening threads; such debugging lines
are only printed when $SYSUERBOSITY_FLAG_2 is defined (default:
no debugging infos are printed);

SYSCVERBOSITYLAG.3 is used by the RISC simulator at run-time to print debugging informa-
tion about the events threads are waiting for; such debugging lines lgre on
printed when $SYSG/ERBOSITY_FLAG_3 is defined (default: no debug-
ging infos are printed);

SYSCVERBOSITYLAG_4 is used by the RISC simulator at run-time to print debugging information
about what threads an event triggers and the conflict checking infiama
such debugging lines are only printed when $SYSERBOSITY_FLAG_4
is defined (default: no debugging infos are printed);

SYSCVERBOSITYLAG is used by the RISC simulator at run-time to print debugging information.
When $SYSCVERBOSITY_FLAG is defined it turns on all the debugging
information (default: no debugging infos are printed);

SYSCDISABLEPREDICTIONis used by the RISC simulator at run-time to switch back to non-
predictive conflict detection; this avoids scheduling overhead at run
time, but usually results in slower simulation due to more conflicts; if
$SYSCDISABLE_PREDICTION is defined, thread state prediction is not
used during out-of-order scheduling (default: out-of-order ettecuwith
prediction);

SYSCPARSIM_.CPUS is used by the RISC simulator at run-time to set the maximum number of
concurrent threads allowed in the RISC out-of-order SystemC simulation
(default: 64);
VERSION

The RISC compiler and simulator are release version 0.6.0.

AUTHORS

Zhongqgi Cheng <zhonggc@uci.edy, Rainer Doemer <doemer@uci.edd, Guantao
Liu <guantaol@uci.edd, Daniel Mendoza <dmmendol@uci.edy, and Tim Schmidt
<schmidtt@uci.edu.

COPYRIGHT
(c) 2019 CECS, University of California, Irvine

38

LICENSE

Open source BSD license terms apply.

BUGS, LIMITATIONS

This is an academic proof-of-concept prototype implementation, not corahkqrality software. See
the file BUGS in the software packages for known limitations.

39

A.2 Manual Page of the RISC Elaborator
NAME

elab— Recoding Infrastructure for SystemC (RISC) Dynamic Elaborator

SYNOPSIS

elab design[options]

DESCRIPTION

elabis a special compiler for the SystemC language. The purpos&bis to parse, analyze, instru-
ment, and compile a SystemC source program into an executable progmynéonic elaboratiorelab

is a frontend source-to-source compiler for SystemcC built on top of theER@8piler infrastructure
with GNU or Intel C++ as backend target compiler. As suglab relies on and supports also most of
the ROSE and GNU compiler options.

Using the command syntax shown in the synopsis above, the spedéfsaghis compiled. By de-
fault, elab reads the SystemC source file, performs preprocessing and builds sxaimepresentation
(abstract syntax tree) of the SystemC structural hierarelab then instruments the design model so
that its execution stops after the end of the elaboration phase (no actukdt@muwill take place); the
dynamically built hierarchy and instance connectivity data is then dumped fiddodeesign.elabwhich
can be passed to the RISC compilisc for more precise conflict analysis.

On successful completion, the exit value O is returned. In case okatuwing processing, an error
code with a brief diagnostic message is written to the standard error strehtheigompilation is
aborted with an exit value greater than zero.

For preprocessing and C++ compilation into an executable dlb) relies on the availability of
an external C++ compiler which is used automatically in the background. Byltlethe GNU C++
compilerg++is used.

ARGUMENTS

design specifies the file name of the input SystemC design model; by default, the aase of
designis used as base name for the intermediate and output files;

OPTIONS

—h | —-help print the elab elaborator version and a brief usage information message to standard
output and quit;

—v | —-verbose increment the verbosity level so that all tasks performed are logged tdastherror
(default: be silent); at level 1, high-level messages about the tastamped are dis-
played; at level 2, additional details such as input and output file naredsstad; at
level 3, very detailed information about each executed task is printed;

-V increment the verbosity level by two counts (sameasv);

—VWV increment the verbosity level by three counts (samevasv —V);

40

—w | —-warningsincrement the warning level so that compiler warning messages are eidéfadit:

-0 | -0 level

—Idir

—Ldir

—llib

—0 output file

—elab:o

warnings are disabled); four levels are supported ranging from onlgrit@pt warnings
(level 1) to pedantic warnings (level 4); for most cases, warning igtecommended
(—w —w);

increment the warning level by two counts (same-as-w);
increment the warning level by three counts (samevasw —w);

add a symbol table suitable for debugging (e.g. ugidiy) to the generated object files
and simulation executable (default: no debugging symbols);

optimize the generated simulation executable for higher execution speed bs¥/or
memory usage (default: no optimization);

add the specifiedir to the include path (extend the list of directories to be searched
for including source files); include directories are searched in ther avfigheir
specification; the standard include path ($SYSTEM& HOME/include or $SYS-
TEMC_OOPHOME/include) is automatically appended to this list; by default, only
the standard include directories are searched;

add the specifiedir to the library path (extend the list of directories to be searched for
linker libraries); the library path is searched in the specified order; timelatd library
path ($SYSTEMCOOP HOME/Iib) is automatically appended to this list; by default,
only the standard library path is searched;

add the specifietb to the list of libraries for the linker so that the executable is linked
againstlib; libraries are linked in the specified order; the standard libraries (i.e. -
Isystemc) are automatically appended to this list; by default, only standardidibrar
are used,;

perform only the preprocessing, analysis, instrumentation, and compitasks; skip
the final linking stage so that only an object file is created (default: perfdl tasks
including linking);

specify the name of the final output file explicitly (default: a.out);

specify the name of the elaboration result file with instance connectivity dptaidy
(default: design.elal); this file will be produced when the executable generateeldly
is run (after its elaboration phase);

—<rose:option> pass this option through to the underlying ROSE compiler (default: none);

—<GNU option> pass this option through to the underlying GNU compiler (default: none);

ENVIRONMENT

SYSTEMAQ.W_HOME is used at compile-time to find the RISC light-weight SystemC header files

which are expected in directory $SYSTEM® _HOME/include (default:
none);

41

SYSTEMQGOOP.HOME is used at compile-time to find the RISC out-of-order SystemC header files
which are expected in directory $SYSTEMGOP HOME/include, and the
RISC out-of-order SystemC library which is expected in directory $SYS-
TEMC_OOP.HOME/lib (default: none);

VERSION

The RISC Dynamic Elaborator is release version 0.6.0.

AUTHORS

Zhongqgi Cheng <zhongqc@uci.edd, Rainer Doemer <doemer@uci.edsd, Guantao Liu
<guantaol@uci.edu, and Tim Schmidkschmidtt@uci.ed.

COPYRIGHT
(c) 2018 CECS, University of California, Irvine

LICENSE

Open source BSD license terms apply.

BUGS, LIMITATIONS

This is an academic proof-of-concept prototype implementation, not corahqrality software. See
the file BUGS in the software packages for known limitations.

42

A.3 Manual Page of the RISC SIMD Advisor
NAME
simd — Recoding Infrastructure for SystemC (RISC) SIMD Advisor

SYNOPSIS

simd [options] design[options]

DESCRIPTION

simd is an analysis tool for exploiting data-level parallelism based on the RI&iter for the Sys-
temC language. The purpose sifnd is to parse and analyze a SystemC source program, and then
provide advise to the user regarding possible optimizations of the model tateXPUD parallelism

for faster out-of-order parallel simulation.

Using the command syntax shown in the synopsis above, the spatfigghis compiled and stat-
ically analyzed. By defaultsimd reads the SystemC source file, performs preprocessing and builds
an internal representation (abstract syntax tree) of the SystemC aiasirahe model. Next, thread
control flow analysis is performed and encountered loops are andlyzpdtential single-instruction-
multiple-data (SIMD) execution which exploits data-level parallelism and czohtie significantly im-
proved simulation performance in Out-of-Order Parallel Discrete Eviemil&tion (OoO PDES).

Specifically,simd presents to the user a list of loops that might be suitable for SIMD vectorizatio
The user is expected to review the options and, based on his applicatiateklge, select those loops
that do not contain SIMD conflicts, such as parallel accesses to opartamemory locations. For
confirmed loops, the user then inserts into the source#£pgyma omp simdannotations immediately
before the selected loops. The annotated model can then be compiledsaitimd option-risc:icpc
using the Intel C++ compileicpc to generate an executable for execution on a SIMD-capable target
architecture with improved performance.

The output oksimd lists the loops found in the control flow of the SystemC threads of the model. For
each loop, its line number in the source code is listed together with its analyltal @lalification. If
the loop is not qualified, a reason for its disqualification may or may not bershoform of an error
code.

A qualification error code of 1 indicates the use of an invalid array indexeénldbp. The code
2 indicates that a non-loop local variable is written. Finally, code 3 indicatsai unsupported
construct (e.g. goto statement) is found in the loop.

On successful completion, tlsémd advisor returns the value 0. In case of errors during processing,
an error code with a brief diagnostic message is written to the standarég&eam and the compilation
is aborted with an exit value greater than zero.

ARGUMENTS

design specifies the file name of the input SystemC design model; by default, the aase of
designis used as base name for the intermediate and output files;

OPTIONS

—h | —-help print thesimd advisor version and a brief usage information message to standard output
and quit;

43

—v | —-verbose increment the verbosity level so that the tasks performed are logged ttasfaerror
(default: be silent); at level 1, high-level messages about the tast@amped are dis-
played; at level 2, additional details such as input and output file naredgstad; at
level 3, very detailed information about each executed task is printed;

-V increment the verbosity level by two counts (sameasv);
—-VVV increment the verbosity level by three counts (samevasv —V);

—w | —-warningsincrement the warning level so that warning messages are enabledl{defrnings
are disabled); four levels are supported ranging from only importantings (level 1)
to pedantic warnings (level 4); for most cases, warning level 2 is recomene(—w —w

)i
—Ww increment the warning level by two counts (sameas-w);
—WWw increment the warning level by three counts (samevasw —w);
—Idir add the specifiedir to the include path (extend the list of directories to be searched

for including source files); include directories are searched in thea ofdbeir speci-
fication; the standard include path ($SYSTEM®W HOME/include) is automatically
appended to this list; by default, only the standard include directories axaheda

—o output file specify the name of the text output file explicitly (default: none);
—<rose:option> pass this option through to the underlying ROSE compiler (default: none);

—<GNU option> pass this option through to the underlying GNU compiler (default: none);

ENVIRONMENT

SYSTEMAQ.W_.HOME is used at compile-time to find the RISC light-weight SystemC header files
which are expected in directory $SYSTEM® _HOME/include (default:
none);

VERSION

The SIMD Advisor is release version 0.6.0.

AUTHORS

Zhonggi Cheng <zhonggc@uci.edy, Rainer Doemer <doemer@uci.edd, Guantao Liu
<guantaol@uci.edd, and Tim Schmidkschmidtt@uci.edx.

COPYRIGHT
(c) 2018 CECS, University of California, Irvine

LICENSE

Open source BSD license terms apply.

44

BUGS, LIMITATIONS

This is an academic proof-of-concept prototype implementation, not corahqrality software. See
the file BUGS in the software packages for known limitations.

45

A.4 Manual Page of the RISC Visual Tool
NAME

visual — Graphical SystemC Module Visualizer using RISC

SYNOPSIS

visual [options] design[options]

DESCRIPTION

visual is an analysis tool for graphical visualizing of ports and modules of Systemd€. It uses the
RISC compiler to parse and analyze the SystemC source code into a datarstrddie tool iterates
through this data structure and displays a visual representation of tlaedhmigof modules and ports.
visual provides a GUI to provide a graphical representation of the SystemC rasdetll as provide
user modifiable options during run-time to change the graphical propeftiles wisualization.

ARGUMENTS

design specifies the file name of the input SystemC model.

OPTIONS

—h | —-helpprints a brief message on the usage of the tool to standard output and quits;
—bw Modules are drawing without color;
—tm moduleOnly draw "module”;
—Il integer Draw only a certain depth in the hierarchy given by "integer”;

—s float Scale the drawing size by "float”. If "float” = 0.5, then the size of the drgnsiscaled by 50
percent.

-np The module hierachy will be drawn without ports or channels;

ENVIRONMENT

SYSTEMAQ.W_HOME is used at run-time to find the RISC light-weight SystemC header files which
are expected in directory $SYSTEMGN _HOME/include

VERSION

Visual is release version 0.6.0.

AUTHORS

Daniel Mendozacdmmendol@uci.eds

46

COPYRIGHT
(c) 2019 CECS, University of California, Irvine

LICENSE

Open source BSD license terms apply.

BUGS, LIMITATIONS

This is an academic proof-of-concept prototype implementation, not conahqrality software.
GTK is used at compile-time for the GUI. CAIRO is used at compile-time for drgsvidisplayed
on the GUI.

47

A.5 Manual Page of the RISC Tree Tool
NAME

tree — Textual SystemC Module Visualizer using RISC

SYNOPSIS

tree [options] design[options]

DESCRIPTION

tree is an analysis tool for textual visualizing of ports and modules of System€. dbdses the RISC
compiler to parse and analyze the SystemC source code into a data strilibeiteol iterates through
this data structure and displays a visual representation of the hierdroigdoles and ports.

ARGUMENTS

design specifies the file name of the input SystemC model.

OPTIONS

—h | —-helpprints a brief message on the usage of the tool to standard output and quits;

ENVIRONMENT

SYSTEMA.W_HOME is used at tun-time to find the RISC light-weight SystemC header files which
are expected in directory $SYSTEMGV_HOME!/include

VERSION

Tree is release version 0.6.0.

AUTHORS

Daniel Mendozacdmmendol@uci.edu

COPYRIGHT
(c) 2019 CECS, University of California, Irvine

LICENSE

Open source BSD license terms apply.

BUGS, LIMITATIONS

This is an academic proof-of-concept prototype implementation, not conahkqrality software.

48

A.6 Manual Page of the RISC List Tool

NAME

list — Module hierarchy listing using RISC

SYNOPSIS

list [command - [subcommandi[design]

DESCRIPTION

list is a tool that can be used for both debugging and user purposes. tirimimal-based utility tool
that is meant for listing the structural composition of SystemC models.

USAGE

To use this tool, simply run the ‘list’ program with a command (and optional subtand) on a Sys-
temC design model.

For instance, you can do ‘/list [file path]play.cpp’. Notice in this example tttatommand is
included. Running the program with no command will just print out everyisiogmponent of whatever
SystemC model a user specified in default mode. Also note that you caroptitite entire structure
of a single component of a SystemC model either in default or minimal mode by dommands like
‘m-" or ‘m-m’. In the previous examples, ‘m-" would print out all of the inforfevery module of a
SystemC model in default mode while ‘m-m’ would do the same thing but in minimal mduds hblds
true for all commands, so you can also use, for instance ‘v-’ to prinauhe info for every global
variable of a SystemC model in default mode.

Note however, that the very second any other subcommand is usedsiesigeinimal mode), only
the piece of info specified by that subcommand will be printed. For instarsogg the command ‘v-t’
would print out every global variable and its type for a given SystemC inbdeno other piece of info
like the source file or line number of where those variables originated willineeg.

Lastly to use multiple subcommands at the same time, type them consecutively eexhtother
with no spaces or other characters in between. For instance, usingrthmearw ‘h-mtv’ will print
out the types and gobal variables of every hierarchical channel ys@iRC model in minimal mode.
Note that the order in which you type in subcommands does not matter, satineega ‘h-vtm’ would
produce the same output as ‘h-mtv’.

OPTIONS

Calling ‘./list -h’ prints a brief summary of available command and subcommandrgtis follows:
m print modules
—m minimal mode
—t include module types
—v print global variables

—s print submodules

49

—p print ports

—h print hierarchical channels
—f print member functions

- print source location

h print hierarchical channels
—m minimal mode

—t include channel types

—v print global variables

—Ss print submodules

—p print ports

—h print hierarchical channels
—f print member functions

- print source location

Y, print global variables

—m minimal mode

—t include variable types

- print source location

p print primitive channels
—m minimal mode

—t include channel types

- print source location

i print interfaces

—m minimal mode

—a print out all interfaces (also from headers)

- print source location

VERSION

List is release version 0.6.0.

50

AUTHORS

Spencer Kam<sbkam@uci.edu

COPYRIGHT
(c) 2019 CECS, University of California, Irvine

LICENSE

Open source BSD license terms apply.

BUGS, LIMITATIONS

This is an academic proof-of-concept prototype implementation, not conahkqrality software.

51

B Appendix: RISC Software Package Documentation

B.1 Overview of the RISC Software Package

README RISC V 0.6.0

This directory contains the source distribution of RISC ver sion 0.6.0.

Authors: (in alphabetical order)

Farah Arabi (farabi@uci.edu)

Zhongqgi Cheng
Rainer Doemer
Spencer Kam
Guantao Liu
Daniel Mendoza

(zhonggc@uci.edu)
(doemer@uci.edu)
(sbkam@uci.edu)
(guantaol@uci.edu)
(dmmendol@uci.edu)

Tim Schmidt (schmidtt@uci.edu)

Directory structure (RISC source tree):

$RISC_BUILD/ - build directory of the entire RISC system
risc_v0.6.0/ - RISC compiler and simulator, including:
README - this file (and other info files)
source_me.sh - environment variable settings (bash versio n)
source_me.csh - environment variable settings (csh versio n)
Makefile - Makefile to build RISC compiler, simulator
Makefile.macros - Makefile macro definitions (i.e. paths)
docs/ - RISC API documentation (doxygen sources)
man/ - manual pages for RISC executables
examples/ - SystemC examples for RISC OoO PDES
simple/ - simple examples
HellowWorld.cpp - classic HelloWorld example
demo/ - demo examples
play.cpp - audio/video player (conceptual)
mandelbrot.cpp - Mandelbrot renderer
src/ - source tree of the RISC compiler, including:
ast_traverser/ - specialized ROSE AST traverser for System C

instrumentation/ - source code instrumentation functions
internal_representation/- internal representation of th e SystemC model
segment_graph/ - segment graph representation of the model
static_analysis/ - static compiler analysis functions

tools/ - tools and helper functions
Iwsc/ - patch files for light-weight SystemC headers
oopsc/ - patch files for OOO PDES SystemC
projects/ - source code for RISC executables
test/ - RISC compiler test bench

regression/ - regression test suite
include/ - public header files (created by 'make build’)
lib/ - linker library files (created by 'make build’)

52

objects/ - object files of RISC (created by 'make build’)

For more information, please refer to the files COPYRIGHT, L ICENSE, INSTALL,
BUGS and HISTORY.

Enjoy!

The RISC Team, September 2019.

53

B.2 Copyright of the RISC Compiler and Simulator

COPYRIGHT RISC V 0.6.0

RISC:

Copyright (c) 2014, 2015, 2016, 2017, 2018, 2019

CECS - Center for Embedded and Cyber-physical Systems
University of California, Irvine

USA

RISC project members/authors/alumni: (in alphabetical or
Farah Arabi (farabi@uci.edu)

Zhonggi Cheng (zhonggc@uci.edu)
Rainer Doemer (doemer@uci.edu)

Spencer Kam (sbkam@uci.edu)

Guantao Liu (guantaol@uci.edu)

Daniel Mendoza (dmmendol@uci.edu)

Tim Schmidt (schmidtt@uci.edu)
Contact:

Rainer Doemer

Center for Embedded and Cyber-physical Systems
University of California, Irvine

Irvine, CA 92697-2625

US.A

Web: http://www.cecs.uci.edu/~"doemer/risc.html
Email: doemer@uci.edu

September 2019.

54

der)

B.3 Open Source License of the RISC Compiler and Simulator

LICENSE: (BSD License)

Copyright (c) 2019 The Regents of the University of Californ ia.

All rights reserved.

Redistribution and use in source and binary forms, with or wi thout

modification, are permitted provided that the following co nditions are met:

- Redistributions of source code must retain the above copyr ight notice, this
list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above co pyright notice,
this list of conditions and the following disclaimer in the d ocumentation
and/or other materials provided with the distribution.

- Neither the name of the University of California, Irvine, n or the names of
its contributors may be used to endorse or promote products d erived from

this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS *“AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

55

B.4

Installation Instructions of the RISC Compiler and Simulator

INSTALL RISC V 0.6.0

Requirements:

host platform: Linux, CentOS 6.9 or 7.x, x86_64 (or similar

- GNU C++ compiler tool chain (4.4.7 and 4.8.5 work, others ma
GNU flex (v2.5.35) and bison (v2.4.1)

Boost library (version 1.61.0)

ROSE compiler source installation (version 0.9.10.25, 20
Accellera SystemC 2.3.1 source installation

NOTE: OPTION (A) AUTOMATIC INSTALLATION:

To install the entire RISC system including its prerequisit
Boost, ROSE, and SystemC, use the top-level Makefile from
-> http://lwww.cecs.uci.edu/"doemer/risc/v060/Makefil

and follow the instructions at:

-> http://lwww.cecs.uci.edu/"doemer/risc/vO60/INSTALL

OPTION (B) MANUAL INSTALLATION:
Install all prerequisites (Boost, ROSE, SystemC) first. Th
to install the RISC compiler and simulator software package

use the more complex instructions below.

Manual Installation: RISC compiler and simulator

)

y also)

18-05-16)

es

en,

Step 0: Set paths to RISC_HOME and the installed prerequisit

e packages

Using your favorite text editor, adjust the directory paths

script file 'source_me.sh’ (for sh or bash) or 'source_me.c

tcsh):

- set RISC_HOME to the directory where the RISC software is to
e.g. RISC_HOME=/home/username/risc_v0.6.0

- set RISC_BUILD to the directory where RISC is to be built
e.g. RISC_BUILD=$RISC/sources/build
note that the RISC package should be found in $RISC_BUILD/ri
and this INSTALL file should be here: $RISC_BUILD/risc_vO.

- set RISC_DOWNLOAD to the directory where downloaded files
e.g. RISC_DOWNLOAD=$RISC/sources/download

- set ROSE_HOME to the directory where you have ROSE installe
e.g. ROSE_HOME=$RISC/pkg/edg4x-rose

- set BOOST_HOME to the directory where you have BOOST instal
e.g. BOOST_HOME=$RISC/pkg/boost 1 61 0

- set SYSTEMC_HOME to the directory where you have Accellera
e.g. SYSTEMC_HOME=$RISC/pkg/systemc-2.3.1_pt

- set SYSTEMC_LW_HOME to the directory where LW SystemC is to

56

in the provided
sh’ (for csh or

be installed

sc_v0.6.0/
6.0/INSTALL
are stored
d
led
SystemC installed

be installed

e.g. SYSTEMC_LW_HOME=$RISC/pkg/systemc-2.3.1_Iw

- set SYSTEMC_OOP_HOME to the directory where OOP SystemC is
e.g. SYSTEMC_OOP_HOME=$RISC/pkg/systemc-2.3.1_oop

- set SYSTEMC_MIC_HOME to the directory where SystemC for MI
e.g. SYSTEMC_MIC_HOME=$RISC/pkg/systemc-2.3.1_mic

Next, execute your source _me script so that the settings tak
sh $. source_me.sh

or
csh$ source source_me.csh

to be installed

C is to be installed

e effect:

Step 1. Build and install RISC compiler and simulator (this p

ackage)

Now you can build/compile, install, and test the RISC compil
simulator, as follows:

make clean
make build
make install
make test

& HBH P

There should be no errors during the execution of the above fo

er and

ur commands.

Step 2: Run the RISC demo examples

To run the included demonstration examples, setup the RISC e
variables first:

sh $. /path/to/RISC/bin/setup.sh
or
csh$ source /path/to/RISC/bin/setup.csh

Next, copy the demo examples into a working directory and adj
SYSTEMC_HOME path in the provided Makefile so that you can co
the RISC OoO PDES against the reference Accellera DES.

$ mkdir work

$ cp $RISC/examples/demo/ = work/
$ cd work/

$ vi Makefile

Then compile and simulate the examples. For instance, the co
DVD player example can be run and evaluated as follows:

$ vi play.cpp

$ make play_seq
$ make play_ooo

57

nvironment

ust the
mpare

nceptual

$ /usr/binftime play_seq
$ /usr/bin/ftime play_ooo

The simulation of the Mandelbrot renderer follows the same s cheme:

$ vi mandelbrot.cpp

$ make mandelbrot_seq

$ make mandelbrot_ooo

$ /usr/bin/time mandelbrot_seq
$ /usr/bin/time mandelbrot_ooo

Depending on the parallelism available on your host machine ,
you can adjust the examples to your own preferences.

Have fun! :-)

The RISC Team, September 2019.

58

B.5 Change Log of the RISC Compiler and Simulator

HISTORY RISC V 0.6.0

Releases, Publications, important changes:

2014-06-09: Alpha release 0.1.0 (unreliable work-in-prog ress)
Basic parsing and representing of SystemC core elements
Rainer Doemer, Guantao Liu, Tim Schmidt

2014-11-24: Alpha release 0.1.1 (aka Hulk)
Static read/write analysis of variables in processes
Rainer Doemer, Guantao Liu, Tim Schmidt

2015-09-30: Alpha release 0.2.0 (open source)
Integrated compiler and simulator
-> approx. 61k lines of source code
Rainer Doemer, Guantao Liu, Tim Schmidt

2015-10-30: Alpha release 0.2.1 (open source)
Integrated compiler and simulator
+ improved documentation (manual page)
+ improved installation (bin directory, etc.)
+ bug fixes (conflict tables)
-> approx. 62k lines of source code
Rainer Doemer, Guantao Liu, Tim Schmidt

2016-08-12: Alpha release 0.2.2 (internal only)
Integrated compiler and simulator
+ improved installation (and maintenance) scripts
+ initial support for dynamic instance tree
+ bug fixes
-> approx. 79k lines of source code
Rainer Doemer, Guantao Liu, Tim Schmidt

2016-09-30: Beta release 0.3.0 (open source)

Integrated compiler and simulator, new dynamic elaborator
improved installation, build, and maintenance setup
new support for dynamic conflict analysis: RISC elaborato r 'elab’
new support for annotation of library functions (#pragma r isc)
new support for the Intel compiler in the backend
new demo example mandelbrot_fifo.cpp (using SystemC sc_f ifo)
new parallel benchmarks fibo.cpp, fmul.cpp (extreme para llelism)
safe support for primitive channels with update methods
bug fixes
-> approx. 80k lines of source code
Rainer Doemer, Guantao Liu, Tim Schmidt

+ + 4+ + + + 4+ +

2017-05-05: Beta release 0.3.1 (internal only)

59

Integrated compiler and simulator, with dynamic elaborato

+ improved installation script (with minimal BOOST library

+ out-of-order execution with prediction

+ new regression test suite for simulation (SEQ, SYN, NPD, OO
+ bug fixes

-> approx. 102k lines of source code

Zhonggi Cheng, Rainer Doemer, Guantao Liu, Tim Schmidt

2017-07-31: Release 0.4.0 (open source)

Integrated compiler and simulator, with SIMD vectorizatio

new support for SIMD parallelism: RISC SIMD advisor 'simd’
new SIMD vectorization demo mandelbrot_icpc_demo (using
more precise port mapping analysis leading to less false co
more precise prediction analysis due to cloning of channel
improved segment ID instrumentation via thread-local dat
performance testing for regression, parallel, and demo ex
improved documentation, logging information, and error h
bug fixes

-> approx. 111k lines of source code

Zhonggi Cheng, Rainer Doemer, Guantao Liu, Tim Schmidt

+ ++ + + + + +

2018-04-19: Release 0.4.1 (internal only)

Integrated compiler and simulator with supporting tools

new port-call-path based analysis (DATE’'18 paper), less f
new analysis for reference variables, less false conflict
new light-weight SystemC headers for faster compilation (
new hierarchy visualization tools 'visual' and ’'tree’ (CE
support for 6 styles of port binding (removes limitation 3 o
support for SystemC tracing (sc_trace) facilities

bug fix: unused modules can be present in design models
bug fixes

-> approx. 147k lines of source code

Farah Arabi, Zhonggi Cheng, Rainer Doemer, Guantao Liu, Dan
Tim Schmidt

+ + 4+ + + + + +

2018-06-15: Release 0.4.2 (open-source)

Integrated compiler and simulator with supporting tools
foundation libs upgraded to Boost 1.61 and Rose 0.9.10.25 (
support for CentOS 7.x (in addition to ongoing CentOS 6 supp
new binary distribution in Docker container for quick plug
initial support for multiple translation units (Partial S

bug fix: removed obsolete "patching ROSE limitations" ste
bug fix: DVD player example code is now C++11 compliant
bug fix: verbosity logs of RISC compiler (with -v and -wv)
bug fixes

-> approx. 151k lines of source code

Zhonggi Cheng, Rainer Doemer, Daniel Mendoza, Tim Schmidt

+ + 4+ + + + + +

2018-09-27 Release 0.4.3 (internal only)

Integrated compiler and simulator with supporting tools
+ support for Partial Segment Graphs (removes limitation 3 o
+ support for multiple translation units, 3rd-party IP with

60

0)

Intel compiler)
nflicts
segments

a

amples
andling

alse conflicts
S
CECS-TR-16-07)
CS-TR-17-06)

f v.0.4.0)

iel Mendoza,

2018-05-16)

ort)
-and-play
egment Graphs)
p (new Rose)

f v.0.4.2)
out source code

+ 4+ + + +

support for static analysis of sc_event _and_list and sc_e
improved support for RTL constructs (sc_signal, static se
support for simulation in limited time periods (sc_start(
improved Segment Graph (SG) visualization in .dot files
bug fixes

-> approx. 162k lines of source code
Zhonggi Cheng, Rainer Doemer, Daniel Mendoza

2018-09-30 Release 0.5.0 (open-source)
Integrated compiler and simulator with supporting tools

+

extended CECS technical report for features, accuracy and

-> approx. 162k lines of source code
Zhonggi Cheng, Rainer Doemer, Daniel Mendoza

2019-04-15 Release 0.5.1 (internal only)

+

+ + + +

clean and deterministic segment graphs and data conflict t
removed instrumentation of redundant mutexes in user-def
internal time resolution consistent with SystemC standar
initial support for TLM-2.0 sockets and communication via
bug fixes

-> approx. 181k lines of source code
Zhongqi Cheng, Rainer Doemer, Daniel Mendoza

2019-05-16 Release 0.5.2 (internal only)

+

+ + + +

+ + 4+ + + +

improved accuracy of HTML data conflict tables

more flexible port mapping analysis (across hierarchies)
support for TLM-2.0 sockets and communication via b_trans
support for TLM-2.0 DMI communication via get_direct_mem

new DVD player examples modeled with TLM-2.0 coding styles

(with/without hierarchical binding, interconnect, multi
improved simulator, resuming multiple waiting threads in
improved simulator, replaced event hazards checking with
new simulator diagnostics log (SYSC_VERBOSITY_FLAGS)
new script min_data_conflict_table.sh for compiler diag
new visualization of socket connectivity and thread locat
bug fixes

-> approx. 187k lines of source code
Zhongqi Cheng, Rainer Doemer, Daniel Mendoza

2019-06-26 Release 0.5.3 (internal only)

+
+
+

initial support for socket interconnectivity in 'elab’ to
initial support for SC_METHOD, dont_initialize, next_tr
bug fixes

-> approx. 196k lines of source code
Zhonggi Cheng, Rainer Doemer, Daniel Mendoza

2019-09-30 Release 0.6.0 (open-source)

+

+
+
+
+

integration with virtual platforms (i.e. Simics VP) for co
new module hierarchy listing tool ’list’

new feature for external conflict table files when these ar
improved support for sc_max_time(), sc_start(duration)
improved support for SC_METHOD (1-to-1 methods-to-invok

61

vent_or_list
nsitivity, etc.)
duration))

completeness

ables
ined channels
d (1ps)
b_transport()

port()
_ptr()

ple memories, DMI)
parallel
event prediction

nostics
ion (visual)

ol
igger

-simulation

e large

, sc_stop()

er ratio)

+ improved simulator speed in out-of-order scheduler (even t delivery)
+ improved compatibility with modern compilers (i.e. GNU-C 8.X)

+ improved Doxygen-generated documentation

+ bug fixes

-> approx. 206k lines of source code
Zhongqi Cheng, Rainer Doemer, Spencer Kam, Daniel Mendoza

September 2019.
Future work:

+ full support for cycle-accurate models (RTL and HLS abstra ction)
+ support for grouping of SC_METHODs for efficient parallel execution

62

	1 Introduction
	2 Out-of-Order Parallel Simulation
	2.1 Notations
	2.2 Discrete Event Scheduler
	2.3 Parallel Discrete Event Scheduler
	2.4 Out-of-Order Parallel Discrete Event Scheduler

	3 RISC Compiler and Simulator
	3.1 Segment Graph
	3.2 Partial Segment Graph
	3.3 Conflict Analysis
	3.3.1 Static Analysis
	3.3.2 Dynamic Analysis

	3.4 Source Code Instrumentation
	3.5 Library Support
	3.6 Support for Data-Level Parallelism
	3.7 Support for SystemC TLM-2.0
	3.8 Compiler Backend
	3.9 Simulator

	4 Out-of-Order Parallel Simulatable SystemC Subset
	4.1 SystemC Hierarchical Structure of Modules and Channels
	4.2 SystemC Threads
	4.3 SystemC Transaction Level Modeling (TLM)
	4.4 SystemC Data Types
	4.5 SystemC Utilities and Other Constructs

	5 RISC Analysis and Transformation Tools
	5.1 RISC Visual Tool
	5.2 Simics®Virtual Platform Integration

	6 RISC Open Source Software
	6.1 Open Source Code and Documentation
	6.2 Binary Image for ``Plug-and-Play'' Evaluation

	7 Conclusion
	7.1 Future Work

	Acknowledgements
	References
	A Appendix: RISC Manual Pages
	A.1 Manual Page of the RISC Compiler and Simulator
	A.2 Manual Page of the RISC Elaborator
	A.3 Manual Page of the RISC SIMD Advisor
	A.4 Manual Page of the RISC Visual Tool
	A.5 Manual Page of the RISC Tree Tool
	A.6 Manual Page of the RISC List Tool

	B Appendix: RISC Software Package Documentation
	B.1 Overview of the RISC Software Package
	B.2 Copyright of the RISC Compiler and Simulator
	B.3 Open Source License of the RISC Compiler and Simulator
	B.4 Installation Instructions of the RISC Compiler and Simulator
	B.5 Change Log of the RISC Compiler and Simulator

