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Technical Report CECS-19-04
September 30, 2019

Center for Embedded and Cyber-physical Systems
University of California, Irvine
Irvine, CA 92697-2620, USA

+1 (949) 824-8919

http://www.cecs.uci.edu/∼doemer/risc.html

http://www.cecs.uci.edu/~doemer/risc.html


RISC Compiler and Simulator, Release V0.6.0:
Out-of-Order Parallel Simulatable SystemC Subset

Guantao Liu, Tim Schmidt, Zhongqi Cheng, Daniel Mendoza and Rainer Dömer
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Abstract
The IEEE SystemC standard is widely used to specify and simulate Electronic System Level (ESL) design

models. Despite the wide availability of multi-core processor hosts, however, the Accellera reference simulator
is still based on sequential Discrete Event Simulation (DES) and executes only a single thread at any time.

Parallel SystemC simulators have been proposed which run multiple threads simultaneously based on syn-
chronous Parallel Discrete Event Simulation (PDES) semantics. Synchronous PDES, however, limits parallel
execution to threads that run at the same time and delta cycle. Moreover, most approaches require manual
preparation of the SystemC model and rely on the designer to perform difficult conflict analysis.

In this report, we describe the Recoding Infrastructure forSystemC (RISC) approach where a dedicated
SystemC compiler and advanced parallel simulator implement Out-of-Order Parallel Discrete Event Simulation
(OoO PDES) for SystemC. Using automatic conflict analysis based on Segment Graph (SG) abstraction, OoO
PDES can execute threads safely in parallel and out-of-order (ahead of time) and thus achieves fastest simulation
speed, but nevertheless maintains the standard SystemC semantics with maximum compliance.

This report describes the RISC Compiler and Simulator and details the SystemC subset supported by the
open source RISC Release V0.6.0, as of September 30, 2019. Incomparison to the previous V0.5.0 release in
2018, RISC is more efficient and robust, and now supports the analysis and safe simulation of TLM-2.0 models,
as well as the integration with Simics virtual platforms.

http://www.cecs.uci.edu/~doemer/risc.html
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Abstract

The IEEE SystemC standard is widely used to specify and simulate Electronic System Level (ESL) design models.
Despite the wide availability of multi-core processor hosts, however, the Accellera reference simulator is still
based on sequential Discrete Event Simulation (DES) and executes only asingle thread at any time.

Parallel SystemC simulators have been proposed which run multiple threads simultaneously based on syn-
chronous Parallel Discrete Event Simulation (PDES) semantics. Synchronous PDES, however, limits parallel
execution to threads that run at the same time and delta cycle. Moreover, most approaches require manual
preparation of the SystemC model and rely on the designer to perform difficult conflict analysis.

In this report, we describe the Recoding Infrastructure for SystemC (RISC) approach where a dedicated Sys-
temC compiler and advanced parallel simulator implement Out-of-Order Parallel Discrete Event Simulation
(OoO PDES) for SystemC. Using automatic conflict analysis based on Segment Graph (SG) abstraction, OoO
PDES can execute threads safely in parallel and out-of-order (ahead oftime) and thus achieves fastest simulation
speed, but nevertheless maintains the standard SystemC semantics with maximum compliance.

This report describes the RISC Compiler and Simulator and details the SystemC subset supported by the open
source RISC Release V0.6.0, as of September 30, 2019. In comparison to the previous V0.5.0 release in 2018,
RISC is more efficient and robust, and now supports the analysis and safe simulation of TLM-2.0 models, as well
as the integration with Simics virtual platforms.

1 Introduction

As an IEEE standard [1], the SystemC System Level Description Language (SLDL) is widely used for the spec-
ification, modeling, validation and evaluation of Electronic System Level (ESL) models. Under the Accellera
Systems Initiative [2], the SystemC Language Working Group [3] maintains not only the official SystemC lan-
guage definition, but also provides an open source proof-of-concept library [4] that can be used to simulate
SystemC design models. However, implementing the classic scheme of Discrete Event Simulation (DES), this
reference simulator runs sequentially and cannot utilize the parallel computing resources available on multi-core
(or many-core) processor hosts. This severely limits the execution speedof SystemC simulation.

In order to provide faster simulation, Parallel Discrete Event Simulation (PDES) [5] has recently gained again
significant attraction (examples include [6], [7], [8], [9], [10], and [11]). The PDES approach issues multiple
threads (i.e.SC METHOD, SC THREADandSC CTHREAD) concurrently and runs them on the available proces-
sor cores in parallel. In turn, the simulation speed increases significantly.
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Regular PDES is synchronous, however. That is, time advances globallyand all threads execute in lock-step
fashion. Here, the total order of time imposed by synchronous PDES still limits the opportunities for parallel ex-
ecution. When a thread completes its evaluation phase, it has to wait until all other threads finish their evaluation
phases as well. Earlier completed threads must stop at the simulation cycle barrier and available processor cores
are left idle until all runable threads reach the cycle barrier.

In order to overcome this problem, we have developed a novel technique called Out-of-Order Parallel Discrete
Event Simulation (OoO PDES) [12, 13, 14, 15]. By localizing the simulation time to individual threads and
carefully handling events at different times, the simulation kernel can issuethreads in parallel and ahead of time,
following a partial order of time without loss of accuracy. Thus, Ooo PDESsignificantly reduces the idle time
of available parallel processor cores and results in maximum simulation speed, while maintaining the traditional
language and modeling semantics.

The OoO PDES technique was originally implemented based on the SpecC language [16, 17, 18, 19]. In this
report, we document our efforts to apply OoO PDES to the IEEE SystemC SLDL [20, 21, 1] which is both the
de-facto and official standard for ESL design today. In particular, wedescribe our Recoding Infrastructure for
SystemC (RISC) [22] which consists of a dedicated SystemC compiler and corresponding out-of-order parallel
simulator and implements OoO PDES with prediction for SystemC [23].

The remainder of this report is organized as follows: After a brief description of the simulator scheduling
algorithms used for DES, PDES and OoO PDES in Section 2, we describe the RISC Compiler and Simulator
proof-of-concept prototype in Section 3. In Section 4, we then list in detail the SystemC subset that is supported
by the current RISC Release V0.6.0 (2019-09-30)1. In Section 5, we describe additional analysis and transfor-
mation tools built on top of RISC, and outline the open source distribution of RISC in Section 6. We finally
conclude this report in Section 7.

2 Out-of-Order Parallel Simulation

In this section, we briefly outline the scheduling algorithm used in out-of-order parallel simulation. We do
this incrementally, starting from the traditional Discrete Event Simulation (DES) scheduler, then describe the
synchronous Parallel DES (PDES) extension, and finally define the Out-of-Order PDES (OoO PDES) scheduling
algorithm.

2.1 Notations

To formally describe the discrete event scheduling algorithms, the following notations are introduced.

1. Each SystemC thread (SC METHOD, SC THREADandSC CTHREAD) is assigned a localized time stamp
(tth, δth).

2. Each event (sc event ) is assigned a notification time stamp (te, δe), whereEVENTS= ∪EVENTSt,δ.

3. Threads are grouped into different queues. Specifically,

(a) QUEUES= {READY, RUN, WAIT, WAITTIME}.

(b) READY= ∪tht,δ where Threadth is ready to run at time (t,δ).

(c) RUN = ∪tht,δ where Threadth is running at time (t,δ).

1 Earlier versions of this technical report document the prior alpha release in 2015 [24], the beta release in 2016 [25], the release
v0.4.0 in 2017 [26], and the release v0.5.0 in 2018 [27].
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(d) WAIT = ∪tht,δ where Threadth is waiting since time (t,δ).

(e) WAITTIME= ∪tht,0 where Threadth is waiting for simulation time advance to (t,0).
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Figure 1: Traditional Discrete Event Simulation (DES) scheduler for SystemC.

2.2 Discrete Event Scheduler

The Accellera reference simulation library of SystemC [4] is based on DES.Figure 1 depicts such a traditional
DES scheduling algorithm. In DES, a single thread is running at all times. Whenall threads in theREADYand
RUNqueues complete their current delta cycle, the root thread resumes and performs the update and notification
phase. Then threads are woken up and moved from theWAIT queue back into theREADYqueue. A new delta
cycle begins.

If no threads are ready after the update and notification phase, the current time cycle finishes. The simulation
kernel advances the simulation time and processes the earliest timed event from theWAITTIMEqueue. A new
cycle begins for the updated simulated time.

Finally, when both theWAITTIMEandREADYqueues are empty, the simulation terminates.

2.3 Parallel Discrete Event Scheduler

In comparison to DES, regular synchronous PDES issues multiple threads (SC METHOD, SC THREADand
SC CTHREAD) concurrently in a delta cycle. These threads can then execute truly in parallel on the multiple
available processor cores of the host.

Figure 2 shows the regular synchronous PDES scheduling algorithm. In the evaluation phase, as long as the
READYqueue is not empty and an idle core is available, the PDES scheduler will issuea new thread from the

3



start

READY == !?

th =Pick(READY); 

Run(th);

sleep

"ch # PRIM_CHANNEL, if ch's update method 

is requested; perform ch's update method;

"th # WAIT, if th's event is triggered; Remove(th, 

WAIT); Insert(th, READY); clear triggered events; 
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move the Þrst th # WAITTIME to READY;

READY == !?

end

No

No
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Immediate

NotiÞcation

Delta Cycle

Timed Cycle

RUN == !?

|RUN| < #CPUs 

&& READY != !? sleep

Yes

No

Yes

No

Yes

No

Figure 2: Synchronous Parallel Discrete Event Simulation (PDES) scheduler for SystemC.

READYqueue. If a thread finishes earlier than other threads in the same cycle, a new ready thread is assigned to
the idle processor core, unless there is no thread available in theREADYqueue, in which case the core is kept
idle until the next delta cycle.

It should be emphasized that synchronous PDES implies an absolute barrier at the end of each delta and time
cycle. All threads need to wait at the barrier until all other runable threads finish their current evaluation phase.
Only then the synchronous PDES scheduler resumes and performs the update and notification phases, and finally
advances to the next delta or time cycle.

For the SystemC language in particular, there is yet another very important aspect to consider when applying
PDES. For semantics-compliant SystemC simulation, complex inter-dependencyanalysis over all variables in
the system model is a prerequisite to parallel simulation [28].

The Standard SystemC Language Reference Manual (LRM) [1] clearlystates that“process instances execute
without interruption”. This requirement is also known as cooperative (or co-routine) multitasking which is
assumed by the SystemC execution semantics. As detailed in [28], the particularproblem of parallel simulation
is specifically addressed in the SystemC LRM [1]:

“An implementation running on a machine that provides hardware support for concurrent processes
may permit two or more processes to run concurrently, provided that the behavior appears identical to
the co-routine semantics defined [...]. In other words, the implementation would be obliged to analyze
any dependencies between processes and constrain their execution to match the co-routine semantics.”

We will describe the required dependency analysis in more detail below (in Section 3.3), as it is also needed
for out-of-order PDES.
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2.4 Out-of-Order Parallel Discrete Event Scheduler

In OoO PDES, we break the strict order of time (the synchronous barrier) by localizing time stamps to each
thread. Figure 3 shows the out-of-order parallel DES scheduling algorithm. Since each thread has its own
time stamp, the OoO PDES scheduler relaxes the event and simulation time updates,allowing more threads (at
different simulation cycles!) to run in parallel and ahead of time. This resultsin a higher degree of parallelism
and thus higher simulation speed.

!"#$"

∀!"#∈ !"#$, if !"'s event is triggered at (te, δe); 

Remove(!", WAITt
th

, δ
th

); Insert(!", READYt
e

, δ
e

+1); update 

!"'s local time stamp to (te, δe+1); clear triggered events; 

move ∀!" ∈ WAITTIMEt, 0 to READYt, 0; 

update !"'s local time stamp to (t, 0);

%&"'( == ∅?

%)* == ∅?

Yes

Yes
|%)*| < #CPUs 

&& %&"'( != ∅?

!" =Pick(%&"'(); 

NoConflicts(!")?

Remove(!", READYt, δ); 

Insert(!", RUNt, δ); 

Run(!"); end

sleep

sleep
No

No

Yes

Yes

No

No

Figure 3: Out-of-Order Parallel Discrete Event Simulation (OoO PDES) scheduler for SystemC.

In comparison to the synchronous PDES in Figure 2, Figure 3 moves threads from theWAIT andWAITTIME
queues into theREADYqueueas soon as possible. Also, there is no specific point in the scheduling flow any
more for the classic delta and time cycles. Both delta and time updates are performed locally for each thread,
provided that there are no possible conflicts in the way (theNoCon f licts(th) condition is explained below).

In contrast to Figure 2 which performs requested update methods in primitivechannels in each delta cycle,
Figure 3 does not contain this step any more. Due to the out-of-order scheduling and the eliminated central
scheduling point for delta cycles, it is difficult to determine an efficient andsafe point in the OoO PDES scheduler
when primitive channel update requests can be served. However, it is always possible to safely fall back to
synchronous PDES when primitive channel updates are requested.

Note theNoCon f licts(th) condition shown in Figure 3. As already mentioned above for the synchronous
PDES, detailed dependency analysis is needed to avoid data or event conflicts for any shared variables among the
parallel threads. Only ifNoCon f licts(th) is true, a new thread is issued for parallel execution (moved from the
READYto theRUN queue).

We will be using advanced static compile-time analysis (and optionally dynamic run-time analysis, see Sec-
tion 3.3.2) to identify all such potential conflicts. Based on this information (a simple table look-up is sufficient),
the OoO PDES scheduler can then at run-time quickly decide whether or nota set of threads has any conflicts
with each other.
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3 RISC Compiler and Simulator

To realize the OoO PDES approach for the IEEE SystemC language, we present now our Recoding Infrastructure
for SystemC (RISC) and describe the overall RISC Compiler and Simulator proof-of-concept prototype (Release
V0.6.0 as of 2019-09-30).

RISC Compiler Target Compiler

RISC
SystemC
Library

systemc.h

Model.cpp

Segment Graph
Conflict Analysis

Source Code
Instrumentation

Input Model

Out-of-Order
Parallel

Simulation

systemc
_par.h

Model
_par.cpp

C++
Compiler

Instrumented Model Executable
Model

Figure 4: RISC Compiler and Simulator for Out-of-Order PDES of SystemC.

To perform parallel SystemC simulation in maximum compliance with the IEEE standard semantics, we in-
troduce adedicated SystemC compiler. This is in contrast to the traditional SystemC simulation where a regular
SystemC-agnostic C++ compiler includes the SystemC headers and links the input model directly against the
SystemC library.

As shown in Figure 4, our RISC compiler acts as a frontend that processes the input SystemC model and
generates an intermediate model with special instrumentation for OoO PDES. The instrumented parallel model
is then linked against the extended RISC SystemC library by the target compiler(a regular C++ compiler) to
produce the final executable output model. OoO PDES is then performed simply by running the generated
executable model.

From the user perspective, we essentially replace the regular SystemC-agnostic C++ compiler with the
SystemC-aware RISC compiler (which in turn calls the underlying C++ compiler). Otherwise, the overall Sys-
temC validation flow remains the same as before. It is just faster due to the parallel simulation.

For reference, the detailed Linux manual page of the RISC compilerrisc and simulator is included in Ap-
pendix A.1 of this report.

Internally, the RISC compiler performs three major tasks, namely Segment Graph (SG) construction, conflict
analysis, and source code instrumentation.

RISC

Segment Graph

C/C++ Foundation

ROSE IR

SystemC IR

Figure 5: RISC software stack.

3.1 Segment Graph

RISC relies on a comprehensive software stack composed of complex datastructures, as illustrated in Figure 5.
On top of the C/C++ standard libraries and the internal representation of theRose compiler [29], RISC builds a
SystemC internal representation which, in turn, carries the segment graphdata structures.
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The first task of the RISC compiler is to parse the SystemC input model into an abstract syntax tree (AST) by
use of the Rose IR. Next, RISC creates a SystemC internal representationfrom the AST which reflects the Sys-
temC module and channel hierarchy, connectivity, and other SystemC-specific relations, as depicted in Figure 6.
This is similar to the SystemC-clang representation [30, 31]. For details on this part of the RISC application
programming interface (API), please refer to the Doxygen-generated documentation [32].

Figure 6: RISC internal representation.

On top of this, the RISC compiler then builds aSegment Graph (SG)data structure for the model. A Segment
Graph (SG) [12, 15] is a directed graph that represents the code segments executed during the simulation between
scheduling steps. That is, every segment is associated with a scheduler entry point, i.e. await statement in
SystemC.

At run time, threads switch back and forth between the states ofrunning(threads inREADYandRUNqueues)
andwaiting (threads inWAIT andWAITTIMEqueues). Whenrunning, they execute specific segments of their
code. These code segments make up the nodes in the Segment Graph, whereas edges in the graph indicate the
possible transitions from one segment to another. In other words, the edges in the Segment Graph reflect an
abstraction of the model’s control flow.

For a formal description of the Segment Graph and its construction algorithm,the interested reader may refer
to [15]. For details on the RISC compiler API, please refer to the Doxygen-generated documentation [32].

3.2 Partial Segment Graph

The segment graph is the foundation data structure for the static analysis. However, there are restrictions: the
entire source code for the input design must be available in one file, which does not scale. This disables the use
of Intellectual Property (IP) and hierarchical file structures.

To solve this problem, we have proposed and implemented a Partial Segment Graph (PSG) as the representation
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of the behavior model for each separate translation unit or IP. By combining PSGs, our tool is able to reconstruct
the complete SG for the input model [33].

The extended tool flow is shown in Figure 7.

Figure 7: Scaled RISC tool flow with Partial Segment Graph technology.

A PSG is recursively built by traversing the AST of the current translationunit. The main difference between
PSG and SG is that PSG is built based on an incomplete AST, where definitions of function calls may be unknown.

To deal with this uncertainty incurred by the non-defining function calls, weintroduce three types of PSG
nodes, which facilitate the integration of PSGs. They areSegment Node, Partial Segment Nodeand Partial
Function Call Node.

The PSG is constructed by the IP provider. It is stored as a PSG file and is compatible with the Dot format
so that the PSG can easily be visualized. The PSG file is shipped together with the IP files to the user. On the
user’s side, the RISC compiler is able to load and parse the PSG files. Then,the loaded PSGs are integrated to
form a complete SG. During integration,Partial Function Call Nodes are replaced by the corresponding PSGs of
the functions.Partial Segment Nodes are merged intoSegment Nodes. After the integration, the graph becomes
a valid and complete SG.

An IP provider can also inspect and redact the automatically generated PSG files so that the implementation
details remain hidden. This way the IP users will not be able to obtain the inner implementation and the IP
remains protected, while the correctness of behavior model of the design isstill maintained [33].

3.3 Conflict Analysis

The Segment Graph data structure serves as the foundation for segmentconflict analysis. As outlined earlier, the
OoO PDES scheduler must ensure that every parallel thread to be issuedhas no conflicts with any other threads
currently in theREADYandRUN queues. Here, we utilize the RISC compiler to detect any possible conflicts
between these threads already at compile time.
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Potential conflicts in SystemC include data hazards, event hazards, and timing hazards, all of which may exist
among the segments executed by the threads considered for parallel execution. Please refer to [15] for a detailed
discussion of these hazards which, if ignored, would become dangerous race conditions at run time.

Both possible hazard detection approaches, namelystatic analysis at compile time anddynamicanalysis at
run time, are supported by the RISC Compiler and Simulator. It should be emphasized that the accuracy of this
analysis has significantly improved with the RISC release V0.5.0. As outlined in detail in [34], the RISC compiler
now supports Port Call Path (PCP) sensitive conflict analysis which makes it aware of the actual channel instances
used by threads from different modules. This much more precise analysiscan avoid false positive conflicts in
many cases and thus increases the efficiency of the simulation which, in turn,runs faster.

3.3.1 Static Analysis

Static analysis relies purely on the available information in the SystemC source code of the design model at
hand. In this case, the RISC compiler carefully performs conservative identification of the potential hazards in
the model.

Identifying all possible hazards is a complex analysis task that requires thefull ”understanding” of the module
hierarchy. One option is to statically extract the module hierarchy and analyze the individual threads. Here, the
RISC compiler follows the approach outlined in [15].

In many cases, however, not all of the needed information can be gathered statically. For instance, design
parameters may be passed via the command line, for example, to define the number of modules, certain channel
characteristics, or other configuration information. In such SystemC modelswith a dynamic elaboration phase,
the instantiated modules, channels, and ports are typically created by use ofloops andnew operators in a dynamic
fashion. Thus, the structural parameters of the model are only available at run time, so they cannot be statically
analyzed. In these cases, dynamic analysis is needed.

3.3.2 Dynamic Analysis

Dynamic analysis takes run-time information into account and then augments the classic static analysis. The
combination of static and dynamic analysis is here calledhybrid analysis[35].

RISC Compiler
SystemC

Model

RISC
Elaborator

Instance
Connectivity

Data

Input Model Executable Model

Out-of-Order
Parallel

Simulation

Dynamic
Elaboration

Elaboration Model

Figure 8: RISC Elaborator feeds dynamic elaboration information to RISC Compiler for precise conflict analysis.

Figure 8 shows the extended RISC design flow with support of dynamic analysis. As in the regular compilation
flow discussed above in Figure 4, the input SystemC model is processed bythe RISC Compiler to generate an
executable model for out-of-order parallel simulation, as shown on the tophalf of Figure 8 from left to right.

The dynamic analysis step, shown on the bottom half of Figure 8, extends thecompilation flow by a prepro-
cessing step. The input SystemC model is fed into the RISC Elaboratorelab which produces an executable
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model that only performs the SystemC elaboration phase when run. At the end of the elaboration, the ex-
ecutable model automatically traverses the created module hierarchy via the SystemC introspection API and
dumps this detailed structural design information, shown as Instance Connectivity Data in Figure 8, into a file
(model name.elab ). This file is in turn provided as an input to the RISC compiler, so that the dynamically
created design hierarchy and specific instance connectivity can be used for precise conflict analysis. The in-
stance connectivity data file includes the actual module hierarchy, the specific port mapping, and the actual target
variable mapping of references.

Note that the use of the RISC Elaborator is optional. Design models which can be fully analyzed in static
fashion can be fed directly into the RISC Compiler without any pre-processing by the RISC Elaborator.

For reference, the detailed Linux manual pages of the RISC Compilerrisc and RISC Elaboratorelab are
included in Appendix A.1 and Appendix A.2, respectively.

3.4 Source Code Instrumentation

As a result of the conflict analysis (static, dynamic, or hybrid [35]), the RISC compiler generates several conflict
tables that describe all possible conflicts between threads in any two segments. Using this conservative conflict
information, the simulator can then at run-time quickly determine by a simple table look-up whether or not it is
safe to issue any given thread in parallel or ahead of time.

As shown above in Figure 4, the RISC compiler and simulator work closely together. The compiler performs
conservative conflict analysis and passes the analysis results to the simulator which then can make safe scheduling
decisions quickly.

To pass information from the compiler to the simulator, we use automatic model instrumentation. That is,
the intermediate model generated by the compiler contains instrumented (automatically generated) source code
which the simulator can then rely on. At the same time, the RISC compiler also instruments user-defined SystemC
channels with automatic protection against race conditions among communicating threads.

In total, the RISC source code instrumentation includes four major components:

1. Segment and instance IDs: Individual threads are uniquely identifiedby a creator instance ID and their
current code location (segment ID). Both IDs are passed into the simulatorkernel as additional arguments
to scheduler entry functions, includingwait and thread creation.

2. Data and event conflict tables: Segment concurrency hazards dueto potential data conflicts, event conflicts,
or timing conflicts are provided to the simulator as two-dimensional tables indexedby a segment ID and
instance ID pair. For efficiency, these table entries are filtered for scope, instance path, and reference and
port mappings.

3. Current and next time advance tables, and thread state prediction tables: The simulator can make bet-
ter scheduling decisions by looking ahead in time if it can predict the possible future thread states. This
optimization is discussed in detail in [14] and is available in the RISC Compiler and Simulator in ver-
sions 0.4.0 and later. Since thread state prediction for most models requires only little additional compile
time but results often in higher simulation speed, it is enabled by default (it canbe turned off with the
SYSCDISABLE PREDICTIONenvironment variable, see below).

4. User-defined channel protection: SystemC allows the user to design channels for custom inter-thread com-
munication. To ensure such communication is safe also in the OoO PDES situation where threads execute
truly in parallel, the RISC compiler automatically inserts locks (binary semaphores) into these channels,
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if needed2, so that mutually-exclusive execution of the channel methods is guaranteed. Otherwise, race
conditions could exist when communicating threads exchange data.

Note that the source code instrumentation is performed automatically by the RISCCompiler and no user-
interaction is necessary. However, the interested user may inspect the instrumented source code. It is stored in a
file namedrisc model name.cpp which serves as the input file to the compiler backend which in turn then
generates the final executable.

With RISC version 0.6.0, source code instrumentation is optimized for large design models with many seg-
ments. Here, the conflict, time, and prediction tables can become fairly large, which unnecessarily slows down
the code generation step during compilation. To avoid such inefficiency, a separate file (model name.risc )
is automatically generated with binary images of the tables. This file is then read atrun time (automatically, just
like a shared library) to fill the conflict, time, and prediction tables needed by the simulator.

3.5 Library Support

In absence of PSG support (Section 3.2), there exists a significant limitationfor the described conflict analysis
and source code instrumentation. It only works if the compiler has access tothe entire source code of the design
model. This is typically fine for smaller SystemC benchmark examples, but does not hold true for more complex
SystemC models where multiple translation units and/or library files are used. In these cases, the compiler has
access only to the function signatures (function declarations in header files), but not to their implementation
(function bodies which are pre-compiled in the library or object files). Thus, the compiler cannot analyze the
function bodies for potential conflicts, neither can it instrument any segment boundaries (i.e.wait calls) in the
library code with segment and instance IDs.

In its initial alpha version [24], the RISC Compiler and Simulator operated under the assumption that all library
code is thread-safe without any conflicts and does not contain any segment boundaries (nowait statements).
This is reasonable for the standard C/C++ libraries used in a modern Linux environment, as well as for the
specially prepared RISC SystemC simulator library. However, this assumptionposes a significant limitation for
more complex SystemC models built around custom application libraries.

In order to mitigate this limitation, the beta version [25] and the RISC Compiler and Simulator version 0.4.0
offered basic support for library code by use offunction annotations. This annotation scheme for library functions
provides abstract information for both conflict analysis and segment boundaries [35].

Specifically, the user can annotate function declarations withpragma directives which specify whether or not
the function poses any potential conflicts. Thepragma directives can also describe common situations ofwait
calls that the control flow in the function body contains.

For example, the standard math functionsqrt and the blockingread function of the SystemCsc fifo
channel can be annotated as follows:

// standard math square-root function
#pragma RISC sqrt conflict-free no-wait
double sqrt(double x);

// sc_fifo blocking read function
#pragma RISC read conflict-free looped-wait event
virtual T read();

2 As of version 0.5.1, explicit mutex locks in user-defined channels arenot needed any more when the channel methods can be fully
analyzed with PCP [34] and SCP [36] techniques. Such redundant locks arenot instrumented any more.
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Here, thesqrt function is declaredconflict-free because it is thread-safe and has no dangerous side
effects. Since this is true for many functions (e.g. most functions in the C standard library), the RISC Compiler
assumes this by default. Thus, thispragma statement is not explicitly needed.

Thesc fifo::read function is also declaredconflict-free because it operates in a standard SystemC
channel that is safely protected by a lock in the RISC simulator library. However, this blockingsc fifo::read
function is annotated aslooped-wait because it does contain await statement in the body of a loop that is
waiting for available data, which is indicated by someevent . Thus, the RISC Compiler can take this segment
boundary into account when building the Segment Graph for a thread thatcalls this function.

In general, a function is consideredconflict-free if the corresponding function body contains no poten-
tial read/write access conflicts to any shared state with the other threads in thesimulation model. Otherwise, it
must be annotated asnot-conflict-free .
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Figure 9: Control-flow abstractions forwait in library functions.

For the annotation of segment boundaries contained in library functions, Figure 9 shows the different control-
flow abstractions with regards towait function calls in the corresponding function body. In the first case,
no wait , the function contains nowait statement and thus is a non-blocking function during the SystemC
simulation. The next two cases,conditional wait andunconditional wait , apply to functions with
a conditional or non-conditionalwait statement, respectively. The last case covers the possible encounter ofa
wait statement in a loop, such as the blockingread call to asc fifo channel discussed above.

The last parameter in the RISCpragma annotation specifies the type of thewait statement in the function
body, eitherevent for waiting for any notified event, or the minimum time increment that the simulator will
incur when executing the corresponding function, such assc-zero-time or (42,SC MS).
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Figure 10: Different source code domains of a design model.

Figure 10 [35] illustrates the different domains of source code in a SystemCmodel where only the code
in the user domain is available for the instrumentation described above in Section3.4. For library code, any
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containedwait() calls cannot be instrumented. Here, the RISC Compiler and Simulator (version0.4.0 and
above) instruments the code before such library function calls withsetID(SegID) functions that store the
upcoming segment IDs for thewait statements in the library in thread-local data. Then, whenwait statements
without explicit segment ID arguments are executed in the library, the segment IDs are obtained from the thread-
local data by use of agetID() function in the RISC simulation library.

Note that the library support by use ofpragma directives remains available (for backward compatibility
reasons) in the RISC Compiler and Simulator beyond version 0.4.0. However, the Partial Segment Graph (PSG)
technology described in Section 3.2 offers an alternative solution that is much more general. In particular, the PSG
technology resolves two prior limitations. First, the annotations shown in Figure9 only cover the cases of zero or
onewait statement in a library function. Multiplewait statements were not covered. Thus, PSG technology
was designed in order to cover general control-flow inside of library functions which are now represented by their
own partial segment graphs. Second, PSG technology supports multiple separate translation units by building
and storing PSG files together with generated object files that then can be integrated again into a complete SG
when the final simulation executable is being built [33].

3.6 Support for Data-Level Parallelism

As of version 0.4.0, the RISC Compiler and Simulator comes with support for exploiting data-level parallelism,
also known as Single-Instruction-Multiple-Data (SIMD) vectorization [37]. Here, an advanced analysis tool,
namely the SIMD Advisorsimd (see Appendix A.3), can identify possible locations in the SystemC model’s
source code where data-level parallelism may be exploited for faster simulation (on top of the thread-level paral-
lelism already exploited due to OoO PDES).

The SIMD Advisor adds a pre-analysis step to the RISC Compiler and Simulatortool flow wheresimd pro-
vides the designer with candidates for loop vectorization. Specifically,simd performs advanced thread control-
flow and variable access analysis and then reports to the user the sourcecode line numbers where loops qualified
for SIMD vectorization are found. The user confirms suitable locations byinserting#pragma simd directives
in front of the chosen loops. Finally, the design model is then compiled with the Intel compilericpc which
performs the vectorization and builds the executable for simulation with both thread- and data-level parallelism.

Note that the manual confirmation by the designer is necessary. An example isthe following C function:

void add(float * a, float * b, float * c, int n)
{

for(int i=0; i<n; i++)
{ a[i] = a[i] + b[i] + c[i];}

}

Here, arrays passed as pointers can only be vectorized if the user asserts that there is no vector dependence in the
way. This confirmation step is only possible with application knowledge, not just by static compiler analysis. The
RISC SIMD Advisor is aware of SystemC and its concurrent multi-threading semantics, and thus can identify
certain loops as potential candidates, but the final data independence assertion must come from the user who
knows the application specifics (i.e. that the pointers point to non-overlapping arrays).

Exploiting both thread- and data-level parallelism can be very effective for many design models. Experimental
results in [37] show a nearly linear speedup ofN×M, whereN andM denote the thread and data-level factors,
respectively.

The SIMD Advisor is documented in detail in the manual page forsimd listed in Appendix A.3.
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3.7 Support for SystemC TLM-2.0

As of version 0.6.0, the RISC Compiler and Simulator comes with support for SystemC TLM-2.0 models, in-
cluding blocking transport interface (BTI), non-blocking transport interface (NBTI), and direct memory access
interface (DMI) [36]. As an example, Figure 11 shows a SystemC TLM-2.0model of a DVD player which
decodes a stream of H.264 video and MP3 audio data using separate decoders. All communications are mod-
eled using TLM-2.0 sockets and APIs. With the SystemC TLM-2.0 support, theSystemC compiler is able to
accurately analyze the behavior of each process.
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Figure 11: SystemC TLM-2.0 model of a DVD player.

For TLM-2.0 model analysis, RISC uses the Socket Call Path (SCP) technique [36] to increase the accuracy
of the static analysis for SystemC TLM-2.0 communication. SCP provides the SystemC compiler with the
information regarding how a target is reached by the initiator through the TLM-2.0 interface. The idea is similar
to the Port Call Path (PCP) [34]. One main difference is that PCP is based on port-to-channel connections whereas
SCP is for analyzing socket-to-module connections. Also different fromPCP, a SCP is represented by a list of
sockets. When used together with Segment Graph, SCP helps the SystemC compiler to perform instance-aware
conflict analysis, which provides similar benefits as to the use of PCP.

SCP is important for the SystemC compiler to understand the variable entanglements in order to reduce the
number of false data conflicts. Take BTI as an example, the variable entanglement analysis happens in three
steps:

1. Identify original and alias variable: In this step, the compiler identifies a) the original variable encapsulated
in a generic payload byset data ptr , and b) the alias variable extracted from a generic payload by
get data ptr .

2. Reference analysis for generic payload with SCP: In the second step, the compiler analyzes the mapping
betweenparametric generic payload(PGP) andreferred generic payload(RGP).
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3. Variable access analysis for entangled variables: Through the PGP-RGP reference mappings, the corre-
sponding alias and original variables are entangled. Algorithm 1 in [36] describes this step in details.

Note that while BTI, NBTI and DMI communication is supported, our analysis does not support Blocking-to-
Non-Blocking nor Non-Blocking-to-Blocking communication styles. Our analysis does support different com-
munication structures, including direct communication, hierarchical communication, and interconnected commu-
nication. Our experiments [36] demonstrate the correctness and effectiveness of the approach with demonstra-
tion examples from Accellera [4] and three real world examples: DVD Player, Mandelbrot Renderer and Bitcoin
miner.

3.8 Compiler Backend

After the automatic source code instrumentation, the RISC compiler passes the generated intermediate model in
file risc model name.cpp to the underlying regular C++ compiler. That target compiler then producesthe
final simulation executable by linking the instrumented code against the RISC extended SystemC library.

By default, the RISC Compiler and Simulator rely on the GNU C++ compilerg++ for the backend code
generation. Alternatively, the Intel C++ compilericpc may be used to generate a simulation executable that
is optimized for Intel processors with Single-Instruction-Multiple-Data (SIMD) capabilities or the Intel Many-
Integrated-Core (MIC) architecture. Please refer to the command-line options-risc:icpc and-risc:mic ,
respectively, which are documented in the manual pages forrisc (see Appendix A.1) andelab (see Ap-
pendix A.2).

3.9 Simulator

Same as the classic Accellera proof-of-concept implementation [4], the RISC simulator is not an explicit tool,
but a run-time library [38] that the generated executable SystemC model is linked against. Thus, simulation is
performed by execution of the compiled model, the same way as in the classic toolflow (just faster).

The RISC simulator identifies itself by its log message at the beginning of the simulation run, announcing
RISC 0.6.0 execution after the SystemC language version number (SystemC 2.3.1 ). It also adds the
Center for Embedded and Cyber-physical Systems (CECS) as a contributor to the RISC-extended SystemC li-
brary.

A simpleHelloWorldmodel is shown running in the following example:

sh % ./HelloWorld

SystemC 2.3.1-RISC 0.6.0 --- Sep 30 2019 09:42:00
Copyright (c) 1996-2019 by CECS and all Contributors,
ALL RIGHTS RESERVED

Hello World!

There are several environment variables which the RISC out-of-order parallel SystemC library recognizes.
These are logged at the beginning of the simulation ifSYSCPRINT MODEMESSAGEis defined.

*** RISC simulator mode: out-of-order parallel with predictio n ***
*** SYSC_PRINT_MODE_MESSAGE is defined ***
*** SYSC_SYNC_PAR_SIM is not defined ***
*** SYSC_VERBOSITY_FLAG_1 is not defined ***
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*** SYSC_VERBOSITY_FLAG_2 is not defined ***
*** SYSC_VERBOSITY_FLAG_3 is not defined ***
*** SYSC_VERBOSITY_FLAG_4 is not defined ***
*** SYSC_DISABLE_PREDICTION is not defined ***
*** SYSC_PAR_SIM_CPUS is 64 ***

The environment variableSYSCSYNCPARSIM can be used to force the default out-of-order parallel sched-
uler to fall-back to synchronous parallel execution. By default (when undefined),SYSCSYNCPARSIM is
assumed to befalse , so out-of-order parallel simulation (OoO PDES) with prediction is performed. On the
other hand, ifSYSCSYNCPARSIM is defined, the simulator will execute in synchronous PDES fashion.

Also, as indicated above in Section 2.4, the RISC simulator automatically falls backto synchronous execution
as soon as primitive SystemC channels are used with requests to update functions. Thus, such models will execute
in safe synchronous manner.

The variablesSYSCVERBOSITYFLAG 1 throughSYSCVERBOSITYFLAG 4 are used by the RISC simu-
lator at run-time to print debugging information about the simulator queues, event processing, and time advances.
Such debugging lines are only printed when the corresponding variable isdefined. Please refer to the manual
page of the RISC Compiler and Simulator for details (see Appendix Section A.1).

The variableSYSCDISABLE PREDICTION is used by the RISC simulator to switch back to non-predictive
conflict detection. This avoids scheduling overhead at run time, but usually results in slower simulation due to
more false conflicts. IfSYSCDISABLE PREDICTION is defined, thread state prediction is not used during
out-of-order scheduling.

The environment variableSYSCPARSIM CPUSspecifies the maximum number of parallel threads al-
lowed in out-of-order parallel simulation (namely#CPUs in Figure 3). For efficient simulation, this variable
should be set to a value suitable for the simulation host, e.g. the number of available CPU cores. If unset,
SYSCPARSIM CPUSdefaults to 64.

4 Out-of-Order Parallel Simulatable SystemC Subset

Over more than a decade, the SystemC language [21], which technically is a C++ application programming
interface (API) with a corresponding simulation library, has evolved frombasic constructs for modeling parallel
modules connected by signals and channels to a highly complex set of macros, types, classes, templates, and
functions for very advanced modeling (i.e. Transaction Level Modeling (TLM) [39, 40]) and highly optimized
simulation of SystemC models. Usually these optimization steps have aimed at higher simulation speed, i.e. by
minimizing context switches in the simulator, or at higher levels of abstraction dueto purposely relaxed timing.
Often, the uninterrupted (sequential) execution semantics on a single processor host have been presumed or are
explicitly required.

Along these lines, it has been recognized that there is considerable needto study and adjust orevolvethe Sys-
temC language towards better support of parallel execution (following someform of suitable PDES semantics).
One example of the ongoing discussion within the SystemC community is a presentation at the SystemC Evo-
lution Day 2016 where significant obstacles in the current language standard have been identified [41]. These
seven obstacleshave then been documented also in a letter to the editor of IEEE Embedded System Letters [42].

The RISC Compiler and Simulator aims for advanced parallel execution on multi- and many-core hosts, max-
imizing the compliance with the current SystemC standard [1]. Changing some assumptions about SystemC
simulator execution consequently affects a number of SystemC constructs and APIs which need to be revisited
and evaluated anew. The goal of this section is to document this process and status, and enable fruitful discus-
sions.
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Below, we describe and list the out-of-order parallel simulatable SystemC subset supported by the current
RISC Compiler and Simulator, Release V0.6.0. In particular, Table 1 through Table 8 list for each SystemC
construct whether or not it is supported at this time. If applicable, an explanation note is provided that briefly
outlines the status and/or the plans for the given feature.

Overall, the current RISC proof-of-concept prototype supports theclassic SystemC constructs for hierarchical
modeling with modules and interconnected channels by featuring fast multi-threaded execution. Modern TLM-
2.0 style communication is also supported (as of RISC version 0.6.0). However, several specific SystemC features
are not supported yet or left undecided at this stage. The status “undecided” in particular indicates that further
study is needed to decide whether or not the given construct can be supported in efficient and reasonable manner
by RISC and its OoO PDES approach.

4.1 SystemC Hierarchical Structure of Modules and Channels

RISC supports the regular hierarchical and structural composition of theSystemC design model. This includes
the SystemC program start (sc main , sc start ) and the general static or dynamic composition (SC CTOR)
of modules (sc module , SC MODULE, sc behavior ) and channels (sc channel , sc prim channel ).

Connectivity and communication of the instantiated components is supported directly or hierarchically
through ports (sc port , sc in , sc inout , sc out ) and interfaces (sc interface ). Also, modern
TLM-2.0 style communication is supported (as of RISC version 0.6.0) directly or hierarchically through
sockets (tlm utils::simple initiator socket , tlm utils::simple target socket ,
tlm::tlm initiator socket , and tlm::tlm target socket ), with or without interconnect
components.

In contrast to the traditional Accellera library, which only provides a type alias (typedef ) sc channel
for sc module , the RISC header files explicitly distinguish channel and module classes. Here, a separate
sc channel class is inherited fromsc module , providing the same functionality, but making the two class
types explicit.

Most of the SystemC predefined primitive channels3 (such assc fifo ) are supported for OoO PDES, except
sc fifo::operator= which is not supported yet. For more details, please refer to Tables 1 through 8 and
the Doxygen-generated documentation of the RISC simulation library [38].

4.2 SystemC Threads

The explicit and statically or dynamically [35] analyzable multi-threading of a SystemC design model is naturally
supported in RISC OoO PDES. This includes SystemC processes (SC HASPROCESS, sc process handle ,
sc thread process ) and the corresponding threads (SC THREAD). For basic inter-thread synchronization,
SystemC event notifications (sc event.notify ) and waiting for events or simulation time advance (wait )
are supported.

However, dynamic SystemC thread creation and deletion (sc spawn , SC FORK, SC JOIN ) are not supported
at this time.

While the application programming interface (API) for these constructs remains unmodified from the SystemC
user perspective, the RISC SystemC kernel internally supports extra parameters or arguments for several of
these constructs which are utilized after the automatic source code instrumentation by the RISC compiler (see
Section 3.4 above). In particular, segment and instance identifiers are supplied with each of these function calls so
that the simulator kernel is aware of the exact thread state upon every scheduler entry. This includes in particular

3 As described in Section 2.4 and Section 3.9, the RISC Compiler and Simulator Release V0.6.0 falls back to synchronous PDES
execution when primitive channels with update requests are used in the design model.
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Table 1: RISC V0.6.0 Out-of-Order Parallel Simulatable SystemC Subset

Name Type Supported or not Notes

sc abs function Undecided
This function may not work with

some arithmetic SystemC datatypes.
sc actions typedef Supported typedef unsigned scactions

sc argc function Supported
sc argv function Supported

sc assemblevector function Undecided Work on this function in the future
sc assert macro Undecided Work on this macro in the future

sc attr base class Undecided Work on this class in the future
sc attr cltn class Undecided Work on this class in the future
sc attribute class Undecided Work on this class in the future
sc behavior typedef Supported typedef scmodule scbehavior

sc bigint class template Supported
sc biguint class template Supported

sc bind proxy class Undecided
sc bind macro Undecided Work on this macro in the future
sc bit type (deprecated) Undecided Work on this type in the future

sc bitref r class template Undecided Work on this class template in the future
sc bitref class template Undecided Work on this class template in the future
sc buffer class Undecided

sc bv base class Undecided Work on this class in the future
sc bv class template Undecided Work on this class template in the future

sc channel class Supported

sc clock class Not Supported Yet
sc clock::beforeendof elaboration()

calls scspawn().
sc closevcd tracefile function Initial support as of v0.5.0

sc concatref class Undecided Work on this class in the future
sc concrefr class template Undecided Work on this class template in the future

sc contextbegin enumeration Undecided
sc copyright function Supported

sc cor class Supported
sc cor pkg class Supported

sc cor pthread class Supported
sc cor pkg pthread class Supported

sc createvcd tracefile function Initial support as of v0.5.0
sc cref macro Undecided Work on this macro in the future

sc cthreadprocess class Limited Support Supported up to Internal Representation
SC CTHREAD macro Limited Support Supported up to Internal Representation

SC CTOR macro Supported
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Table 2: RISC V0.6.0 Out-of-Order Parallel Simulatable SystemC Subset (continued)

Name Type Supported or not Notes

sc cycle Not Supported Yet

sc cycle() calls scsimcontext::cycle(),
function which is not supported in

(deprecated) the out-of-order simulation
in the current release.

sc deltacount function Modified semantics
This function returns the local

delta count of the running process.
sc elabandsim function Supported

sc endof simulationinvoked function Undecided Work on this function in the future
sc eventandexpr class Supported Initial support as of v0.5.0
sc eventand list class Supported Initial support as of v0.5.0

sc eventfinder t class template Undecided
Work on this class template

in the future
sc eventfinder class Undecided Work on this class in the future

sc eventor expr class Supported Initial support as of v0.5.0
sc eventor list class Supported Initial support as of v0.5.0

sc eventqueueif class Not Supported Yet

sc eventqueue class Not Supported Yet
The constructor function is not
supported by the out-of-order

simulation in the current release.

sc event class Limited Support
The immediate notification is not

supported by the out-of-order
simulation in the current release.

sc exception typedef Undecided Work on this typedef in the future
sc exportbase class Not Supported Yet No port following in compiler analysis

sc export class Not Supported Yet No port following in compiler analysis
sc fifo blocking in if class Supported

sc fifo in if class Supported
sc fifo in class Supported

sc fifo nonblockingin if class Supported
sc fifo out if class Supported
sc fifo out class Supported

sc fifo class Limited Support
sc fifo::operator= is not supported;

execution falls back to synchronous PDES
sc find event function Undecided Work on this function in the future
sc find object function Undecided Work on this function in the future

sc fix fast class Undecided Work on this class in the future
sc fix class Undecided

sc fixed fast class template Undecided
Work on this class template

in the future
sc fixed class template Undecided

19



Table 3: RISC V0.6.0 Out-of-Order Parallel Simulatable SystemC Subset (continued)

Name Type Supported or not Notes
SC FORK macro Undecided Work on this macro in the future

sc fxcast context class Undecided Work on this class in the future
sc fxcast switch class Undecided Work on this class in the future
sc fxnum bitref class Undecided Work on this class in the future

sc fxnum fast bitref class Undecided Work on this class in the future
sc fxnum fast subref class Undecided Work on this class in the future

sc fxnum fast class Undecided Work on this class in the future
sc fxnum subref class Undecided Work on this class in the future

sc fxnum class Undecided
sc fxtype context class Undecided Work on this class in the future
sc fxtype params class Undecided Work on this class in the future

sc fxval fast class Undecided Work on this class in the future
sc fxval class Undecided Work on this class in the future

sc genuniquename function Undecided Work on this function in the future
sc genericbase class Undecided Work on this class in the future

sc get curr processhandle
function

Supported
(deprecated)

sc get currentprocesshandle function Supported

sc get default time unit
function

Supported
(deprecated)

sc get status function Supported
sc get stopmode function Supported

sc get time resolution function Supported
sc get top level events function Undecided Work on this function in the future
sc get top level objects function Undecided Work on this function in the future

SC HAS PROCESS macro Supported
sc hierarchicalnameexists function Undecided Work on this function in the future

sc in clk typedef Undecided
sc in resolved class Undecided

sc in rv class Undecided
sc in class Supported

sc in<bool> class Supported
sc in<sc dt::sc logic> class Supported
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Table 4: RISC V0.6.0 Out-of-Order Parallel Simulatable SystemC Subset (continued)

Name Type Supported or not Notes

sc initialize
function

Supported
(deprecated)

sc inout clk type (deprecated) Undecided
sc inout resolved class Undecided

sc inout rv class Undecided
sc inout class Supported

sc int base class Supported
sc int bitref r class Undecided Work on this class in the future
sc int bitref class Undecided Work on this class in the future

sc int class template Supported
sc interface class Supported

sc interrupthere function Undecided Work on this function in the future
sc is prerelease function Undecided Work on this function in the future

SC IS PRERELEASE macro Supported
sc is running function Supported

sc is unwinding function Supported
SC JOIN macro Undecided Work on this macro in the future

sc lengthcontext class Undecided Work on this class in the future
sc lengthparam class Undecided Work on this class in the future

sc logic class Undecided Work on this class in the future
sc lv base class Undecided Work on this class in the future

sc lv class template Undecided Work on this class template in the future
sc main function Supported

sc max time function Limited Support
Time is currently represented
as a signed integer of 64 bits

(not scdt::uint64)
sc max function Supported

sc methodprocess class Limited Support Initial basic support as of v0.6.0
SC METHOD macro Limited Support Initial basic support as of v0.6.0

sc min function Supported
sc modulename class Supported

sc module class Supported
SC MODULE macro Supported

sc mutex if class Not Supported Now
This class is not supported

by the risc compiler
in the current release.

sc mutex class Not Supported Now
This class is not supported

by the risc compiler
in the current release.

sc object class Supported
sc out clk type (deprecated) Undecided
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Table 5: RISC V0.6.0 Out-of-Order Parallel Simulatable SystemC Subset (continued)

Name Type Supported or not Notes
sc out resolved class Undecided

sc out rv class Undecided
sc out class Supported

sc pause function Undecided Work on this function in the future
sc pendingactivity at currenttime function Limited Support Supported when called inside scmain()
sc pendingactivity at future time function Limited Support Supported when called inside scmain()

sc pendingactivity function Limited Support Supported when called inside scmain()
sc phash class (deprecated) Undecided Work on this class in the future
sc plist class (deprecated) Undecided Work on this class in the future
sc port class Supported

sc port base class Supported
sc ppq class (deprecated) Undecided Work on this class in the future

sc prim channel class Supported
sc prim channel::update()

is performed in synchronous manner;
execution falls back to synchronous PDES

sc processb type (deprecated) Supported
sc processhandle class Supported

sc pvector class (deprecated) Undecided Work on this class in the future
sc ref macro Undecided Work on this macro in the future

sc release function Supported
sc reporthandlerproc typedef Undecided Work on this typedef in the future

sc reporthandler class Undecided Work on this class in the future
sc report class Undecided Work on this class in the future

sc semaphoreif class Not Supported Yet
This class is not supported

by the risc compiler
in the current release.

sc semaphore class Not Supported Yet
This class is not supported

by the risc compiler
in the current release.

sc sensitiveneg class (deprecated)Not Supported Yet
This class is not supported

by the risc compiler
in the current release.

sc sensitivepos class (deprecated)Not Supported Yet
This class is not supported

by the risc compiler
in the current release.

sc sensitive class Supported Initial basic support as of v0.5.0

sc setdefault time unit
function

Supported
(deprecated)

sc set stopmode function Limited Support Initial basic support as of v0.6.0
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Table 6: RISC V0.6.0 Out-of-Order Parallel Simulatable SystemC Subset (continued)

Name Type Supported or not Notes
sc set time resolution function Supported

sc set vcd time unit
member function

Supported Initial support as of v0.5.0
(deprecated)

sc signal in if class Limited Support Supported up to Internal Representation
sc signal in if<bool> class Limited Support Supported up to Internal Representation

sc signal in if<sc logic> class Limited Support Supported up to Internal Representation
sc signal inout if class Limited Support Supported up to Internal Representation
sc signalout if type (deprecated) Limited Support Supported up to Internal Representation

sc signal resolved class Limited Support Supported up to Internal Representation
sc signal rv class Limited Support Supported up to Internal Representation

sc signalwrite if class Limited Support Supported up to Internal Representation
sc signal class Limited Support Supported up to Internal Representation

sc signal<bool> class Limited Support Supported up to Internal Representation
sc signal<sc logic> class Limited Support Supported up to Internal Representation

sc signedbitref r class Undecided Work on this class in the future
sc signedbitref class Undecided Work on this class in the future

sc signedsubrefr class Undecided Work on this class in the future
sc signedsubref class Undecided Work on this class in the future

sc signed class Supported

sc simcontext Limited Support

sc simcontext::initialcrunch(), cycle()
class and other functions are partially

(deprecated) supported by the out-of-order
simulation in the current release.

sc simulationtime
function

Supported
(deprecated)

sc spawnoptions class Undecided

sc spawn function Not Supported Now
sc spawn() is not supported

by the out-of-order simulation
in the current release.

sc start of simulationinvoked function Undecided Work on this function in the future
sc start function Supported

sc start(double) function Supported Support as of v0.6.0
sc status enumeration Supported
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Table 7: RISC V0.6.0 Out-of-Order Parallel Simulatable SystemC Subset (continued)

Name Type Supported or not Notes
sc stophere function Undecided Work on this function in the future

sc stop function Supported Stable support as of v0.6.0

sc string
class

Undecided Work on this class in the future
(deprecated)

sc subrefr class template Undecided
Work on this class template

in the future
sc subref class Undecided Work on this class in the future
sc switch enumeration Supported

sc threadprocess class Supported
SC THREAD macro Supported

sc time class Supported
sc time stamp function Supported

sc time to pendingactivity function Limited Support Supported when called inside scmain()

sc tracedeltacycles
function

Undecided Work on this function in the future
(deprecated)

sc tracefile class Supported
Initial support as of v0.5.0;

execution falls back to synchronous PDES

sc trace function Supported
Initial support as of v0.5.0;

execution falls back to synchronous PDES
sc ufix fast class Undecided Work on this class in the future

sc ufix class Supported
sc ufixed fast class template Undecided Work on this class template in the future

sc ufixed class template Supported
sc uint base class Supported

sc uint bitref r class Undecided Work on this class in the future
sc uint bitref class Undecided Work on this class in the future

sc uint subrefr class Undecided Work on this class in the future
sc uint subref class Undecided Work on this class in the future

sc uint class template Supported
sc unsignedbitref r class Undecided Work on this class in the future
sc unsignedbitref class Undecided Work on this class in the future

sc unsignedsubrefr class Undecided Work on this class in the future
sc unsignedsubref class Undecided Work on this class in the future

sc unsigned class Supported
sc unwind exception class Undecided Work on this class in the future

sc valuebase class Undecided Work on this class in the future
sc vectorassembly class Undecided Work on this class in the future

sc vectorbase class Undecided Work on this class in the future
sc vector class Undecided Work on this class in the future
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Table 8: RISC V0.6.0 Out-of-Order Parallel Simulatable SystemC Subset (continued)

Name Type Supported or not Notes
sc versionmajor function Supported
sc versionminor function Supported

sc versionoriginator function Supported
sc versionpatch function Supported

sc versionprerelease function Supported
sc versionreleasedate function Supported

sc versionstring function Supported
sc version function Supported

wait(events) function Supported Full support as of v0.5.0
wait(time) function Supported Full support as of v0.5.0

wait(int clockticks) function Not Supported Now
This function is not supported

by the risc compiler
in the current release.

resetsignal is function Not Supported Now
This function is not supported

by the risc compiler
in the current release.

asyncresetsignal is function Not Supported Now
This function is not supported

by the risc compiler
in the current release.

sensitive function Not Supported Now
This function is not supported

by the risc compiler
in the current release.

dont initialize function Not Supported Now
This function is not supported

by the risc compiler
in the current release.

set stacksize function Not Supported Now
This function is not supported

by the risc compiler
in the current release.

next trigger function Not Supported Now
This function is not supported

by the risc compiler
in the current release.

halt function Not Supported Now
This function is not supported

by the risc compiler
in the current release.
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Table 9: RISC V0.6.0 Out-of-Order Parallel Simulatable SystemC Subset, TLM-2.0 Primitives

Name Type Supported or not Notes
tlm utils::simpleinitiator socket object Supported Support as of v0.6.0
tlm utils::simpletargetsocket object Supported Support as of v0.6.0

tlm::tlm initiator socket object Supported Support as of v0.6.0
tlm::tlm targetsocket object Supported Support as of v0.6.0

b transport function Supported Support as of v0.6.0
nb transportfw function Supported Support as of v0.6.0
nb transportbw function Supported Support as of v0.6.0
transportdbg function Not Supported Now Future work

get direct memptr function Supported Support as of v0.6.0
invalidatedirect memptr function Supported Support as of v0.6.0

the thread creation constructs (SC THREAD) and wait statements (wait ), as well as standard communication
interface methods (e.g.sc fifo in if::read ).

4.3 SystemC Transaction Level Modeling (TLM)

While traditional abstract modeling at the transaction level is a natural feature supported by OoO PDES [15], the
modeling and implementation choices made by SystemC TLM 2.0 [40] pose significant obstacles for supporting
it efficiently in RISC. The root problem here lies in the elimination of explicit channels, which were a key
contribution in the early days of research on system-level design [16, 17, 18]. As most researchers agreed, the
concept of separation of concerns was of highest importance, and for system-level design in particular, this meant
the clear separation of computation (in behaviors or modules) and communication (in channels).

Regrettably, SystemC TLM-2.0 chose to implement communication interfaces directly as sockets in modules
[43] and this indifference between channels and modules thus breaks theassumption of communication being
safely encapsulated in channels. Without such encapsulating channels,there is little opportunity for safeguarding
and protecting parallel execution [42].

While a discussion of this obstacle is still ongoing at the SystemC Language Working Group [3, 41] and in
the overall ESL community [42], we have chosen for RISC Compiler and Simulator to make the best of it and
support TLM-2.0 style models to the maximum extend of possible compliance with theSystemC IEEE standard
1666 [1].

As a result, well-designed TLM-2.0 models are supported by RISC version0.6.0 and later. This sup-
port includes blocking transport interface (BTI, i.e.b transport() ), non-blocking transport interface
(NBTI, i.e. nb transport fw() and nb transport bw() ), and direct memory interface (DMI, i.e.
get direct memptr() and invalidate direct memptr() ). Please see Table 9 and Section 3.7
for details.

4.4 SystemC Data Types

A large part of the SystemC language covers special data types designedfor bit-accurate hardware
modeling, simulation time representation, and other ESL specifics. These SystemC data types include
sc bigint , sc biguint , sc bit , sc bv , sc fix , sc ufix , sc fixed , sc ufixed , sc int ,
sc uint , sc logic , andsc lv .
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While all these SystemC data types are available in RISC, only a few of them have been validated and tested
for being safe in a truly parallel multi-threading context. At this point, RISC supportssc int , sc uint ,
sc fixed , andsc ufixed (which appear as MT-safe). All other data types are so far untested and may or
may not be safely used in OoO PDES.

4.5 SystemC Utilities and Other Constructs

As listed in Table 1 through Table 8, there is a plethora of other SystemC APIs available. Some of
these are easily supported in RISC (such assc copyright , sc version major , sc version minor ,
sc version patch , sc version ), others are not supported yet at this time.

At this point, there is also a large number of special SystemC constructs for which it is unclear whether
or not these can be supported in an OoO PDES context with reasonable effort and efficiency. An example
of such constructs are those functions which involve or allow to inspect thesimulator state at run-time,
such assc find event , sc find object , sc get current process handle , sc get status ,
sc get top level events , sc get top level objects , sc hierarchical name exists ,
sc is running , sc is unwinding , sc simcontext , andsc status .

On the other hand, access to the current simulated time (sc time , sc simulation time , an essential part
of every SystemC model evaluation, is fully supported by RISC OoO PDES. In addition, there is partial support
for the delta-cycle count (i.e.sc delta count ). This inherently non-deterministic API accurately counts the
number of delta-cycles incurred within a SystemC process, but should notbe used across different processes, as
these may run out-of-order.

5 RISC Analysis and Transformation Tools

Besides the compiler and the simulator, the RISC Release V0.6.0includes additional tools for analysis and trans-
formation of SystemC models which we will briefly describe in the following sections.

5.1 RISC Visual Tool

Utilizing the RISC Internal Representation, the RISC framework can aid the designer in the analysis of SystemC
models. As of version 0.5.0, the RISCvisual tool [44] is available which enables the user to visualize the
SystemC module hierarchy and connectivity. As an example, Figure 12 shows the module visualization of a
Canny edge detector application.

Figure 12: Module hierarchy visualization of a SystemC model of a Canny edge detector.
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Thevisual tool supports a graphical user interface implemented with the Gtk API and renders a specified
SystemC source file’s module hierarchy, which is drawn using the Cairo API. The tool obtains module data
from the SystemC IR in the RISC software stack which contains information about nested modules and thus can
recursively iterate through nested lists of child modules in order to obtain enough information to visualize the
hierarchy of the entire SystemC source file. The input SystemC source file may contain thousands of lines of code
which can make manually drawing a representation of the modules, ports, andchannels described by the code a
difficult and time-consuming task. Thus thevisual tool was created to address this issue. It can automatically
generate a visual representation of a SystemC model in a very short period of time.

As of version 0.6.0, RISCvisual has support for TLM-2.0 models with socket-based connectivity and is
able to visualize the SystemC threads inside modules. As an example, Figure 13 shows the visualization of a
DVD player application with separate video and audio codecs. Notice that, in contrast to the ports shown in
Figure 12, here the modules are connected by sockets. Also, the threadsin the initiators are illustrated as curvy
arrows in the modules.

Figure 13: Module hierarchy visualization of a TLM-2.0 DVD player example.

The RISCvisual tool is documented in detail in its manual page which is provided in the Appendix A.4.
For a pure textual representation, a similar command-line tooltree is available as well, which is documented
in Appendix A.5).

5.2 SimicsR©Virtual Platform Integration

SimicsR©is a tool for development and simulation of virtual platforms and is used to enable software development
earlier in the product development process. With the introduction of the SimicsSystemC Library in Simics 5, it
supports IP block, device and subsystem models modeled in SystemC.

Each SystemC device in a Simics simulation is linked to its own SystemC kernel. In a Simicssimulation
with an instantiated SystemC device, Simics will periodically interface with the Simics SystemC Library to
synchronize the SystemC models simulation time with the global simulation time. The Simics SystemC Library
makes calls to the SystemC kernel to run the local SystemC simulations of each SystemC device.

As of version 0.6.0, RISC Compiler and Simulator can be easily integrated into Simics [45]. Typically, a
standard SystemC kernel is linked to a SystemC device. However, link the RISC kernel instead in order to enable
out-of-order parallel SystemC thread scheduling. Simics provides compilation scripts for SystemC devices that
contain configurable flags so that a model developer can simply set a compilation flag in order to link the RISC
kernel instead of a standard SystemC kernel.

Figure 14 exemplifies the switch between the standard SystemC kernel (blue)and the RISC kernel (red). The
Simics SystemC Library callssc start , which then schedules threads in the SystemC kernel. In order to
enable out-of-order parallel SystemC thread scheduling, the user simply links the RISC kernel with the devices
such that the Simics SystemC Library will interface with the RISC kernel insteadof the standard SystemC kernel.
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Figure 14: Two different Simics simulations of the same model with the left-side using a standard SystemC
kernel and the right-side featuring RISC kernel for out-of-order parallel multithreading of SystemC threads

6 RISC Open Source Software

We make RISC available for free as open source software which can be downloaded from the following web site:
http://www.cecs.uci.edu/∼doemer/risc.html[22] RISC is provided in both source code (tar ball) and binary
format (Docker image).

RISC is a software artifact [46] to facilitate evaluation, promote parallel SystemC simulation, and achieve
fruitful collaboration. Generally, an artifact is a software program together with an applicable data set and test
suite that accompanies a research publication for the purpose of independent evaluation4. The point here is that
the proposed algorithms and data structures are made available as proof-of-concept implementation and can be
used and evaluated by others. Experimental results may be replicated and validated. The proposed approach can
also be compared against related work, and in the presence of source code, even be extended. Otherwise, great
challenges are posed in repeatability [49].

RISC can be used without restrictions or limitations, as it is published with BSD open source license terms.
Please refer to Appendix Section B.3 for details.

6.1 Open Source Code and Documentation

In its current version 0.6.0, the RISC open source package consists ofapproximately 206,000 lines of code
and includes the C++ source code for the RISC compiler and simulator, Linuxbuild scripts and installation
instructions, as well as comprehensive documention of the compiler and simulator APIs and tool manual pages.
Example SystemC models, such as an abstract DVD player and a Mandelbrotrenderer applications, are included
as well, as is a comprehensive regression test suite.

Given a suitable Linux platform, such as RedHat Enterprise or CentOS Linux version 6 and 7, the RISC source
code package can be easily installed and tested. After downloading and adjusting the installationMakefile ,
a simplemake all command builds and installs the RISC framework and runs a number of demonstration
examples. The user can then fully evaluate the software with other SystemC examples and even extend our
proof-of-concept implementation with new features.

4 Because of its importance, artifact evaluation has been adopted as integral part of the review process in several computer science
areas, such as Software Engineering and Programming Languages [47, 48].
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Please refer to Appendix Section B.1 for specific details on the RISC Compilerand Simulator Release V0.6.0.

6.2 Binary Image for “Plug-and-Play” Evaluation

For a quick test run without compilation and installation, we also provide a Docker container [50] for using RISC
in “plug-and-play” fashion. The Docker image contains RISC (and all needed libraries) in binary format and
allows the user to test it with just a few Linux commands, as shown in Fig. 15.

bash# docker pull ucirvinelecs/risc060
bash# docker run -it ucirvinelecs/risc060
[dockeruser]# cd demodir
[dockeruser]# make play demo

Figure 15: Linux commands to quickly evaluate RISC in a Docker container

7 Conclusion

While SystemC is the de-facto and official standard language for ESL design, SystemC simulation largely is still
performed sequentially following classic DES semantics. Thus, SystemC simulation cannot utilize the parallel
processing capabilities available on today’s multi- and many-core host computers.

In this report, we have described the Recoding Infrastructure for SystemC (RISC), an aggressive simulation
approach beyond traditional parallel DES, where a dedicated SystemC compiler and advanced parallel simulator
implement Out-of-Order Parallel Discrete Event Simulation (OoO PDES) with prediction for SystemC. This
approach can exploit parallel computing resources at the thread- and data-level to the maximum extend and thus
reaches fastest simulation speed. At the same time, RISC OoO PDES largely maintains the traditional SystemC
modeling semantics.

This technical report documents the RISC Compiler and Simulator and supporting tools, and details the Sys-
temC subset supported by the RISC Release V0.6.0. In contrast to the previous alpha [24], beta [25], and version
0.4.0 [26] and 0.5.0 [27] releases, the open source RISC Compiler and Simulator Release V0.6.0 is more stable
and robust, and features TLM-2.0 support and Simics virtual platform integration.

7.1 Future Work

We plan future work in several areas of technical extensions and further research. Technical improvements in-
clude addressing the limitations in the currently supported SystemC subset andother maintenance tasks including
improved documentation and, of course, bug fixes.

In terms of future research, one main limitation needs to be addressed. Models at lower levels of abstraction
(below TLM) must be efficiently supported. In particular, this includes the SystemC constructs for modeling
at the High-Level Synthesis (HLS) and Register Transfer Level (RTL) of abstraction, such asSC METHOD,
SC CTHREADand corresponding lower-level primitives for signals and clock-cycle accurate simulation. While
the prior focus was on highly abstract modeling at the Embedded System Level (ESL), the large amount of legacy
HLS and RTL models demands support for efficient parallel simulation as well.

An integral research problem to solve in this context is the efficient support for many small SystemC pro-
cesses. While RISC offers excellent performance for few threads (dozens) with high computational demands, the
simulator does not perform well for many threads (hundreds or thousands) with low computation load. Research
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is necessary to combine these workloads into clusters with minimal conflicts so that efficient parallel simulation
becomes possible.

As we move on in these future endeavors, we will update and extend the Recoding Infrastructure for SystemC
(RISC) and this corresponding technical report accordingly.
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[25] Guantao Liu, Tim Schmidt, and Rainer Dömer. RISC Compiler and Simulator, Beta Release V0.3.0: Out-
of-Order Parallel Simulatable SystemC Subset. Technical Report CECS-TR-16-06, Center for Embedded
and Cyber-physical Systems, University of California, Irvine, September 2016.

[26] Guantao Liu, Tim Schmidt, Zhongqi Cheng, and Rainer Dömer. RISC Compiler and Simulator, Release
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[36] Zhongqi Cheng and Rainer Dömer. Analyzing variable entanglement for parallel simulation of SystemC
TLM-2.0 models.ACM Transactions on Embedded Computing Systems.
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A Appendix: RISC Manual Pages

A.1 Manual Page of the RISC Compiler and Simulator

NAME

risc – Recoding Infrastructure for SystemC (RISC) Compiler and Simulator

SYNOPSIS

risc [ options] design[ options]

DESCRIPTION

risc is a dedicated compiler for the SystemC language. The purpose ofrisc is to parse, analyze, in-
strument, and compile a SystemC source program into an executable programfor out-of-order parallel
simulation.risc is a frontend source-to-source compiler for SystemC built on top of the ROSE compiler
infrastructure with GNU or Intel C++ as backend target compiler. As such, risc relies on and supports
also most of the ROSE and GNU compiler options.

Using the command syntax shown in the synopsis above, the specifieddesignis compiled. By de-
fault, risc reads the SystemC source file, performs preprocessing and builds an internal representation
(abstract syntax tree) and a Segment Graph (SG) of the model. Next, segment conflict analysis is per-
formed and the design model is instrumented for Out-of-Order Parallel Discrete Event Simulation (OoO
PDES). Finally, instrumented C++ code is generated, compiled, and linked into an executable file that
can be run for fast parallel simulation.

On successful completion, the exit value 0 is returned. In case of errors during processing, an error
code with a brief diagnostic message is written to the standard error stream and the compilation is
aborted with an exit value greater than zero.

For preprocessing and C++ compilation into an executable file,risc relies on the availability of an
external C++ compiler which is used automatically in the background. By default, the GNU C++
compilerg++ is used. Alternatively (see options–risc:icpcand–risc:micbelow), the Intel C++ compiler
icpc may be used to generate an executable optimized for Intel processors with SIMD capabilities or
the Intel Many-Integrated-Core (MIC) architecture.

ARGUMENTS

design specifies the file name of the input SystemC design model; by default, the base name of
designis used as base name for the intermediate and output files;

OPTIONS

–h | —-help print therisc compiler version and a brief usage information message to standard output
and quit;

–v | —-verbose increment the verbosity level so that all tasks performed are logged to standard error
(default: be silent); at level 1, high-level messages about the tasks performed are dis-
played; at level 2, additional details such as input and output file names are listed; at
level 3, very detailed information about each executed task is printed;
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–vv increment the verbosity level by two counts (same as–v –v);

–vvv increment the verbosity level by three counts (same as–v –v –v);

–w | —-warnings increment the warning level so that compiler warning messages are enabled(default:
warnings are disabled); four levels are supported ranging from only important warnings
(level 1) to pedantic warnings (level 4); for most cases, warning level2 is recommended
( –w –w);

–ww increment the warning level by two counts (same as–w –w);

–www increment the warning level by three counts (same as–w –w –w);

–g add a symbol table suitable for debugging (e.g. usinggdb ) to the generated object files
and simulation executable (default: no debugging symbols);

–O | –O level optimize the generated simulation executable for higher execution speed and/orless
memory usage (default: no optimization);

–Idir add the specifieddir to the include path (extend the list of directories to be searched
for including source files); include directories are searched in the order of their
specification; the standard include path ($SYSTEMCLW HOME/include or $SYS-
TEMC OOPHOME/include) is automatically appended to this list; by default, only
the standard include directories are searched;

–Ldir add the specifieddir to the library path (extend the list of directories to be searched for
linker libraries); the library path is searched in the specified order; the standard library
path ($SYSTEMCOOPHOME/lib) is automatically appended to this list; by default,
only the standard library path is searched;

–llib add the specifiedlib to the list of libraries for the linker so that the executable is linked
againstlib; libraries are linked in the specified order; the standard libraries (i.e. -
lsystemc) are automatically appended to this list; by default, only standard libraries
are used;

–c perform only the preprocessing, analysis, instrumentation, and compilationtasks; skip
the final linking stage so that only an object file is created (default: perform all tasks
including linking);

–o output file specify the name of the final output file explicitly (default: a.out);

–psg switch to partial segment graph (PSG) generation mode (and do not link); this generates
a file with suffix .psg for the current translation unit; PSG files follow the DOT graph
description language and can be processed with DOT file tools (e.g. displayed with the
xdot.py tool); for 3rd-party IP components, PSG files may be edited with a texteditor
for further fine-tuning and IP protection;

–psginput PSG filespecifies the name of a PSG input file; the specified file will be loaded and its PSG
will be integrated with the current translation unit to form a complete segment graph;
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–psgoutput output filein PSG generation mode (see above), this specifies the name of the PSG out-
put file explicitly; by default, the output PSG file has the same basename as the input
SystemC file;

–risc:dump output the computed segment graph (SG) and conflict tables as HTML files (default: no
HTML files are generated); these files may be viewed by a user in a browser in order to
inspect the out-of-order execution conditions of the model and improve it accordingly;

–risc:icpc use the Intel C++ compilericpc in the backend for generating the executable (default:
GNU C++ compilerg++ );

–risc:mic use the Intel C++ compilericpc with option–micin the backend for cross-compiling an
executable for the Intel Many Integrated Core (MIC) architecture (default: generate an
executable for the same processor the compiler is running on);

–risc:elab filenameimport the elaboration result produced by the RISC elaboratorelab from file file-
nameand use it for segment conflict analysis based on a dynamic elaboration phase
(default: pure static analysis);

–<rose:option> pass this option through to the underlying ROSE compiler (default: none);

–<GNU option> pass this option through to the underlying GNU compiler (default: none);

ENVIRONMENT

SYSTEMCLW HOME is used at compile-time to find the RISC light-weight SystemC header files
which are expected in directory $SYSTEMCLW HOME/include (default:
none);

SYSTEMCOOP HOME is used at compile-time to find the RISC out-of-order SystemC header files
which are expected in directory $SYSTEMCOOPHOME/include, and the
RISC out-of-order SystemC library which is expected in directory $SYS-
TEMC OOPHOME/lib (default: none);

SYSTEMCMIC HOME is used at compile-time to find the RISC SystemC header files and li-
brary files for the Intel many-integrated-core (MIC) architecture whichare
expected in directory $SYSTEMCMIC HOME/include and and $SYS-
TEMC MIC HOME/lib, respectively (default: none); this is used only when
the option–mic is used (see above);

SYSCPRINTMODE MESSAGEis used by the RISC simulator at run-time to print the mode
of simulation and also the actual values of the environment variables
listed below; these log lines start with ”***” and are only printed when
$SYSCPRINT MODE MESSAGE is defined (default: no messages are
printed);

SYSCSYNCPARSIM is used by the RISC simulator at run-time to force the RISC out-of-order
SystemC simulation to fall back to synchronous (in-order) PDES execution;
note that this mode is also automatically selected when SystemC primitive
channels with update requests are used (default: out-of-order execution);
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SYSCVERBOSITYFLAG 1 is used by the RISC simulator at run-time to print debugging information
about the thread state, segment id, instance id, time; such debugging lines
are only printed when $SYSCVERBOSITY FLAG 1 is defined (default:
no debugging infos are printed);

SYSCVERBOSITYFLAG 2 is used by the RISC simulator at run-time to print debugging information
about the event notification times, listening threads; such debugging lines
are only printed when $SYSCVERBOSITY FLAG 2 is defined (default:
no debugging infos are printed);

SYSCVERBOSITYFLAG 3 is used by the RISC simulator at run-time to print debugging informa-
tion about the events threads are waiting for; such debugging lines are only
printed when $SYSCVERBOSITY FLAG 3 is defined (default: no debug-
ging infos are printed);

SYSCVERBOSITYFLAG 4 is used by the RISC simulator at run-time to print debugging information
about what threads an event triggers and the conflict checking information
such debugging lines are only printed when $SYSCVERBOSITY FLAG 4
is defined (default: no debugging infos are printed);

SYSCVERBOSITYFLAG is used by the RISC simulator at run-time to print debugging information.
When $SYSCVERBOSITY FLAG is defined it turns on all the debugging
information (default: no debugging infos are printed);

SYSCDISABLEPREDICTION is used by the RISC simulator at run-time to switch back to non-
predictive conflict detection; this avoids scheduling overhead at run
time, but usually results in slower simulation due to more conflicts; if
$SYSCDISABLE PREDICTION is defined, thread state prediction is not
used during out-of-order scheduling (default: out-of-order execution with
prediction);

SYSCPARSIM CPUS is used by the RISC simulator at run-time to set the maximum number of
concurrent threads allowed in the RISC out-of-order SystemC simulation
(default: 64);

VERSION

The RISC compiler and simulator are release version 0.6.0.

AUTHORS

Zhongqi Cheng <zhongqc@uci.edu>, Rainer Doemer <doemer@uci.edu>, Guantao
Liu <guantaol@uci.edu>, Daniel Mendoza <dmmendo1@uci.edu>, and Tim Schmidt
<schmidtt@uci.edu>.

COPYRIGHT

(c) 2019 CECS, University of California, Irvine
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LICENSE

Open source BSD license terms apply.

BUGS, LIMITATIONS

This is an academic proof-of-concept prototype implementation, not commercial-quality software. See
the file BUGS in the software packages for known limitations.

39



A.2 Manual Page of the RISC Elaborator

NAME

elab– Recoding Infrastructure for SystemC (RISC) Dynamic Elaborator

SYNOPSIS

elabdesign[ options]

DESCRIPTION

elab is a special compiler for the SystemC language. The purpose ofelab is to parse, analyze, instru-
ment, and compile a SystemC source program into an executable program fordynamic elaboration.elab
is a frontend source-to-source compiler for SystemC built on top of the ROSE compiler infrastructure
with GNU or Intel C++ as backend target compiler. As such,elab relies on and supports also most of
the ROSE and GNU compiler options.

Using the command syntax shown in the synopsis above, the specifieddesignis compiled. By de-
fault, elab reads the SystemC source file, performs preprocessing and builds an internal representation
(abstract syntax tree) of the SystemC structural hierarchy.elab then instruments the design model so
that its execution stops after the end of the elaboration phase (no actual simulation will take place); the
dynamically built hierarchy and instance connectivity data is then dumped into afile design.elabwhich
can be passed to the RISC compilerrisc for more precise conflict analysis.

On successful completion, the exit value 0 is returned. In case of errors during processing, an error
code with a brief diagnostic message is written to the standard error stream and the compilation is
aborted with an exit value greater than zero.

For preprocessing and C++ compilation into an executable file,elab relies on the availability of
an external C++ compiler which is used automatically in the background. By default, the GNU C++
compilerg++ is used.

ARGUMENTS

design specifies the file name of the input SystemC design model; by default, the base name of
designis used as base name for the intermediate and output files;

OPTIONS

–h | —-help print the elab elaborator version and a brief usage information message to standard
output and quit;

–v | —-verbose increment the verbosity level so that all tasks performed are logged to standard error
(default: be silent); at level 1, high-level messages about the tasks performed are dis-
played; at level 2, additional details such as input and output file names are listed; at
level 3, very detailed information about each executed task is printed;

–vv increment the verbosity level by two counts (same as–v –v);

–vvv increment the verbosity level by three counts (same as–v –v –v);
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–w | —-warnings increment the warning level so that compiler warning messages are enabled(default:
warnings are disabled); four levels are supported ranging from only important warnings
(level 1) to pedantic warnings (level 4); for most cases, warning level2 is recommended
( –w –w);

–ww increment the warning level by two counts (same as–w –w);

–www increment the warning level by three counts (same as–w –w –w);

–g add a symbol table suitable for debugging (e.g. usinggdb ) to the generated object files
and simulation executable (default: no debugging symbols);

–O | –O level optimize the generated simulation executable for higher execution speed and/orless
memory usage (default: no optimization);

–Idir add the specifieddir to the include path (extend the list of directories to be searched
for including source files); include directories are searched in the order of their
specification; the standard include path ($SYSTEMCLW HOME/include or $SYS-
TEMC OOPHOME/include) is automatically appended to this list; by default, only
the standard include directories are searched;

–Ldir add the specifieddir to the library path (extend the list of directories to be searched for
linker libraries); the library path is searched in the specified order; the standard library
path ($SYSTEMCOOPHOME/lib) is automatically appended to this list; by default,
only the standard library path is searched;

–llib add the specifiedlib to the list of libraries for the linker so that the executable is linked
againstlib; libraries are linked in the specified order; the standard libraries (i.e. -
lsystemc) are automatically appended to this list; by default, only standard libraries
are used;

–c perform only the preprocessing, analysis, instrumentation, and compilationtasks; skip
the final linking stage so that only an object file is created (default: perform all tasks
including linking);

–o output file specify the name of the final output file explicitly (default: a.out);

–elab:o specify the name of the elaboration result file with instance connectivity data explicitly
(default:design.elab); this file will be produced when the executable generated byelab
is run (after its elaboration phase);

–<rose:option> pass this option through to the underlying ROSE compiler (default: none);

–<GNU option> pass this option through to the underlying GNU compiler (default: none);

ENVIRONMENT

SYSTEMCLW HOME is used at compile-time to find the RISC light-weight SystemC header files
which are expected in directory $SYSTEMCLW HOME/include (default:
none);
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SYSTEMCOOP HOME is used at compile-time to find the RISC out-of-order SystemC header files
which are expected in directory $SYSTEMCOOPHOME/include, and the
RISC out-of-order SystemC library which is expected in directory $SYS-
TEMC OOPHOME/lib (default: none);

VERSION

The RISC Dynamic Elaborator is release version 0.6.0.

AUTHORS

Zhongqi Cheng <zhongqc@uci.edu>, Rainer Doemer <doemer@uci.edu>, Guantao Liu
<guantaol@uci.edu>, and Tim Schmidt<schmidtt@uci.edu>.

COPYRIGHT

(c) 2018 CECS, University of California, Irvine

LICENSE

Open source BSD license terms apply.

BUGS, LIMITATIONS

This is an academic proof-of-concept prototype implementation, not commercial-quality software. See
the file BUGS in the software packages for known limitations.
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A.3 Manual Page of the RISC SIMD Advisor

NAME

simd – Recoding Infrastructure for SystemC (RISC) SIMD Advisor

SYNOPSIS

simd [ options] design[ options]

DESCRIPTION

simd is an analysis tool for exploiting data-level parallelism based on the RISC compiler for the Sys-
temC language. The purpose ofsimd is to parse and analyze a SystemC source program, and then
provide advise to the user regarding possible optimizations of the model to exploit SIMD parallelism
for faster out-of-order parallel simulation.

Using the command syntax shown in the synopsis above, the specifieddesignis compiled and stat-
ically analyzed. By default,simd reads the SystemC source file, performs preprocessing and builds
an internal representation (abstract syntax tree) of the SystemC constructs in the model. Next, thread
control flow analysis is performed and encountered loops are analyzedfor potential single-instruction-
multiple-data (SIMD) execution which exploits data-level parallelism and can lead to significantly im-
proved simulation performance in Out-of-Order Parallel Discrete Event Simulation (OoO PDES).

Specifically,simd presents to the user a list of loops that might be suitable for SIMD vectorization.
The user is expected to review the options and, based on his application knowledge, select those loops
that do not contain SIMD conflicts, such as parallel accesses to overlapping memory locations. For
confirmed loops, the user then inserts into the source code#pragma omp simdannotations immediately
before the selected loops. The annotated model can then be compiled withrisc and option–risc:icpc
using the Intel C++ compilericpc to generate an executable for execution on a SIMD-capable target
architecture with improved performance.

The output ofsimd lists the loops found in the control flow of the SystemC threads of the model. For
each loop, its line number in the source code is listed together with its analyzed SIMD qualification. If
the loop is not qualified, a reason for its disqualification may or may not be shown in form of an error
code.

A qualification error code of 1 indicates the use of an invalid array index in the loop. The code
2 indicates that a non-loop local variable is written. Finally, code 3 indicates that an unsupported
construct (e.g. goto statement) is found in the loop.

On successful completion, thesimd advisor returns the value 0. In case of errors during processing,
an error code with a brief diagnostic message is written to the standard errorstream and the compilation
is aborted with an exit value greater than zero.

ARGUMENTS

design specifies the file name of the input SystemC design model; by default, the base name of
designis used as base name for the intermediate and output files;

OPTIONS

–h | —-help print thesimd advisor version and a brief usage information message to standard output
and quit;
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–v | —-verbose increment the verbosity level so that the tasks performed are logged to standard error
(default: be silent); at level 1, high-level messages about the tasks performed are dis-
played; at level 2, additional details such as input and output file names are listed; at
level 3, very detailed information about each executed task is printed;

–vv increment the verbosity level by two counts (same as–v –v);

–vvv increment the verbosity level by three counts (same as–v –v –v);

–w | —-warnings increment the warning level so that warning messages are enabled (default: warnings
are disabled); four levels are supported ranging from only important warnings (level 1)
to pedantic warnings (level 4); for most cases, warning level 2 is recommended (–w –w
);

–ww increment the warning level by two counts (same as–w –w);

–www increment the warning level by three counts (same as–w –w –w);

–Idir add the specifieddir to the include path (extend the list of directories to be searched
for including source files); include directories are searched in the order of their speci-
fication; the standard include path ($SYSTEMCLW HOME/include) is automatically
appended to this list; by default, only the standard include directories are searched;

–o output file specify the name of the text output file explicitly (default: none);

–<rose:option> pass this option through to the underlying ROSE compiler (default: none);

–<GNU option> pass this option through to the underlying GNU compiler (default: none);

ENVIRONMENT

SYSTEMCLW HOME is used at compile-time to find the RISC light-weight SystemC header files
which are expected in directory $SYSTEMCLW HOME/include (default:
none);

VERSION

The SIMD Advisor is release version 0.6.0.

AUTHORS

Zhongqi Cheng <zhongqc@uci.edu>, Rainer Doemer <doemer@uci.edu>, Guantao Liu
<guantaol@uci.edu>, and Tim Schmidt<schmidtt@uci.edu>.

COPYRIGHT

(c) 2018 CECS, University of California, Irvine

LICENSE

Open source BSD license terms apply.
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BUGS, LIMITATIONS

This is an academic proof-of-concept prototype implementation, not commercial-quality software. See
the file BUGS in the software packages for known limitations.
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A.4 Manual Page of the RISC Visual Tool

NAME

visual – Graphical SystemC Module Visualizer using RISC

SYNOPSIS

visual [ options] design[ options]

DESCRIPTION

visual is an analysis tool for graphical visualizing of ports and modules of SystemCcode. It uses the
RISC compiler to parse and analyze the SystemC source code into a data structure. The tool iterates
through this data structure and displays a visual representation of the hierarchy of modules and ports.
visual provides a GUI to provide a graphical representation of the SystemC modelas well as provide
user modifiable options during run-time to change the graphical properties of the visualization.

ARGUMENTS

design specifies the file name of the input SystemC model.

OPTIONS

–h | —-helpprints a brief message on the usage of the tool to standard output and quits;

–bw Modules are drawing without color;

–tm moduleOnly draw ”module”;

–Il integer Draw only a certain depth in the hierarchy given by ”integer”;

–s float Scale the drawing size by ”float”. If ”float” = 0.5, then the size of the drawing is scaled by 50
percent.

–np The module hierachy will be drawn without ports or channels;

ENVIRONMENT

SYSTEMCLW HOME is used at run-time to find the RISC light-weight SystemC header files which
are expected in directory $SYSTEMCLW HOME/include

VERSION

Visual is release version 0.6.0.

AUTHORS

Daniel Mendoza<dmmendo1@uci.edu>
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COPYRIGHT

(c) 2019 CECS, University of California, Irvine

LICENSE

Open source BSD license terms apply.

BUGS, LIMITATIONS

This is an academic proof-of-concept prototype implementation, not commercial-quality software.
GTK is used at compile-time for the GUI. CAIRO is used at compile-time for drawings displayed
on the GUI.
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A.5 Manual Page of the RISC Tree Tool

NAME

tree – Textual SystemC Module Visualizer using RISC

SYNOPSIS

tree [ options] design[ options]

DESCRIPTION

tree is an analysis tool for textual visualizing of ports and modules of SystemC code. It uses the RISC
compiler to parse and analyze the SystemC source code into a data structure.The tool iterates through
this data structure and displays a visual representation of the hierarchy of modules and ports.

ARGUMENTS

design specifies the file name of the input SystemC model.

OPTIONS

–h | —-helpprints a brief message on the usage of the tool to standard output and quits;

ENVIRONMENT

SYSTEMCLW HOME is used at tun-time to find the RISC light-weight SystemC header files which
are expected in directory $SYSTEMCLW HOME/include

VERSION

Tree is release version 0.6.0.

AUTHORS

Daniel Mendoza<dmmendo1@uci.edu>

COPYRIGHT

(c) 2019 CECS, University of California, Irvine

LICENSE

Open source BSD license terms apply.

BUGS, LIMITATIONS

This is an academic proof-of-concept prototype implementation, not commercial-quality software.
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A.6 Manual Page of the RISC List Tool

NAME

list – Module hierarchy listing using RISC

SYNOPSIS

list [ command] - [ subcommand] [ design]

DESCRIPTION

list is a tool that can be used for both debugging and user purposes. It is aterminal-based utility tool
that is meant for listing the structural composition of SystemC models.

USAGE

To use this tool, simply run the ‘list’ program with a command (and optional subcommand) on a Sys-
temC design model.

For instance, you can do ‘./list [file path]play.cpp’. Notice in this example thatno command is
included. Running the program with no command will just print out every single component of whatever
SystemC model a user specified in default mode. Also note that you can printout the entire structure
of a single component of a SystemC model either in default or minimal mode by doing commands like
‘m-’ or ‘m-m’. In the previous examples, ‘m-’ would print out all of the info for every module of a
SystemC model in default mode while ‘m-m’ would do the same thing but in minimal mode. This holds
true for all commands, so you can also use, for instance ‘v-’ to print outall the info for every global
variable of a SystemC model in default mode.

Note however, that the very second any other subcommand is used besides ‘m’(minimal mode), only
the piece of info specified by that subcommand will be printed. For instance,using the command ‘v-t’
would print out every global variable and its type for a given SystemC model, but no other piece of info
like the source file or line number of where those variables originated will be printed.

Lastly to use multiple subcommands at the same time, type them consecutively next toeach other
with no spaces or other characters in between. For instance, using the command ‘h-mtv’ will print
out the types and gobal variables of every hierarchical channel in a SystemC model in minimal mode.
Note that the order in which you type in subcommands does not matter, so the command ‘h-vtm’ would
produce the same output as ‘h-mtv’.

OPTIONS

Calling ‘./list -h’ prints a brief summary of available command and subcommand options, as follows:

m print modules

–m minimal mode

–t include module types

–v print global variables

–s print submodules
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–p print ports

–h print hierarchical channels

–f print member functions

–l print source location

h print hierarchical channels

–m minimal mode

–t include channel types

–v print global variables

–s print submodules

–p print ports

–h print hierarchical channels

–f print member functions

–l print source location

v print global variables

–m minimal mode

–t include variable types

–l print source location

p print primitive channels

–m minimal mode

–t include channel types

–l print source location

i print interfaces

–m minimal mode

–a print out all interfaces (also from headers)

–l print source location

VERSION

List is release version 0.6.0.
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AUTHORS

Spencer Kam<sbkam@uci.edu>

COPYRIGHT

(c) 2019 CECS, University of California, Irvine

LICENSE

Open source BSD license terms apply.

BUGS, LIMITATIONS

This is an academic proof-of-concept prototype implementation, not commercial-quality software.
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B Appendix: RISC Software Package Documentation

B.1 Overview of the RISC Software Package

--------------------------------------------------- ---------------------------
README RISC V 0.6.0
--------------------------------------------------- ---------------------------

This directory contains the source distribution of RISC ver sion 0.6.0.

Authors: (in alphabetical order)

Farah Arabi (farabi@uci.edu)
Zhongqi Cheng (zhongqc@uci.edu)
Rainer Doemer (doemer@uci.edu)
Spencer Kam (sbkam@uci.edu)
Guantao Liu (guantaol@uci.edu)
Daniel Mendoza (dmmendo1@uci.edu)
Tim Schmidt (schmidtt@uci.edu)

Directory structure (RISC source tree):

$RISC_BUILD/ - build directory of the entire RISC system
risc_v0.6.0/ - RISC compiler and simulator, including:

README - this file (and other info files)
source_me.sh - environment variable settings (bash versio n)
source_me.csh - environment variable settings (csh versio n)
Makefile - Makefile to build RISC compiler, simulator
Makefile.macros - Makefile macro definitions (i.e. paths)
docs/ - RISC API documentation (doxygen sources)
man/ - manual pages for RISC executables
examples/ - SystemC examples for RISC OoO PDES

simple/ - simple examples
HelloWorld.cpp - classic HelloWorld example

demo/ - demo examples
play.cpp - audio/video player (conceptual)
mandelbrot.cpp - Mandelbrot renderer

src/ - source tree of the RISC compiler, including:
ast_traverser/ - specialized ROSE AST traverser for System C
instrumentation/ - source code instrumentation functions
internal_representation/- internal representation of th e SystemC model
segment_graph/ - segment graph representation of the model
static_analysis/ - static compiler analysis functions
tools/ - tools and helper functions

lwsc/ - patch files for light-weight SystemC headers
oopsc/ - patch files for OOO PDES SystemC
projects/ - source code for RISC executables
test/ - RISC compiler test bench

regression/ - regression test suite
include/ - public header files (created by ’make build’)
lib/ - linker library files (created by ’make build’)
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objects/ - object files of RISC (created by ’make build’)

For more information, please refer to the files COPYRIGHT, L ICENSE, INSTALL,
BUGS and HISTORY.

Enjoy!

The RISC Team, September 2019.

--------------------------------------------------- ---------------------------
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B.2 Copyright of the RISC Compiler and Simulator

--------------------------------------------------- ---------------------------
COPYRIGHT RISC V 0.6.0
--------------------------------------------------- ---------------------------

RISC:

Copyright (c) 2014, 2015, 2016, 2017, 2018, 2019
CECS - Center for Embedded and Cyber-physical Systems
University of California, Irvine
USA

RISC project members/authors/alumni: (in alphabetical or der)

Farah Arabi (farabi@uci.edu)
Zhongqi Cheng (zhongqc@uci.edu)
Rainer Doemer (doemer@uci.edu)
Spencer Kam (sbkam@uci.edu)
Guantao Liu (guantaol@uci.edu)
Daniel Mendoza (dmmendo1@uci.edu)
Tim Schmidt (schmidtt@uci.edu)

Contact:

Rainer Doemer
Center for Embedded and Cyber-physical Systems
University of California, Irvine
Irvine, CA 92697-2625
U.S.A.
Web: http://www.cecs.uci.edu/˜doemer/risc.html
Email: doemer@uci.edu

September 2019.

--------------------------------------------------- ---------------------------
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B.3 Open Source License of the RISC Compiler and Simulator

--------------------------------------------------- ---------------------------
LICENSE: (BSD License)
--------------------------------------------------- ---------------------------

Copyright (c) 2019 The Regents of the University of Californ ia.
All rights reserved.

Redistribution and use in source and binary forms, with or wi thout
modification, are permitted provided that the following co nditions are met:

- Redistributions of source code must retain the above copyr ight notice, this
list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above co pyright notice,
this list of conditions and the following disclaimer in the d ocumentation
and/or other materials provided with the distribution.

- Neither the name of the University of California, Irvine, n or the names of
its contributors may be used to endorse or promote products d erived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS ‘‘AS IS’’ AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

--------------------------------------------------- ---------------------------
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B.4 Installation Instructions of the RISC Compiler and Simulator

--------------------------------------------------- ---------------------------
INSTALL RISC V 0.6.0
--------------------------------------------------- ---------------------------

Requirements:

- host platform: Linux, CentOS 6.9 or 7.x, x86_64 (or similar )
- GNU C++ compiler tool chain (4.4.7 and 4.8.5 work, others ma y also)
- GNU flex (v2.5.35) and bison (v2.4.1)
- Boost library (version 1.61.0)
- ROSE compiler source installation (version 0.9.10.25, 20 18-05-16)
- Accellera SystemC 2.3.1 source installation

NOTE: OPTION (A) AUTOMATIC INSTALLATION:

To install the entire RISC system including its prerequisit es
Boost, ROSE, and SystemC, use the top-level Makefile from
-> http://www.cecs.uci.edu/˜doemer/risc/v060/Makefil e
and follow the instructions at:
-> http://www.cecs.uci.edu/˜doemer/risc/v060/INSTALL

OPTION (B) MANUAL INSTALLATION:

Install all prerequisites (Boost, ROSE, SystemC) first. Th en,
to install the RISC compiler and simulator software package ,
use the more complex instructions below.

Manual Installation: RISC compiler and simulator

--------------------------------------------------- --------------------------
Step 0: Set paths to RISC_HOME and the installed prerequisit e packages
--------------------------------------------------- --------------------------

Using your favorite text editor, adjust the directory paths in the provided
script file ’source_me.sh’ (for sh or bash) or ’source_me.c sh’ (for csh or
tcsh):
- set RISC_HOME to the directory where the RISC software is to be installed

e.g. RISC_HOME=/home/username/risc_v0.6.0
- set RISC_BUILD to the directory where RISC is to be built

e.g. RISC_BUILD=$RISC/sources/build
note that the RISC package should be found in $RISC_BUILD/ri sc_v0.6.0/
and this INSTALL file should be here: $RISC_BUILD/risc_v0. 6.0/INSTALL

- set RISC_DOWNLOAD to the directory where downloaded files are stored
e.g. RISC_DOWNLOAD=$RISC/sources/download

- set ROSE_HOME to the directory where you have ROSE installe d
e.g. ROSE_HOME=$RISC/pkg/edg4x-rose

- set BOOST_HOME to the directory where you have BOOST instal led
e.g. BOOST_HOME=$RISC/pkg/boost_1_61_0

- set SYSTEMC_HOME to the directory where you have Accellera SystemC installed
e.g. SYSTEMC_HOME=$RISC/pkg/systemc-2.3.1_pt

- set SYSTEMC_LW_HOME to the directory where LW SystemC is to be installed
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e.g. SYSTEMC_LW_HOME=$RISC/pkg/systemc-2.3.1_lw
- set SYSTEMC_OOP_HOME to the directory where OOP SystemC is to be installed

e.g. SYSTEMC_OOP_HOME=$RISC/pkg/systemc-2.3.1_oop
- set SYSTEMC_MIC_HOME to the directory where SystemC for MI C is to be installed

e.g. SYSTEMC_MIC_HOME=$RISC/pkg/systemc-2.3.1_mic

Next, execute your source_me script so that the settings tak e effect:

sh $ . source_me.sh
or
csh$ source source_me.csh

--------------------------------------------------- --------------------------
Step 1: Build and install RISC compiler and simulator (this p ackage)
--------------------------------------------------- --------------------------

Now you can build/compile, install, and test the RISC compil er and
simulator, as follows:

$ make clean
$ make build
$ make install
$ make test

There should be no errors during the execution of the above fo ur commands.

--------------------------------------------------- --------------------------
Step 2: Run the RISC demo examples
--------------------------------------------------- --------------------------

To run the included demonstration examples, setup the RISC e nvironment
variables first:

sh $ . /path/to/RISC/bin/setup.sh
or
csh$ source /path/to/RISC/bin/setup.csh

Next, copy the demo examples into a working directory and adj ust the
SYSTEMC_HOME path in the provided Makefile so that you can co mpare
the RISC OoO PDES against the reference Accellera DES.

$ mkdir work
$ cp $RISC/examples/demo/ * work/
$ cd work/
$ vi Makefile

Then compile and simulate the examples. For instance, the co nceptual
DVD player example can be run and evaluated as follows:

$ vi play.cpp
$ make play_seq
$ make play_ooo
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$ /usr/bin/time play_seq
$ /usr/bin/time play_ooo

The simulation of the Mandelbrot renderer follows the same s cheme:

$ vi mandelbrot.cpp
$ make mandelbrot_seq
$ make mandelbrot_ooo
$ /usr/bin/time mandelbrot_seq
$ /usr/bin/time mandelbrot_ooo

Depending on the parallelism available on your host machine ,
you can adjust the examples to your own preferences.

Have fun! :-)

--------------------------------------------------- ---------------------------
The RISC Team, September 2019.
--------------------------------------------------- ---------------------------
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B.5 Change Log of the RISC Compiler and Simulator

--------------------------------------------------- ---------------------------
HISTORY RISC V 0.6.0
--------------------------------------------------- ---------------------------

Releases, Publications, important changes:
------------------------------------------

2014-06-09: Alpha release 0.1.0 (unreliable work-in-prog ress)
Basic parsing and representing of SystemC core elements
Rainer Doemer, Guantao Liu, Tim Schmidt

2014-11-24: Alpha release 0.1.1 (aka Hulk)
Static read/write analysis of variables in processes
Rainer Doemer, Guantao Liu, Tim Schmidt

2015-09-30: Alpha release 0.2.0 (open source)
Integrated compiler and simulator
-> approx. 61k lines of source code
Rainer Doemer, Guantao Liu, Tim Schmidt

2015-10-30: Alpha release 0.2.1 (open source)
Integrated compiler and simulator
+ improved documentation (manual page)
+ improved installation (bin directory, etc.)
+ bug fixes (conflict tables)
-> approx. 62k lines of source code
Rainer Doemer, Guantao Liu, Tim Schmidt

2016-08-12: Alpha release 0.2.2 (internal only)
Integrated compiler and simulator
+ improved installation (and maintenance) scripts
+ initial support for dynamic instance tree
+ bug fixes
-> approx. 79k lines of source code
Rainer Doemer, Guantao Liu, Tim Schmidt

2016-09-30: Beta release 0.3.0 (open source)
Integrated compiler and simulator, new dynamic elaborator
+ improved installation, build, and maintenance setup
+ new support for dynamic conflict analysis: RISC elaborato r ’elab’
+ new support for annotation of library functions (#pragma r isc)
+ new support for the Intel compiler in the backend
+ new demo example mandelbrot_fifo.cpp (using SystemC sc_f ifo)
+ new parallel benchmarks fibo.cpp, fmul.cpp (extreme para llelism)
+ safe support for primitive channels with update methods
+ bug fixes
-> approx. 80k lines of source code
Rainer Doemer, Guantao Liu, Tim Schmidt

2017-05-05: Beta release 0.3.1 (internal only)
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Integrated compiler and simulator, with dynamic elaborato r
+ improved installation script (with minimal BOOST library )
+ out-of-order execution with prediction
+ new regression test suite for simulation (SEQ, SYN, NPD, OO O)
+ bug fixes
-> approx. 102k lines of source code
Zhongqi Cheng, Rainer Doemer, Guantao Liu, Tim Schmidt

2017-07-31: Release 0.4.0 (open source)
Integrated compiler and simulator, with SIMD vectorizatio n
+ new support for SIMD parallelism: RISC SIMD advisor ’simd’
+ new SIMD vectorization demo mandelbrot_icpc_demo (using Intel compiler)
+ more precise port mapping analysis leading to less false co nflicts
+ more precise prediction analysis due to cloning of channel segments
+ improved segment ID instrumentation via thread-local dat a
+ performance testing for regression, parallel, and demo ex amples
+ improved documentation, logging information, and error h andling
+ bug fixes
-> approx. 111k lines of source code
Zhongqi Cheng, Rainer Doemer, Guantao Liu, Tim Schmidt

2018-04-19: Release 0.4.1 (internal only)
Integrated compiler and simulator with supporting tools
+ new port-call-path based analysis (DATE’18 paper), less f alse conflicts
+ new analysis for reference variables, less false conflict s
+ new light-weight SystemC headers for faster compilation ( CECS-TR-16-07)
+ new hierarchy visualization tools ’visual’ and ’tree’ (CE CS-TR-17-06)
+ support for 6 styles of port binding (removes limitation 3 o f v.0.4.0)
+ support for SystemC tracing (sc_trace) facilities
+ bug fix: unused modules can be present in design models
+ bug fixes
-> approx. 147k lines of source code
Farah Arabi, Zhongqi Cheng, Rainer Doemer, Guantao Liu, Dan iel Mendoza,
Tim Schmidt

2018-06-15: Release 0.4.2 (open-source)
Integrated compiler and simulator with supporting tools
+ foundation libs upgraded to Boost 1.61 and Rose 0.9.10.25 ( 2018-05-16)
+ support for CentOS 7.x (in addition to ongoing CentOS 6 supp ort)
+ new binary distribution in Docker container for quick plug -and-play
+ initial support for multiple translation units (Partial S egment Graphs)
+ bug fix: removed obsolete "patching ROSE limitations" ste p (new Rose)
+ bug fix: DVD player example code is now C++11 compliant
+ bug fix: verbosity logs of RISC compiler (with -v and -vv)
+ bug fixes
-> approx. 151k lines of source code
Zhongqi Cheng, Rainer Doemer, Daniel Mendoza, Tim Schmidt

2018-09-27 Release 0.4.3 (internal only)
Integrated compiler and simulator with supporting tools
+ support for Partial Segment Graphs (removes limitation 3 o f v.0.4.2)
+ support for multiple translation units, 3rd-party IP with out source code
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+ support for static analysis of sc_event_and_list and sc_e vent_or_list
+ improved support for RTL constructs (sc_signal, static se nsitivity, etc.)
+ support for simulation in limited time periods (sc_start( duration))
+ improved Segment Graph (SG) visualization in .dot files
+ bug fixes
-> approx. 162k lines of source code
Zhongqi Cheng, Rainer Doemer, Daniel Mendoza

2018-09-30 Release 0.5.0 (open-source)
Integrated compiler and simulator with supporting tools
+ extended CECS technical report for features, accuracy and completeness
-> approx. 162k lines of source code
Zhongqi Cheng, Rainer Doemer, Daniel Mendoza

2019-04-15 Release 0.5.1 (internal only)
+ clean and deterministic segment graphs and data conflict t ables
+ removed instrumentation of redundant mutexes in user-def ined channels
+ internal time resolution consistent with SystemC standar d (1ps)
+ initial support for TLM-2.0 sockets and communication via b_transport()
+ bug fixes
-> approx. 181k lines of source code
Zhongqi Cheng, Rainer Doemer, Daniel Mendoza

2019-05-16 Release 0.5.2 (internal only)
+ improved accuracy of HTML data conflict tables
+ more flexible port mapping analysis (across hierarchies)
+ support for TLM-2.0 sockets and communication via b_trans port()
+ support for TLM-2.0 DMI communication via get_direct_mem _ptr()
+ new DVD player examples modeled with TLM-2.0 coding styles

(with/without hierarchical binding, interconnect, multi ple memories, DMI)
+ improved simulator, resuming multiple waiting threads in parallel
+ improved simulator, replaced event hazards checking with event prediction
+ new simulator diagnostics log (SYSC_VERBOSITY_FLAGs)
+ new script min_data_conflict_table.sh for compiler diag nostics
+ new visualization of socket connectivity and thread locat ion (visual)
+ bug fixes
-> approx. 187k lines of source code
Zhongqi Cheng, Rainer Doemer, Daniel Mendoza

2019-06-26 Release 0.5.3 (internal only)
+ initial support for socket interconnectivity in ’elab’ to ol
+ initial support for SC_METHOD, dont_initialize, next_tr igger
+ bug fixes
-> approx. 196k lines of source code
Zhongqi Cheng, Rainer Doemer, Daniel Mendoza

2019-09-30 Release 0.6.0 (open-source)
+ integration with virtual platforms (i.e. Simics VP) for co -simulation
+ new module hierarchy listing tool ’list’
+ new feature for external conflict table files when these ar e large
+ improved support for sc_max_time(), sc_start(duration) , sc_stop()
+ improved support for SC_METHOD (1-to-1 methods-to-invok er ratio)
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+ improved simulator speed in out-of-order scheduler (even t delivery)
+ improved compatibility with modern compilers (i.e. GNU-C 8.x)
+ improved Doxygen-generated documentation
+ bug fixes
-> approx. 206k lines of source code
Zhongqi Cheng, Rainer Doemer, Spencer Kam, Daniel Mendoza

September 2019.

Future work:
+ full support for cycle-accurate models (RTL and HLS abstra ction)
+ support for grouping of SC_METHODs for efficient parallel execution

--------------------------------------------------- ---------------------------
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