Center for Embedded and Cyber-physical Systems
University of California, Irvine

RISC Compiler and Simulator, Release V0.5.0:
Out-of-Order Parallel Simulatable SystemC Subset

Guantao Liu, Tim Schmidt, Zhonggi Cheng, Daniel Mendoza andé&d&dmer

Technical Report CECS-18-03
September 30, 2018

Center for Embedded and Cyber-physical Systems
University of California, Irvine
Irvine, CA 92697-2620, USA
+1 (949) 824-8919

{guantaol,schmidtt,zhongqc,dmmendol,doemer}@uci.edu
http://www.cecs.uci.edu/~doemer/risc.html

{guantaol, schmidtt, zhongqc, dmmendo1, doemer}@uci.edu
http://www.cecs.uci.edu/~doemer/risc.html

RISC Compiler and Simulator, Release V0.5.0:
Out-of-Order Parallel Simulatable SystemC Subset

Guantao Liu, Tim Schmidt, Zhongqgi Cheng, Daniel Mendoza and&d&dmer

Technical Report CECS-18-03
September 30, 2018

Center for Embedded and Cyber-physical Systems
University of California, Irvine
Irvine, CA 92697-2620, USA
+1 (949) 824-8919

{guantaol,schmidtt,zhonggc,dmmendol,doemer}@uci.edu
http://www.cecs.uci.edu/~doemer/risc.html

Abstract

IEEE SystemC is widely used in industry and academia tofypewnil simulate Electronic System Level (ESL)
models. Despite the wide availability of multi-core pragmshosts, however, the reference SystemC simulator is
still based on sequential Discrete Event Simulation (DE#) @xecutes only a single thread at any time.

In recent years parallel SystemC simulators were proposadhwun multiple threads in parallel based on
synchronous Parallel Discrete Event Simulation (PDES)as@ins. Synchronous PDES, however, limits parallel
execution to threads that run at the same time and delta cp¢$®, most approaches require manual preparation
of the SystemC model and rely on the designer to performutifonflict analysis.

In this report, we describe the advanced Recoding Infrastme for SystemC (RISC) approach where a
dedicated SystemC compiler and advanced parallel simuiatplement Out-of-Order Parallel Discrete Event
Simulation (OoO PDES) for SystemC. Using automatic corstielysis based on Segment Graph (SG) abstrac-
tion, 00O PDES can execute threads safely in parallel anebbuatrder (ahead of time) and thus achieves fastest
simulation speed, but nevertheless maintains the clagsie®C modeling semantics.

This report describes the RISC Compiler and Simulator andildethe SystemC subset supported by the
RISC Release V0.5.0, as of September 30, 2018. In compéaoisoa previous V0.4.0 release in 2017, RISC is
more efficient and robust, and supports Partial Segment Bsamd new SystemC model visualization.

{guantaol, schmidtt, zhongqc, dmmendo1, doemer}@uci.edu
http://www.cecs.uci.edu/~doemer/risc.html

Contents

1 Introduction| 1
2 Out-of-Order Parallel Simulation 2
2.1 Notations e e e 2
2.2 Discrete EVent SCheduler o o oo 3
2.3 Parallel Discrete Event Scheduler. 3
2.4 Out-of-Order Parallel Discrete Event Scheduler 4

3 RISC Compiler and Simulator 6
3.1 SegmentGraph e e e e 6
3.2 Partial Segment Graph e 7
3.3 ConflictAnalysis e e 8
3.3.1 Static Analysis e 8

3.3.2 Dynamic Analysis 8

3.4 Source Code Instrumentation w e 9
3.5 Library SUpport e e 10
3.6 Support for Data-Level Parallelism 12
3.7 CompilerBackend e 13
3.8 Simulator e e e e e 13

4 Out-of-Order Parallel Simulatable SystemC Subset 14
4.1 SystemC Hierarchical Structure of Modulesand Channels 14
4.2 SystemCThreads e e 22
4.3 SystemC Transaction Level Modeling (TLM) 0. .. 23
4.4 SystemC Data Tydes .. 23
4.5 SystemC Utilities and Other Constructs uan.. 23

5 RISC Analysis and Transformation Tools 24
6 Conclusion 24
Acknowledgements 25
References 25
A Appendix 29
A.1 Manual Page of the RISC Compiler and Simul\ator 29
A.2 Manual Page ofthe RISCElaborator e 33
A.3 Manual Page of the RISC SIMD AdVISOT . . « « « v o o oo e 36
A.4 Manual Page ofthe RISC Visual Tool @ . imm .. 39
A5 Manual Page of the RISC Tree TOOl oo v oot e e e e 41

List of Figures

o gk WIN

Traditional Discrete Event Simulation (DES) scheduler for SystémC
Synchronous Parallel Discrete Event Simulation (PDES) schedul8y&temC.
Out-of-Order Parallel Discrete Event Simulation (OoO PDES) schethri&ystemC.
RISC Compiler and Simulator for Out-of-Order PDES of SystemC.
Scaled RISC tool flow with Partial Segment Graph technology.
RISC Elaborator feeds dynamic elaboration information to RISC Compilgurémise conflict
analysis. e e e e e e
Control-flow abstractions fosai t in library functions. o
Different source code domains of a design model.
9 Module hierarchy visualization of a SystemC model of a Canny edge detecto

\‘

(o]

(SN

List of Tables

1 RISC V0.5.0 Out-of-Order Parallel Simulatable SystemC Subsetwu...... 15
2 RISC V0.5.0 Out-of-Order Parallel Simulatable SystemC Subset (con)mued 16
3 RISC V0.5.0 Out-of-Order Parallel Simulatable SystemC Subset (conjinued. 17
4 RISC V0.5.0 Out-of-Order Parallel Simulatable SystemC Subset (conjinued. 18
5 RISC V0.5.0 Out-of-Order Parallel Simulatable SystemC Subset (conjinued. 19
6 RISC V0.5.0 Out-of-Order Parallel Simulatable SystemC Subset (con}inued. 20
7 RISC V0.5.0 Out-of-Order Parallel Simulatable SystemC Subset (conjinued. 21
8 RISC V0.5.0 Out-of-Order Parallel Simulatable SystemC Subset (conj}inued. 22

RISC Compiler and Simulator, Release V0.5.0:
Out-of-Order Parallel Simulatable SystemC Subset

Guantao Liu, Tim Schmidt, Zhongqi Cheng, Daniel Mendoza and Raner Domer
Center for Embedded and Cyber-physical Systems
University of California, Irvine
Irvine, CA 92697-2620, USA
{guantaol,schmidtt,zhonggqc,dmmendol,doemer}@uci.edu
http://www.cecs.uci.edu/~doemer/risc.html

Abstract

IEEE SystemC is widely used in industry and academia to specify and simidatmBic System Level (ESL)
models. Despite the wide availability of multi-core processor hosts, hayikgaeference SystemC simulator is
still based on sequential Discrete Event Simulation (DES) and executea simgle thread at any time.

In recent years parallel SystemC simulators were proposed whiclmuitiple threads in parallel based on
synchronous Parallel Discrete Event Simulation (PDES) semanticeh&nmous PDES, however, limits parallel
execution to threads that run at the same time and delta cycle. Also, npyebapes require manual preparation
of the SystemC model and rely on the designer to perform difficult ccanilidysis.

In this report, we describe the advanced Recoding Infrastructure fte8)yC (RISC) approach where a dedi-
cated SystemC compiler and advanced parallel simulator implement Gitdlei- Parallel Discrete Event Sim-
ulation (OoO PDES) for SystemC. Using automatic conflict analysis bas&ggment Graph (SG) abstraction,
000 PDES can execute threads safely in parallel and out-of-order thbésime) and thus achieves fastest
simulation speed, but nevertheless maintains the classic SystemC modpiengfiss.

This report describes the RISC Compiler and Simulator and details then8ystabset supported by the RISC
Release V0.5.0, as of September 30, 2018. In comparison to the pr&tol0 release in 2017, RISC is more
efficient and robust, and supports Partial Segment Graphs and gst&8C model visualization.

1 Introduction

As an IEEE standard [1], the SystemC System Level Description Laegi®dL) is widely used for the spec-
ification, modeling, validation and evaluation of Electronic System Level jESbdels. Under the Accellera
Systems Initiative [2], the SystemC Language Working Group [3] maintaihemlyg the official SystemC lan-
guage definition, but also provides an open source proof-of-gbriteary [4] that can be used to simulate
SystemC design models. However, implementing the classic scheme of Disceste3tiwiulation (DES), this
reference simulator runs sequentially and cannot utilize the parallel corgpatources available on multi-core
(or many-core) processor hosts. This severely limits the execution sp&ydtemC simulation.

In order to provide faster simulation, Parallel Discrete Event Simulation &[& has recently gained again
significant attraction (examples include [6], [7], [8], [9], [10], aridl]). The PDES approach issues multiple
threads (i.e SC.METHOD, SC_THREAD andSC_CTHREAD) concurrently and runs them on the available proces-
sor cores in parallel. In turn, the simulation speed increases significantly.

{guantaol, schmidtt, zhongqc, dmmendo1, doemer}@uci.edu
http://www.cecs.uci.edu/~doemer/risc.html

Regular PDES is synchronous, however. That is, time advances glaipalgll threads execute in lock-step
fashion. Here, the total order of time imposed by synchronous PDES still linsitsghortunities for parallel ex-
ecution. When a thread completes its evaluation phase, it has to wait untileltbibads finish their evaluation
phases as well. Earlier completed threads must stop at the simulation cyate dadravailable processor cores
are left idle until all runable threads reach the cycle barrier.

In order to overcome this problem, we have developed a novel techridjed ©ut-of-Order Parallel Discrete
Event Simulation (OoO PDES) [12, 13, 14, 15]. By localizing the simulation time dividual threads and
carefully handling events at different times, the simulation kernel can thseads in parallel and ahead of time,
following a partial order of time without loss of accuracy. Thus, Ooo PBIg8ificantly reduces the idle time
of available parallel processor cores and results in maximum simulation,spleég maintaining the traditional
language and modeling semantics.

The 000 PDES technique was originally implemented based on the SpecCdarj@gal7, 18, 19]. In this
report, we document our efforts to apply OoO PDES to the IEEE System@ @) 21, 1] which is both the
de-facto and official standard for ESL design today. In particulardeseribe our Recoding Infrastructure for
SystemC (RISC) [22] which consists of a dedicated SystemC compiler aresponding out-of-order parallel
simulator and implements OoO PDES with prediction for SystemC [23].

The remainder of this report is organized as follows: After a brief digthon of the simulator scheduling
algorithms used for DES, PDES and OoO PDES in Section 2, we describd 3G mpiler and Simulator
proof-of-concept prototype in Section 3. In Section 4, we then list inilde&SystemC subset that is supported
by the current RISC Release V0.5.0 (2018—0@31))d finally conclude this report in Section 6.

2 Out-of-Order Parallel Simulation

In this section, we briefly outline the scheduling algorithm used in out-ofropdeallel simulation. We do
this incrementally, starting from the traditional Discrete Event Simulation (DEBg@duler, then describe the
synchronous Parallel DES (PDES) extension, and finally define thef@Dtder PDES (OoO PDES) scheduling
algorithm.

2.1 Notations

To formally describe the discrete event scheduling algorithms, the followdtagions are introduced.

1. Each SystemC threa&C_METHOD, SC_THREAD and SC_CTHREAD) is assigned a localized time stamp
(tth, Oth)-

2. Each eventgc_event) is assigned a notification time stantg Qe), whereEVENT S= UEVENT $;.
3. Threads are grouped into different queues. Specifically,

(a) QUEUES= {READY, RUN, WAIT, WAITTIME}.

(b) READY= Uth; 5 where Threadh is ready to run at timet(9).

(c) RUN= Uth; 5 where Threadh is running at timet(,d).

(d) WAIT = Uth; 5 where Threadh is waiting since timet(d).

(e) WAITTIME= Uth; o where Threadh is waiting for simulation time advance tq Q).

1 Earlier versions of this technical report document the prior alphasel#a2015 [24], the beta release in 2016/[25], and release
v0.4.0 in 2017/[26].

start

Yes
READY == 27

No
th =Pick(READY); Run(th);

| yield
v

vch e PRIM_CHANNEL, if ch's update method
is requested; perform ch's update method;

]

vth € WAIT, if th's event is triggered; Remove(th,
WAIT); Insert(th, READY); clear triggered events;

No
READY == @7

0

Yes

advance the simulation time;
move the first th € WAITTIME to READY;

No
READY == o7

Figure 1: Traditional Discrete Event Simulation (DES) scheduler for &ySte

2.2 Discrete Event Scheduler

The Accellera reference simulation library of SystemC [4] is based on Blg8re 1 depicts such a traditional
DES scheduling algorithm. In DES, a single thread is running at all times. \&hémreads in thdREADY and
RUN queues complete their current delta cycle, the root thread resumesrémnsehe update and notification
phase. Then threads are woken up and moved frorMAET queue back into thREADY queue. A new delta
cycle begins.

If no threads are ready after the update and notification phase, tlentctime cycle finishes. The simulation
kernel advances the simulation time and processes the earliest timed evethé&VAIT TIME queue. A new
cycle begins for the updated simulated time.

Finally, when both th&/AIT TIMEandREADY queues are empty, the simulation terminates.

2.3 Parallel Discrete Event Scheduler

In comparison to DES, regular synchronous PDES issues multiple thr8&ds8HTHOD, SC_THREAD and
SC_CTHREAD) concurrently in a delta cycle. These threads can then execute trulyatigbam the multiple
available processor cores of the host.

Figure 2 shows the regular synchronous PDES scheduling algorithme kevetiuation phase, as long as the
READY queue is not empty and an idle core is available, the PDES scheduler willassew thread from the
READY queue. If a thread finishes earlier than other threads in the same cyels,raady thread is assigned to
the idle processor core, unless there is no thread available RE#ADY queue, in which case the core is kept
idle until the next delta cycle.

It should be emphasized that synchronous PDES implies an absolute bathe end of each delta and time
cycle. All threads need to wait at the barrier until all other runable tlw@atsh their current evaluation phase.

3

No
READY == @7 ~
IRUNI < #CPUs
&& READY = 27 Immediate
Notification
th =Pick(READY);
Run(th); <
vch € PRIM_CHANNEL, if ch's update method R
is requested; perform ch's update method;
]
vth e WAIT, if th's event is triggered; Remove(th, Delta Cycle
WAIT); Insert(th, READY); clear triggered events;
No
READY == 27 -
advance the simulation time;
move the first th e WAITTIME to READY; .
Timed Cycle
No
READY == 27

Figure 2: Synchronous Parallel Discrete Event Simulation (PDES) atdrddr SystemC.

Only then the synchronous PDES scheduler resumes and performgitite apd notification phases, and finally
advances to the next delta or time cycle.

For the SystemC language in particular, there is yet another very imposjaetteto consider when applying
PDES. For semantics-compliant SystemC simulation, complex inter-dependealggis over all variables in
the system model is a prerequisite to parallel simulation [27].

The Standard SystemC Language Reference Manual (LRM) [1] clstatgs thatprocess instances execute
without interruption”. This requirement is also known as cooperative (or co-routine) multitgskirich is
assumed by the SystemC execution semantics. As detailed in [27], the papicdbem of parallel simulation
is specifically addressed in the SystemC LRM [1]:

“An implementation running on a machine that provides hardware supfporconcurrent processes
may permit two or more processes to run concurrently, provided tiedb@mavior appears identical to
the co-routine semantics defined [...]. In other words, the implementatioidvibe obliged to analyze
any dependencies between processes and constrain their executiatthothe co-routine semantics.”

We will describe the required dependency analysis in more detail belove(iticf 3.3), as it is also needed
for out-of-order PDES.

2.4 Out-of-Order Parallel Discrete Event Scheduler

In OoO PDES, we break the strict order of time (the synchronous bahyelocalizing time stamps to each
thread. Figure 3 shows the out-of-order parallel DES schedulingitiigor Since each thread has its own
time stamp, the OoO PDES scheduler relaxes the event and simulation time uptiatéag more threads (at

4

different simulation cycles!) to run in parallel and ahead of time. This resulishigher degree of parallelism
and thus higher simulation speed.

[e |

| sleep | ()
vth € WAIT, if th's event is triggered at (te, de);
Remove(th, WAIT, . 5,); Insert(th, READYt, 5e+1); update

th's local time stamp to (te, de+1); clear triggered events;

move vth € WAITTIMEt, o to READY4, o;
update th's local time stamp to (t, 0);

No
READY == 27

No Yes

IRUNI < #CPUs
&& READY != 27

No
| th =Pick(READY); | RUN == o7

Yes

Yes
Remove(th, READVY4, 5);
Insert(th, RUN, 5); —
Run(th); end

Figure 3: Out-of-Order Parallel Discrete Event Simulation (OoO PDEIS)daler for SystemC.

In comparison to the synchronous PDES in Figure 2, Figure 3 moves ghfiread the W AIT andWAITTIME
gueues into th&EADY queueas soon as possihléAlso, there is no specific point in the scheduling flow any
more for the classic delta and time cycles. Both delta and time updates arerpatflmcally for each thread,
provided that there are no possible conflicts in the way Ktb€on flictgth) condition is explained below).

In contrast to Figure 2 which performs requested update methods in primitarnels in each delta cycle,
Figure 3 does not contain this step any more. Due to the out-of-ordeddaig and the eliminated central
scheduling point for delta cycles, it is difficult to determine an efficientsafd point in the OoO PDES scheduler
when primitive channel update requests can be served. However, htagsapossible to safely fall back to
synchronous PDES when primitive channel updates are requested.

Note theNoConflictgth) condition shown in Figure 3. As already mentioned above for the synobson
PDES, detailed dependency analysis is needed to avoid data or evitiste&or any shared variables among the
parallel threads. Only iNoConflictsth) is true, a new thread is issued for parallel execution (moved from the
READYto theRUN queue).

We will be using advanced static compile-time analysis (and optionally dynamitmenanalysis, see Sec-
tion|3.3.2) to identify all such potential conflicts. Based on this information (alsitaple look-up is sufficient),
the O0O PDES scheduler can then at run-time quickly decide whether arseitof threads has any conflicts
with each other.

3 RISC Compiler and Simulator

To realize the OoO PDES approach for the IEEE SystemC language, senprew our Recoding Infrastructure
for SystemC (RISC) and describe the overall RISC Compiler and Simulaiof-pf-concept prototype (Release
V0.5.0 as of 2018-09-30). The RISC software is available as openeand can be downloaded freely from the
following web site [22]:http://www.cecs.uci.edu/~doemer/risc.html

Input Model Instrumented Model Executable
: systemc - Model
RISC Compiler ypa, h Target Compiler
systemc.h \ -
L >SegmentGraph Source Code | || Model | | Ct+t | O“;;’;ﬁé?er
i i i ar.c i
Modelcop V] Conflict Analysis || Instrumentation i”’i Compiler Simulation
7 RISC
SystemC
\Library J

Figure 4: RISC Compiler and Simulator for Out-of-Order PDES of SystemC.

To perform parallel SystemC simulation in maximum compliance with the IEEE stasganantics, we in-
troduce adedicated SystemC compilérhis is in contrast to the traditional SystemC simulation where a regular
SystemC-agnostic C++ compiler includes the SystemC headers and links theniogel directly against the
SystemcC library.

As shown in Figure 4, our RISC compiler acts as a frontend that praed¢issanput SystemC model and
generates an intermediate model with special instrumentation for OoO PDE®Sttumented parallel model
is then linked against the extended RISC SystemC library by the target corfgilegular C++ compiler) to
produce the final executable output model. OoO PDES is then performedy dipnpunning the generated
executable model.

From the user perspective, we essentially replace the regular SysigmoStia C++ compiler with the
SystemC-aware RISC compiler (which in turn calls the underlying C++ compi@therwise, the overall Sys-
temC validation flow remains the same as before. It is just faster due to tHiepsiraulation.

For reference, the detailed Linux manual page of the RISC compilec and simulator is included in Ap-
pendix A.1 of this report.

Internally, the RISC compiler performs three major tasks, namely Segmeph @G3&) construction, conflict
analysis, and source code instrumentation.

3.1 Segment Graph

The first task of the RISC compiler is to parse the SystemC input model intostraetsyntax tree (AST) and

then create a SystemC structural representation from the AST whichtsafiecSystemC module and channel
hierarchy, connectivity, and other SystemC-specific relations, similar t&ykemC-clang representation [28,
29]. For details on this part of the RISC application programming interfaé&d)(Alease refer to the Doxygen-

generated documentation [30].

On top of this, the RISC compiler then buildSagment Graph (S@gata structure for the model. A Segment
Graph (SG) [12, 15] is a directed graph that represents the code segemecuted during the simulation between
scheduling steps. That is, every segment is associated with a schealmjepa@int, i.e. anai t statement in
SystemC.

At run time, threads switch back and forth between the stataswiing (threads irREADYandRU N queues)
andwaiting (threads inWAIT andWAIT TIME queues). Whenunning, they execute specific segments of their
code. These code segments make up the nodes in the Segment Gragasveuges in the graph indicate the

6

http://www.cecs.uci.edu/~doemer/risc.html

possible transitions from one segment to another. In other words, tles @éuighe Segment Graph reflect an
abstraction of the model’s control flow.

For a formal description of the Segment Graph and its construction algotiienmterested reader may refer
to [15]. For details on the RISC compiler API, please refer to the Doxygererated documentation [30].

3.2 Partial Segment Graph

The segment graph is the foundation data structure for the static analysigevet, there are restrictions: the
entire source code for the input design must be available in one file, whiehrbt scale. This disables the use
of Intellectual Property (IP) and hierarchical file structures.

To solve this problem, we have proposed and implemented a Partial Segrapht(B6G) as the representation
of the behavior model for each separate translation unit or IP. By congoRGs, our tool is able to reconstruct
the complete SG for the input model.

The extended tool flow is shown in Figure 5.

IP Provider 1
I |
IP.h M1.h Mn.h
I |
I Source Code |
IP.cpp I M1.cpp Provider Mn.cpp |
I |
Partial I Partial Partial I
Design Design Design I
Generator I Generator Generator
1 pso I IP.pd [0) Ml.pg Mno | | Mn py |
L 74 |
RIS(; | main.cpp
redacted.pd Compiler 74

C++ Executable

Compiler 7

Figure 5: Scaled RISC tool flow with Partial Segment Graph technology.

A PSG is recursively built by traversing the AST of the current translaiitin The main difference between
PSG and SG is that PSG is built based on an incomplete AST, where definitfanstion calls may be unknown.

To deal with this uncertainty incurred by the non-defining function callsjni@duce three types of PSG
nodes, which facilitate the integration of PSGs. They @egment NodePartial Segment Nodand Partial
Function Call Node

The PSG is constructed by the IP provider. It is stored as a PSG file anthjzatible with the Dot format
so that the PSG can easily be visualized. The PSG file is shipped togetheravith fites to the user. On the
user’s side, the RISC compiler is able to load and parse the PSG files. thbednaded PSGs are integrated to
form a complete SG. During integratiopartial Function Call Nods are replaced by the corresponding PSGs of
the functions.Partial Segment Nodeare merged int&egment Node After the integration, the graph becomes
a valid and complete SG.

An IP provider can also inspect and redact the automatically generatediles so that the implementation
details remain hidden. This way the IP users will not be able to obtain the innégrmaptation and the IP
remains protected, while the correctness of behavior model of the destilhnisaintained.

3.3 Conflict Analysis

The Segment Graph data structure serves as the foundation for segmgict analysisAs outlined earlier, the
000 PDES scheduler must ensure that every parallel thread to be sasi@d conflicts with any other threads
currently in theREADY andRUN queues. Here, we utilize the RISC compiler to detect any possible conflicts
between these threads already at compile time.

Potential conflicts in SystemC include data hazards, event hazards, angl tiaziards, all of which may exist
among the segments executed by the threads considered for parallgi@xeBlease refer to [15] for a detailed
discussion of these hazards which, if ignored, would become dargyexoe conditions at run time.

Both possible hazard detection approaches, nastalyc analysis at compile time andlynamicanalysis at
run time, are supported by the RISC Compiler and Simulator. It should be asmptdhat the accuracy of this
analysis has significantly improved with the Release V0.5.0. As outlined in def@l]nthe RISC compiler
now supports Port Call Path (PCP) sensitive conflict analysis whichsideare of the actual channel instances
used by threads from different modules. This much more precise anafysiavoid false positive conflicts in
many cases and thus increases the efficiency of the simulation which, inutasfaster.

3.3.1 Static Analysis

Static analysis relies purely on the available information in the SystemC soudeeofdhe design model at
hand. In this case, the RISC compiler carefully performs conservatirdifitation of the potential hazards in
the model.

Identifying all possible hazards is a complex analysis task that requiréglithenderstanding” of the module
hierarchy. One option is to statically extract the module hierarchy and antidgzndividual threads. Here, the
RISC compiler follows the approach outlined in [15].

In many cases, however, not all of the needed information can be gdtb&tically. For instance, design
parameters may be passed via the command line, for example, to define the néimbdules, certain channel
characteristics, or other configuration information. In such SystemC muaitbl& dynamic elaboration phase,
the instantiated modules, channels, and ports are typically created bylaspoandchewoperators in a dynamic
fashion. Thus, the structural parameters of the model are only availatie ime, so they cannot be statically
analyzed. In these cases, dynamic analysis is needed.

3.3.2 Dynamic Analysis

Dynamic analysis takes run-time information into account and then augmenttadsé cstatic analysis. The
combination of static and dynamic analysis is here cdiidatid analysid32].

Figure 6 shows the extended RISC design flow with support of dynamigsisaAs in the regular compilation
flow discussed above in Figure 4, the input SystemC model is processdbe BRISC Compiler to generate an
executable model for out-of-order parallel simulation, as shown on thieaibpf Figure 6 from left to right.

The dynamic analysis step, shown on the bottom half of Figure 6, extendsitigilation flow by a prepro-
cessing step. The input SystemC model is fed into the RISC Elabarheds which produces an executable
model that only performs the SystemC elaboration phase when run. At thefehe elaboration, the ex-
ecutable model automatically traverses the created module hierarchy via steam&yintrospection API and
dumps this detailed structural design information, shown as Instance G@mityeData in Figure 6, into a file

8

Input Model Executable Model

Out-of-Order
S)'\//lstzrr}c » RISC Compiler Parallel
oae Simulation
RISC Instance
Elaborator Elaboration Model Congeelglvny

Dynamic
Elaboration

Figure 6: RISC Elaborator feeds dynamic elaboration information to RIS@p8er for precise conflict analysis.

(model _nane. el ab). This file is in turn provided as an input to the RISC compiler, so that therdigadly
created design hierarchy and specific instance connectivity can defarsprecise conflict analysis. The in-
stance connectivity data file includes the actual module hierarchy, théispect mapping, and the actual target
variable mapping of references.

Note that the use of the RISC Elaborator is optional. Design models, thatecéully analyzed in static
fashion, can be fed directly into the RISC Compiler without any pre-psiegdy the RISC Elaborator.

For reference, the detailed Linux manual pages of the RISC Compilec and RISC Elaboratogl ab are
included in Appendix A.1 and Appendix A.2, respectively.

3.4 Source Code Instrumentation

As a result of the conflict analysis (static, dynamic, or hybrid [32]), tH@dRcompiler generates several conflict
tables that describe all possible conflicts between threads in any two ssgroeing this conservative conflict
information, the simulator can then at run-time quickly determine by a simple tableujp@khether or not it is
safe to issue any given thread in parallel or ahead of time.

As shown above in Figure 4, the RISC compiler and simulator work closelyhtegerhe compiler performs
conservative conflict analysis and passes the analysis results to thetsimilizh then can make safe scheduling
decisions quickly.

To pass information from the compiler to the simulator, we use automatic modelnvesitation. That is,
the intermediate model generated by the compiler contains instrumented (auttiyngénarated) source code
which the simulator can then rely on. Atthe same time, the RISC compiler also instisioser-defined SystemC
channels with automatic protection against race conditions among communicadiadsh

In total, the RISC source code instrumentation includes four major components

1. Segment and instance IDs: Individual threads are uniquely idenkfieal creator instance ID and their
current code location (segment ID). Both IDs are passed into the simiktoel as additional arguments
to scheduler entry functions, includimgai t and thread creation.

2. Data and event conflict tables: Segment concurrency hazarde gatential data conflicts, event conflicts,
or timing conflicts are provided to the simulator as two-dimensional tables indaxedsegment ID and
instance 1D pair. For efficiency, these table entries are filtered foreséogtance path, and reference and
port mappings.

3. Current and next time advance tables, and thread state prediction tablesimulator can make bet-
ter scheduling decisions by looking ahead in time if it can predict the possibleefthread states. This

9

optimization is discussed in detail in [14] and is available in the RISC Compiler andl&or in ver-
sions 0.4.0 and later. Since thread state prediction for most models reqguiydgtte additional compile
time but results often in higher simulation speed, it is enabled by default (ibeanrned off with the
SYSC_DI SABLE_PREDI CTI ON environment variable, see below).

4. User-defined channel protection: SystemC allows the user to designals for custom inter-thread com-
munication. To ensure such communication is safe also in the OoO PDES situagoa threads execute
truly in parallel, the RISC compiler automatically inserts locks (binary semaphor® these channels so
that mutually-exclusive execution of the channel methods is guarantabdrwise, race conditions could
exist when communicating threads exchange data.

Note that the source code instrumentation is performed automatically by the ®8piler and no user-
interaction is necessary. However, the interested user may inspecttitueiested source code. Itis stored in a
file namedr i sc_nodel _name. cpp which serves as the input file to the compiler backend which in turn then
generates the final executable.

3.5 Library Support

In absense of PSG support (Section 3.2), there exists a significant limifatitime described conflict analysis
and source code instrumentation. It only works if the compiler has acc#ss émtire source code of the design
model. This is typically fine for smaller SystemC benchmark examples, but dbésid true for more complex
SystemC models where multiple translation units and/or library files are usededa tlases, the compiler has
access only to the function signatures (function declarations in head®x filet not to their implementation
(function bodies which are pre-compiled in the library or object files). sTine compiler cannot analyze the
function bodies for potential conflicts, neither can it instrument any segbmemdaries (i.ewai t calls) in the
library code with segment and instance IDs.

In its initial alpha version [24], the RISC Compiler and Simulator operatednthdeassumption that all library
code is thread-safe without any conflicts and does not contain any segondaries (nevai t statements).
This is reasonable for the standard C/C++ libraries used in a modern Limuicoement, as well as for the
specially prepared RISC SystemC simulator library. However, this assunpaig®s a significant limitation for
more complex SystemC models built around custom application libraries.

In order to mitigate this limitation, the beta version [25] and the RISC Compiler andl&onwersion 0.4.0
offered basic support for library code by usduriction annotationsThis annotation scheme for library functions
provides abstract information for both conflict analysis and segmemtdaoies|[32].

Specifically, the user can annotate function declarations mritagna statements which specify whether or
not the function poses any potential conflicts. Pnegna statements can also describe basic situatiomsabt
calls that the control flow in the function body contains. For example, thelatdrmath functiosqr t and the
blockingr ead function of the System&c _f i f o channel can be annotated as follows:

/1 standard math square-root function
#pragma RI SC sqrt conflict-free no-wait
doubl e sqgrt(double x);

/1l sc_fifo blocking read function

#pragma RI SC read conflict-free | ooped-wait event
virtual T read();

10

Here, thesqgrt function is declared¢onf | i ct - f r ee because it is thread-safe and has no dangerous side
effects. Since this is true for many functions (e.g. most functions in the @atatibrary), the RISC Compiler
assumes this by default. Thus, thisagna statement is not explicitly needed.

Thesc_fifo::readfunctionis also declaredlonf | i ct - f r ee because it operates in a standard SystemC
channel that is safely protected by a lock in the RISC simulator library. Merythis blockingsc fi f o: : r ead
function is annotated dsooped- wai t because it does containaai t statement in the body of a loop that is
waiting for available data, which is indicated by someent . Thus, the RISC Compiler can take this segment
boundary into account when building the Segment Graph for a threadahethis function.

In general, a function is considerednf | i ct - f r ee if the corresponding function body contains no poten-
tial read/write access conflicts to any shared state with the other threadssimitilation model. Otherwise, it
must be annotated a®t - confl i ct-free.

no wait unconditional conditional looped
wait wait wait

Figure 7: Control-flow abstractions femi t in library functions.

For the annotation of segment boundaries contained in library functions,e~ shows the different control-
flow abstractions with regards teai t function calls in the corresponding function body. In the first case,
no_wai t, the function contains neai t statement and thus is a non-blocking function during the SystemC
simulation. The next two casesondi ti onal wai t anduncondi ti onal wai t, apply to functions with
a conditional or non-conditionalai t statement, respectively. The last case covers the possible encouater of
wai t statement in a loop, such as the blockirepd call to asc _f i f o channel discussed above.

The last parameter in the RIS® agma annotation specifies the type of thai t statement in the function
body, eitherevent for waiting for any notified event, or the minimum time increment that the simulator will
incur when executing the corresponding function, suchaszer o-ti e or (42, SC.MV5) .

Sender Receiver
\)
setId(42) [~ . " “set1d (43
send(...l,___ ,Iw;lt("') \ ___,\recei\(re(; /S
// \\ Vprintf()/ 1
/ 3rd Party \ Standard
User Domain _ | IP Library) User Domain) C Library
RISC - i g
Parallel SystemC void waitO)
Library { ... = getID(); ... }

Figure 8: Different source code domains of a design model.

Figure 8 [32] illustrates the different domains of source code in a System@Imdere only the code in the
user domain is available for the instrumentation described above in SectidraB.Hbrary code, any contained

11

wai t () calls cannot be instrumented. Here, the RISC Compiler and Simulator (vér€idhand above) in-
struments the code before such library function calls wigh | D{ Segl D) functions that store the upcoming
segment IDs for thevai t statements in the library in thread-local data. Then, whant statements without
explicit segment ID arguments are executed in the library, the segmentéDxbtained from the thread-local
data by use of get | D() function in the RISC simulation library.

Note that with the latest RISC Compiler and Simulator Release V0.5.0 the librappdiugescribed in this
section is still available (for backward compatibility reasons). HoweverPdrdal Segment Graph (PSG) tech-
nology described in Section 3.2 offers an alternative solution that is much gemreral. In particular, the PSG
technology resolves two prior limitations. First, the annotations shown in Figandy cover the cases of zero or
onewai t statement in a library function. Multipleai t statements were not covered. Thus, PSG technology
was designed in order to cover general control-flow inside of libramgtions which are now represented by their
own partial segment graphs. Second, PSG technology supports muligletetranslation units by building
and storing PSG files together with generated object files that then can geatetbagain into a complete SG
when the final simulation executable is being built.

3.6 Support for Data-Level Parallelism

As of version 0.4.0, the RISC Compiler and Simulator comes with support fidloiéing data-level parallelism,
also known as Single-Instruction-Multiple-Data (SIMD) vectorization [3Blere, an advanced analysis tool,
namely the SIMD Advisosi nd (see Appendix A.3), can identify possible locations in the SystemC model’'s
source code where data-level parallelism may be exploited for faster siomulan top of the thread-level paral-
lelism already exploited due to OoO PDES).

The SIMD Advisor adds a pre-analysis step to the RISC Compiler and Simtaidtow wheresi nd pro-
vides the designer with candidates for loop vectorization. Specificliyd performs advanced thread control-
flow and variable access analysis and then reports to the user the sodeckine numbers where loops qualified
for SIMD vectorization are found. The user confirms suitable locatiorisd®rting#pr agna si nd statements
in front of the chosen loops. Finally, the design model is then compiled witmteédompiler cpc which per-
forms the vectorization and builds the executable for simulation with both thesabdata-level parallelism.

Note that the manual confirmation by the designer is necessary. An exartipefadlowing C function:

void add(float *a, float *b, float *c, int n)
{
for(int i=0; i<n; i++)
{ ali] =a[i] +b[i] +c[i];}
}

Here, arrays passed as pointers can only be vectorized if the useisdbat there is no vector dependence in the
way. This confirmation step is only possible with application knowledge, nbbjustatic compiler analysis. The
RISC SIMD Advisor is aware of SystemC and its concurrent multi-thread#ngasitics, and thus can identify
certain loops as potential candidates, but the final data independesaé&aas must come from the user who
knows the application specifics (i.e. that the pointers point to non-ovénigaprays).

Exploiting both thread- and data-level parallelism can be very effeativeniny design models. Experimental
results in [33] show a nearly linear speedud\ok M, whereN andM denote the thread and data-level factors,
respectively.

The SIMD Advisor is documented in detail in the manual pagesfard listed in Appendix A.3.

12

3.7 Compiler Backend

After the automatic source code instrumentation, the RISC compiler passesnragd intermediate model in
file ri sc_nodel _nare. cpp to the underlying regular C++ compiler. That target compiler then prodihees
final simulation executable by linking the instrumented code against the Rite@d®d SystemC library.

By default, the RISC Compiler and Simulator rely on the GNU C++ compjter for the backend code
generation. Alternatively, the Intel C++ compilecpc may be used to generate a simulation executable that
is optimized for Intel processors with Single-Instruction-Multiple-Data (B)Mapabilities or the Intel Many-
Integrated-Core (MIC) architecture. Please refer to the command-lii@nepri sc: i cpc and-ri sc: ni c,
respectively, which are documented in the manual pagesifsc (see Appendix A.1) an@l ab (see Ap-
pendix A.2).

3.8 Simulator

Same as the classic Accellera proof-of-concept implementation [4], th€ BilBulator is not an explicit tool,
but a run-time library [34] that the generated executable SystemC model éslladainst. Thus, simulation is
performed by execution of the compiled model, the same way as in the clasdioto(lst faster).

The RISC simulator identifies itself by its log message at the beginning of the sinmufatip announcing
RI SC 0. 5. 0 execution after the SystemC language version numBgst(enC 2. 3. 1). It also adds the
Center for Embedded and Cyber-physical Systems (CECS) as a ctmtibuhe RISC-extended SystemC li-
brary.

A simple HelloWorld model is shown running in the following example:

sh % ./ Hell oWrl d

SystenC 2.3.1-RISC 0.5.0 --- Sep 30 2018 09: 04: 24
Copyright (c) 1996-2018 by CECS and all Contri butors,
ALL RI GHTS RESERVED

Hel | o Worl d!

There are several environment variables which the RISC out-of-ga@llel SystemC library recognizes.
These are logged at the beginning of the simulati®vSC_PRI NT_MODE_MESSACE is defined.

* ok ok Rl SC sinul at or node: out-of-order parallel with prediction x*x

* ok SYSC PRI NT_MODE MESSAGE is defined * ok
* Kk SYSC _SYNC PAR SIM is not defi ned * ok ok
* ok SYSC_PRI NT_VERBCSE MESSAGE is not defined * k%
* ok % SYSC _DI SABLE_PREDI CTI ON is not defined * ok %
* ok % SYSC_PAR _SI M _CPUS is 64 * ok %

The environment variabl8YSC_SYNC_PAR_SI Mcan be used to force the default out-of-order parallel sched-
uler to fall-back to synchronous parallel execution. By default (whedetined),SYSC_SYNC_PAR SI Mis
assumed to béal se, so out-of-order parallel simulation (OoO PDES) with prediction is perfokm@n the
other hand, iSYSC_SYNC_PAR_SI Mis defined, the simulator will execute in synchronous PDES fashion.

Also, as indicated above in Section 2.4, the RISC simulator automatically fallsdagkchronous execution
as soon as primitive SystemC channels are used with requests to updétenfinthus, such models will execute
in safe synchronous manner.

13

The variableSYSC_PRI NT_VERBOSE_MESSAGCE is used by the RISC simulator at run-time to print debugging
information about the simulator queues, event processing, and time adva8ach debugging lines are only
printed wherSYSC_PRI NT_VERBCOSE_MESSACE is defined.

The variableSYSC_DI SABLE_PREDI CTI ONis used by the RISC simulator to switch back to non-predictive
conflict detection. This avoids scheduling overhead at run time, butlysaaults in slower simulation due to
more false conflicts. ISYSC.DI SABLE_PREDI CTI ON is defined, thread state prediction is not used during
out-of-order scheduling.

The environment variabl&YSC_PAR_SI M.CPUS specifies the maximum number of parallel threads al-
lowed in out-of-order parallel simulation (name®CPUs in Figurel 3). For efficient simulation, this variable
should be set to a value suitable for the simulation host, e.g. the number ofobvdlBU cores. If unset,
SYSC_PAR_SI M CPUS defaults to 64.

4 Out-of-Order Parallel Simulatable SystemC Subset

Over more than a decade, the SystemC language [21], which technically-s agplication programming
interface (API) with a corresponding simulation library, has evolved foasic constructs for modeling parallel
modules connected by signals and channels to a highly complex set of mypes, classes, templates, and
functions for very advanced modeling (i.e. Transaction Level Modeliid\W) [35, 36]) and highly optimized
simulation of SystemC models. Usually these optimization steps have aimed at hiighkation speed, i.e. by
minimizing context switches in the simulator, or at higher levels of abstractiomadoerposely relaxed timing.
Often, the uninterrupted (sequential) execution semantics on a singlespood®st have been presumed or are
explicitly required.

Along these lines, it has been recognized that there is considerabléonstedy and adjust a@volvethe Sys-
temC language towards better support of parallel execution (following $ommeof suitable PDES semantics).
One example of the ongoing discussion within the SystemC community is a preseiatatiee SystemC Evo-
lution Day 2016 where significant obstacles in the current languageasthhdve been identified [37]. These
seven obstacldsave then been documented also in a letter to the editor of IEEE Embeddenh Systers [38].

The RISC Compiler and Simulator aims for advanced parallel execution on multmany-core hosts, max-
imizing the compliance with the current SystemC standard [1]. Changing ssuep8ons about SystemC
simulator execution consequently affects a number of SystemC constrdcfsPds which need to be revisited
and evaluated anew. The goal of this section is to document this proassaéms, and enable fruitful discus-
sions.

Below, we describe and list the out-of-order parallel simulatable Systerh§essupported by the current
RISC Compiler and Simulator, Release V0.5.0. In particular, Table 1 throable B list for each SystemC
construct whether or not it is supported at this time. If applicable, an eapta note is provided that briefly
outlines the status and/or the plans for the given feature.

Overall, the current RISC proof-of-concept prototype supportsldmsic SystemC constructs for hierarchical
modeling with modules and interconnected channels by featuring fast mukidéieexecution. However, sev-
eral specific SystemC features are not supported yet or left undeatdbis stage. The status “undecided” in
particular indicates that further study is needed to decide whether orengivibin construct can be supported in
efficient and reasonable manner by RISC and its OoO PDES approach.

4.1 SystemC Hierarchical Structure of Modules and Channels

RISC supports the regular hierarchical and structural composition @yheemC design model. This includes
the SystemC program stagd_nai n, sc_st art) and the general static or dynamic compositi8€(CTOR)

14

Table 1: RISC V0.5.0 Out-of-Order Parallel Simulatable SystemC Subset

Name Type Supported or not Notes
. . This function may not work with
scabs function Undecided . .
some arithmetic SystemC datatypes.
scactions typedef Supported typedef unsigned sactions
scargc function Supported
scargv function Supported
scassemblevector function Undecided Work on this function in the future
scassert macro Undecided Work on this macro in the future
scattr base class Undecided Work on this class in the future
scattr_cltn class Undecided Work on this class in the future
scattribute class Undecided Work on this class in the future
sc.behavior typedef Supported typedef scmodule scbehavior
scbigint class template Supported
sc.biguint class template Supported
sc.bind_proxy class Undecided
scbind macro Undecided Work on this macro in the future
scbit type (deprecated Undecided Work on this type in the future
sc bitref_r class template Undecided Work on this class template in the future
sc bitref class template Undecided Work on this class template in the future
sc buffer class Undecided
sc bv_base class Undecided Work on this class in the future
schbv class template Undecided Work on this class template in the future
sc.channel class Supported
scclock class Not Supported Yet sc.clock::beforeend of_elaboration()
calls scspawn().
scclosevcd. tracefile function Initial support as of v0.5.(
scconcatref class Undecided Work on this class in the future
sc.concrefr class template Undecided Work on this class template in the future
sc.contextbegin enumeration Undecided
sc.copyright function Supported
sc.cor class Supported
sc.cor pkg class Supported
sc.cor_pthread class Supported
sc.cor_pkg pthread class Supported
sc createvcd tracefile function Initial support as of v0.5.(
sccref macro Undecided Work on this macro in the future
sc.cthreadprocess class Limited Support Supported up to Internal Representation
SC.CTHREAD macro Limited Support Supported up to Internal Representation
SC.CTOR macro Supported

15

Table 2: RISC V0.5.0 Out-of-Order Parallel Simulatable SystemC Subssir{ued)

Name Type Supported or not Notes
sccycle() calls scsimcontext::cycle(),
function which is not supported in
sccycle (deprecated) Not Supported Yet the out-of-orderpsFi)muIation
in the current release.
scdeltacount function Modified semantics This function returns_the local
delta count of the running process.
scelabandsim function Supported
scendof_simulationinvoked function Undecided Work on this function in the future
sceventandexpr class Supported Initial support as of v0.5.0
sceventandlist class Supported Initial support as of v0.5.0
sceventfindert class template Undecided Work on this class template
in the future
sceventfinder class Undecided Work on this class in the future
sceventor_expr class Supported Initial support as of v0.5.0
sceventor._list class Supported Initial support as of v0.5.0
sceventqueueif class Not Supported Yet
The constructor function is not
sceventqueue class Not Supported Yet supported by the out-of-order
simulation in the current release.
The immediate notification is not
scevent class Limited Support supported by the out-of-order
simulation in the current release.
sc.exception typedef Undecided Work on this typedef in the future
scexportbase class Not Supported Yet| No port following in compiler analysis
scexport class Not Supported Yet| No port following in compiler analysis
scfifo_blocking.in _if class Supported
scfifo_in_if class Supported
scfifo_in class Supported
scfifo_nonblockingin_if class Supported
scfifo_out.if class Supported
scfifo_out class Supported
. I scfifo::operator= is not supported;
scfifo class Limited Support execution falls back to synchronous PDES
scfind_event function Undecided Work on this function in the future
scfind_object function Undecided Work on this function in the future
sc fix_fast class Undecided Work on this class in the future
scfix class Undecided
sc fixed_fast class template Undecided Work on this class template
in the future
scfixed class template Undecided

16

Table 3: RISC V0.5.0 Out-of-Order Parallel Simulatable SystemC Subssir{aed)

Name Type Supported or not Notes
SCFORK macro Undecided Work on this macro in the future
scfxcastcontext class Undecided Work on this class in the future
sc fxcastswitch class Undecided Work on this class in the future
sc fxnum_bitref class Undecided Work on this class in the future
sc fxnum_fast bitref class Undecided Work on this class in the future
scfxnum_fastsubref class Undecided Work on this class in the future
scfxnum_ fast class Undecided Work on this class in the future
scfxnum_subref class Undecided Work on this class in the future
scfxnum class Undecided
sc fxtype_context class Undecided Work on this class in the future
sc fxtype params class Undecided Work on this class in the future
sc fxval_fast class Undecided Work on this class in the future
scfxval class Undecided Work on this class in the future
scgenuniquename function Undecided Work on this function in the future
scgenericbase class Undecided Work on this class in the future
function
scgetcurr_processhandle (deprecated Supported
scgetcurrentprocesshandle| function Supported
. . function
scgetdefaulttime_unit (deprecated Supported
scgetstatus function Supported
scgetstopmode function Supported
sc gettime_resolution function Supported
sc gettop_level events function Undecided Work on this function in the future
scgettop_levelobjects function Undecided Work on this function in the future
SCHAS_PROCESS macro Supported
sc hierarchicalnameexists function Undecided Work on this function in the future
scin_clk typedef Undecided
scin_resolved class Undecided
scin_rv class Undecided
scin class Supported
scin<bool> class Supported
scin<scdt:sclogic> class Supported

17

Table 4: RISC V0.5.0 Out-of-Order Parallel Simulatable SystemC Subssir{aed)

Name Type Supported or not Notes
S function
scinitialize (deprecated) Supported
scinoutclk type (deprecated Undecided
scinoutresolved class Undecided
scinoutrv class Undecided
scinout class Supported
scint_base class Supported
scint_bitref r class Undecided Work on this class in the future
scint_bitref class Undecided Work on this class in the future
scint class template Supported
scinterface class Supported
scinterrupthere function Undecided Work on this function in the future
scis_prerelease function Undecided Work on this function in the future
SCIS_.PRERELEASE macro Supported
scis_running function Supported
scis_unwinding function Supported
SCJOIN macro Undecided Work on this macro in the future
sclength context class Undecided Work on this class in the future
sclengthparam class Undecided Work on this class in the future
sclogic class Undecided Work on this class in the future
sclv_base class Undecided Work on this class in the future
sclv class template Undecided Work on this class template in the future
sc.main function Supported
This function is not supported by
sc.maxtime function Not Supported Now the out-of-order simulation
in the current release.
sc.max function Supported
sc.methodprocess class Limited Support | Supported up to Internal Representation
SCMETHOD macro Limited Support | Supported up to Internal Representation
sc.min function Supported
scmodulename class Supported
scmodule class Supported
SC.MODULE macro Supported
This class is not supported
scmutexif class Not Supported Now by the risc compiler
in the current release.
This class is not supported
sc.mutex class Not Supported Now by the risc compiler
in the current release.
scobject class Supported
scoutclk type (deprecated Undecided

18

Table 5: RISC V0.5.0 Out-of-Order Parallel Simulatable SystemC Subssir{ued)

Name Type Supported or not Notes
scoutresolved class Undecided
scoutrv class Undecided
scout class Supported
scpause function Undecided Work on this function in the future
scpendingactivity_at currenttime function Limited Support | Supported when called inside_atain()
scpendingactivity_at futuretime function Limited Support | Supported when called inside_atain()
sc pendingactivity function Limited Support | Supported when called inside_stain()

scphash class (deprecated) Undecided Work on this class in the future
scplist class (deprecated) Undecided Work on this class in the future
scport class Supported
scportbase class Supported
scppq class (deprecated) Undecided Work on this class in the future
scprim_channel::update()
sc_prim_channel class Supported is performed in synchronous manner;
execution falls back to synchronous PDE:!
scprocessh type (deprecated Supported
scprocesshandle class Supported
scpvector class (deprecated) Undecided Work on this class in the future
scref macro Undecided Work on this macro in the future
screlease function Supported
screporthandlerproc typedef Undecided Work on this typedef in the future
screporthandler class Undecided Work on this class in the future
sc.report class Undecided Work on this class in the future
This class is not supported
sc semaphoref class Not Supported Yet by the risc compiler
in the current release.
This class is not supported
sc.semaphore class Not Supported Yet by the risc compiler
in the current release.
This class is not supported
sc.sensitiveneg class (deprecated)Not Supported Yet by the risc compiler
in the current release.
This class is not supported
sc.sensitivepos class (deprecated) Not Supported Yet by the risc compiler
in the current release.
sc.sensitive class Supported Initial support as of v0.5.0
. . function
sc setdefaulttime_unit (deprecated) Supported
scsetstopmode function Undecided Work on this function in the future

19

Table 6: RISC V0.5.0 Out-of-Order Parallel Simulatable SystemC Subssir{ued)

Name Type Supported or not Notes
sc settime_resolution function Supported
scsetvced time_unit m?&%?;:;?gg;’ : Supported Initial support as of v0.5.0
scsignalin_if class Limited Support | Supported up to Internal Representation
scsignalin_if <bool> class Limited Support | Supported up to Internal Representation
scsignalin_if <sclogic> class Limited Support | Supported up to Internal Representation
scsignalinout.if class Limited Support | Supported up to Internal Representation
scsignaloutif type (deprecated) Limited Support | Supported up to Internal Representation
scsignalresolved class Limited Support | Supported up to Internal Representation
scsignalrv class Limited Support | Supported up to Internal Representation
scsignalwrite_if class Limited Support | Supported up to Internal Representation
scsignal class Limited Support | Supported up to Internal Representation
scsignakbool> class Limited Support | Supported up to Internal Representation
scsignaksclogic> class Limited Support | Supported up to Internal Representation
scsignedbitref.r class Undecided Work on this class in the future
sc.signedbitref class Undecided Work on this class in the future
scsignedsubrefr class Undecided Work on this class in the future
scsignedsubref class Undecided Work on this class in the future
scsigned class Supported
sc.simcontext::initialcrunch(), cycle()
: class - and other functions are partiall
scsimeontext (deprecated) Limited Support supported by the out-oiE)-ordery
simulation in the current release.
, L function
sc.simulationtime (deprecated) Supported
sc.spawnoptions class Undecided
sc.spawn() is not supported
sc.spawn function Not Supported Now by the out-of-order simulation
in the current release.
scstartof_simulationinvoked function Undecided Work on this function in the future
scstart function Supported
scstart(double) function Supported Initial support as of v0.5.0
scstatus enumeration Supported

20

Table 7: RISC V0.5.0 Out-of-Order Parallel Simulatable SystemC Subssir{ued)

Name Type Supported or not Notes
scstophere function Undecided Work on this function in the future
sc.stop function Supported supported as of v0.3.0
scstring class Undecided Work on this class in the future
(deprecated)
scsubrefr class template Undecided Work on this class template
in the future
scsubref class Undecided Work on this class in the future
scswitch enumeration Supported
scthreadprocess class Supported
SCTHREAD macro Supported
sctime class Supported
sctime_stamp function Supported
sctime_to_pendingactivity function Limited Support | Supported when called inside_sain()
sctracedeltacycles function Undecided Work on this function in the future
(deprecated)
. Initial support as of v0.5.0;
scracefile class Supported execution falls back to synchronous PDES
. Initial support as of v0.5.0;
sctrace function Supported execution falls back to synchronous PDES
sc ufix_fast class Undecided Work on this class in the future
sc.ufix class Supported
sc ufixed fast class template Undecided Work on this class template in the future
sc.ufixed class template Supported
sc.uint_base class Supported
scuint_bitref r class Undecided Work on this class in the future
scuint_bitref class Undecided Work on this class in the future
sc.uint_subrefr class Undecided Work on this class in the future
sc.uint_subref class Undecided Work on this class in the future
sc.uint class template Supported
scunsignedbitref_r class Undecided Work on this class in the future
scunsignedbitref class Undecided Work on this class in the future
sc.unsignedsubrefr class Undecided Work on this class in the future
sc.unsignedsubref class Undecided Work on this class in the future
sc.unsigned class Supported
sc.unwind.exception class Undecided Work on this class in the future
scvaluebase class Undecided Work on this class in the future
scvectorassembly class Undecided Work on this class in the future
scvectorbase class Undecided Work on this class in the future
scvector class Undecided Work on this class in the future

21

Table 8: RISC V0.5.0 Out-of-Order Parallel Simulatable SystemC Subssair{ued)

Name Type Supported or not Notes
scversionmajor function Supported
scversionminor function Supported
scversionoriginator | function Supported
scversionpatch function Supported
scversionprerelease| function Supported
scversionreleasedate | function Supported
sc.versionstring function Supported
sc.version function Supported
wait function Supported Full support as of v0.5.0
This function is not supported
nexttrigger function | Not Supported Now by the risc compiler
in the current release.
This function is not supported
halt function | Not Supported Now by the risc compiler
in the current release.

of modules §c_nmodul e, SC.MODULE, sc_behavi or) and channelssc_channel , sc_pri mchannel).

Connectivity and communication of the instantiated components is supportediports§éc _port,sc.i n,
sc_i nout, sc_out) and interfacesyc_i nt er f ace).

In contrast to the traditional Accellera library, which only provides a tylesdt ypedef) sc_channel
for sc_nodul e, the RISC header files explicitly distinguish channel and module classes, Blexeparate
sc_channel class is inherited fronsc_nodul e, providing the same functionality, but making the two class
types explicit.

Most of the SystemC predefined primitive chaﬂﬁéﬁjch asc_fif o) are supported for OoO PDES, except
sc_fifo::operator=which is not supported yet. For more details, please refer to Tables Igth®and
the Doxygen-generated documentation of the RISC simulation library [34].

4.2 SystemC Threads

The explicit and statically or dynamically [32] analyzable multi-threading oft&yC design model is naturally
supported in RISC 000 PDES. This includes SystemC proceSEadAS_PROCESS, sc_pr ocess_handl e,
sc_t hread_pr ocess) and the corresponding thread® THREAD). For basic inter-thread synchronization,
SystemC event notifications¢_event . not i f y) and waiting for events or simulation time advanoei(t)
are supported.

However, dynamic SystemC thread creation and deletiongpawn, SC_FORK, SC_.JO N) are not supported
at this time.

While the application programming interface (API) for these constructs remaimodified from the SystemC
user perspective, the RISC SystemC kernel internally supports extaaneters or arguments for several of
these constructs which are utilized after the automatic source code instrtiorebtathe RISC compiler (see
Section 3.4 above). In particular, segment and instance identifiersgpkeslwith each of these function calls so

2 As described in Section 2.4 and Secfion 3.8, the RISC Compiler and SimRatease V0.5.0 falls back to synchronous PDES
execution when primitive channels with update requests are used in flge dexdel.

22

that the simulator kernel is aware of the exact thread state upon evegudehentry. This includes in particular
the thread creation constructSG_ THREAD) and wait statementsvai t), as well as standard communication
interface methods (e.gc_fi fo_.in.i f::read).

4.3 SystemC Transaction Level Modeling (TLM)

While transaction level modeling in general is a natural feature suppoyt€b® PDES [15], the modeling and
implementation choices made by SystemC TLM 2.0 [36] create significant prolibemsispporting it efficiently

in RISC. The root problem here lies in the elimination of explicit channels, lmviere a key contribution in the
early days of research on system-level design [16, 17, 18]. As mesarchers agreed, the concept of separation
of concerns was of highest importance, and for system-level desigarticydar, this meant the clear separation
of computation (in behaviors or modules) and communication (in channels).

Regrettably, SystemC TLM 2.0 chose to implement communication interfaces diasdilyckets in modules
[39] and this indifference between channels and modules thus breaksstimption of communication being
safely encapsulated in channels. Without such encapsulating chaheedsis little opportunity for safe parallel
execution.

With TLM-2.0 modeling guidelines, threads intentionally execute code directlh@ranodules’ boundaries
(i.e. in “foreign territory”) without any protection. Channel boundages omitted and trespassing across module
boundaries (via sockets) is encouraged (for the sake of savingktsmiiiches in sequential simulation). Such
violation of a thread’s “home territory” cannot be analyzed by the RIS@\@ier and Simulator this time.

A possible solution to this problem is the introduction and analysis of so-cadieket-Call-Paths the RISC
thread control-flow analysis which, however, is only at an idea stagesdirtie and thus requires further study
and research.

While a discussion of this obstacle has started at the SystemC Language@@rioup [3, 37] and in the
overall ESL community [38], it remains unclear at this point how the agresELM-2.0 modeling situation
can be supported, revised, or worked around. Thus, the RISC ComapiteSimulator V0.5.0 only supports
traditional SystemC TLM, not yet SystemC TLM-2.0.

4.4 SystemC Data Types

A large part of the SystemC language covers special data types designduit-accurate hardware
modeling, simulation time representation, and other ESL specifics. Thesem®&ydata types include
sc_bi gint, sc_biguint, scbit, sc_bv, scfix, scufix, scfixed, sc_ufixed, sc_.int,
sc_ui nt,sc_l ogi c,andsc_lv.

While all these SystemC data types are available in RISC, only a few of theenblesn validated and tested
for being safe in a truly parallel multi-threading context. At this point, RIS@psutssc_i nt, sc_ui nt,
sc_fi xed, andsc_uf i xed (which appear as MT-safe). All other data types are so far untestkdhag or
may not be safely used in OoO PDES.

4.5 SystemC Utilities and Other Constructs

As listed in Tablel 1 through Table 8, there is a plethora of other SystemC ARifalzle. Some of
these are easily supported in RISC (suctsascopyri ght, sc_ver si on_naj or, sc_ver si on_ni nor,
sc_versi on_pat ch, sc_ver si on), others are not supported yet at this time.

At this point, there is also a large number of special SystemC constructshichw is unclear whether
or not these can be supported in an OoO PDES context with reasonfdrteagid efficiency. An example
of such constructs are those functions which involve or allow to inspecsithelator state at run-time, such

23

as scfindevent, scfindobject, sc.get _current _process handl e, sc_get _status,
sc_get _ti me_resol ution, sc_get top_l evel _events, sc_get .t op_l evel _obj ect s,
sc_hi erarchi cal _nane_exi sts, sc_is_running, sc. s_.unw ndi ng, sc_sincontext, and
sc_st at us.

On the other hand, access to the current simulated smé § me, sc_si mul ati on_t i ne, an essential part
of every SystemC model evaluation, is fully supported by RISC OoO PDES.

5 RISC Analysis and Transformation Tools

Utilizing the RISC Internal Representation, the RISC framework also insltmi@s for the analysis and trans-
formation of SystemC models. As of Release V0.5.0, the RiB€ual tool [40] is available which enables the
user to visualize the SystemC module hierarchy. As an example, Figure 8 ghewnodule visualization of a
Canny edge detector application.

TTop top
q1

92 - -

& o
HSthmulus TimgOut sPatform platform Imgin ImgOut ZMontor - lmglin
stimulus ql monitor

q2

iDatain Tlmglin ImgOut upuT Imgin ImgOut 1DataOwt Imgin ImgOut
din canny dout

Figure 9: Module hierarchy visualization of a SystemC model of a Canng ddtgctor.

Thevi sual tool supports a graphical user interface implemented with the Gtk API amrea specified
SystemC source file’s module hierarchy, which is drawn using the Cairo H# tool obtains module data
from the SystemC IR in the RISC software stack which contains informationtaiested modules and thus can
recursively iterate through nested lists of child modules in order to obtaingénimformation to visualize the
hierarchy of the entire SystemC source file. The input SystemC source fileontain thousands of lines of code
which can make manually drawing a representation of the modules, portshandels described by the code a
difficult and time-consuming task. Thus thesual tool was created to address this issue. It can automatically
generate a visual representation of a SystemC model in a very shod pétime.

The RISCvi sual tool is documented in detail in its manual page which is provided in the Appendix A
For a pure textual representation, a similar command-linettoele is available as well, which is documented
in Appendix A.5).

6 Conclusion

While SystemC is the de-facto and official standard language for ESLrige&ygtemC simulation largely is still
performed sequentially following classic DES semantics. Thus, SystemC simutatimot utilize the parallel
processing capabilities available on today’s multi- and many-core host ¢erspu

In this report, we have described the Recoding Infrastructure faeB8\s (RISC), an aggressive simulation
approach beyond traditional parallel DES, where a dedicated Systemglenoand advanced parallel simulator
implement Out-of-Order Parallel Discrete Event Simulation (OoO PDES) wikigtion for SystemC. This

24

approach can exploit parallel computing resources at the thread-aéadedtel to the maximum extend and thus
reaches fastest simulation speed. At the same time, RISC OoO PDES largelginsatine traditional SystemC
modeling semantics.

This technical report documents the RISC Compiler and Simulator and sungptmols, and details the Sys-
temC subset supported by the RISC Release V0.5.0. In contrast to theusrelpha [24], beta [25], and version
0.4.0 [26] releases, the RISC Compiler and Simulator Release V0.5.0 is maig eotdl easier to install, and
features Partial Segment Graph (PSG) technology (see Section 3r@jltiple translation units and 3rd-party
IP libraries without source code, more precise conflict analysis basedrb-call-path (PCP) analysis [31], and
provides new tools for graphical SystemC model visualization (see Segtion 5

Future work includes several areas of technical extensions anefugbearch. Technical improvements in-
clude addressing the limitations in the currently supported SystemC subsghandaintenance tasks including
improved documentation and, of course, bug fixes.

In terms of future research, two main limitations need to be addressed. RiMt210 modeling should be
supported. Here, communication is not properly encapsulated in chami¢lis in traditional TLM and classic
SystemC modeling. Instead, TLM-2.0 modeling lets threads execute directlprigigh context” without any
protection and thus trespasses channel boundaries which cannualpeea by RISC at this time. A possible
solution to this problem is the introduction of so-calaolcket-Call-Pathsito the RISC analysis which, however,
remains at an early idea stage at this point and thus requires further study

Second, the SystemC constructs for modeling at the Register Transfr(BAL) of abstraction are largely
not supported yet. Prior focus was on abstract modeling at the Emb&jdtein Level (ESL), but the large
amount of legacy RTL models demands support for efficient parallel sifonlas well.

As we move on in these future endeavors, we will update and extend tleliRgdnfrastructure for SystemC
(RISC) and this corresponding technical report accordingly.

Acknowledgements

The RISC project has been supported in part by substantial fundinglfitel Corporation under an initial seed
grant and a following three year grant for the project titl@dit-of-Order Parallel Simulation of SystemC Virtual
Platforms on Many-Core ArchitecturesThe recent improvements documented in this report have been sup-
ported by funding for the project titletBcaling the Recoding Infrastructure for Parallel SystemC Simulation”
The authors thank Intel Corporation for the valuable support anceeg@pecial gratitude to Ajit Dingankar,
Desmond Kirkpatrick and Abhijit Davare for fruitful discussions, protiee feedback and invaluable insights.

References

[1] IEEE Computer SocietylEEE Standard 1666-2011 for Standard SystemC Language Refeviarugal
IEEE, New York, USA, 2011.

[2] Accellera Systems Initiativehttp://www.accellera.org.
[3] SystemC Language Working Group (LW®itp://accellera.org/activities/working-groups/systemc-language.

[4] SystemC Language Working Group. SystemC 2.3.1, Core SystemC &gegand Examples.
http://accellera.org/downloads/standards/systemc.

[5] Richard Fujimoto. Parallel Discrete Event SimulatioBommunications of the ACM3(10):30-53, Oct
1990.

25

http://www.accellera.org
http://accellera.org/activities/working-groups/systemc-language
http://accellera.org/downloads/standards/systemc

[6] Christoph Schumacher, Rainer Leupers, Dietmar Petras, and &nHieffmann. parSC: Synchronous Par-
allel SystemC Simulation on Multi-Core Host ArchitecturesPinceedings of the International Conference
on Hardware/Software Codesign and System Synthesiges 241-246, 2010.

[7] Dukyoung Yun, Jinwoo Kim, Sungchan Kim, and Soonhoi Ha. Simulationifenment Configuration for
Parallel Simulation of Multicore Embedded SystemsPtaceedings of the Design Automation Conference
(DAC), pages 345-350, 2011.

[8] Ezudheen P, Priya Chandran, Joy Chandra, Biju Puthur SimonDaegpak Ravi. Parallelizing Sys-
temC Kernel for Fast Hardware Simulation on SMP MachinesPADS '09: Proceedings of the 2009
ACM/IEEE/SCS 23rd Workshop on Principles of Advanced and Distritiitedlation pages 80-87, 2009.

[9] Rohit Sinha, Aayush Prakash, and Hiren D. Patel. Parallel simulatimixed-abstraction SystemC models
on GPUs and multicore CPUs. Rroceedings of the Asia and South Pacific Design Automation Conference
(ASPDAC) 2012.

[10] Weiwei Chen, Xu Han, and Rainerdner. Multi-Core Simulation of Transaction Level Models using the
System-on-Chip EnvironmentEEE Design and Test of Compute28(3):20-31, May/June 2011.

[11] J.H. Weinstock, C. Schumacher, R. Leupers, G. Ascheid, amddaratto. Time-decoupled parallel systemc
simulation. InProceedings of the Design, Automation and Test in Europe (DATE) femcfe Dresden,
Germany, March 2014.

[12] Weiwei Chen, Xu Han, and Rainerdner. Out-of-Order Parallel Simulation for ESL Design.Proceed-
ings of the Design, Automation and Test in Europe (DATE) Conferdtaech 2012.

[13] Weiwei Chen and Rainer @ner. An Optimizing Compiler for Out-of-Order Parallel ESL Simulation
Exploiting Instance Isolation. IRroceedings of the Asia and South Pacific Design Automation Conference
(ASPDAC) pages 461-466, February 2012.

[14] Weiwei Chen and Rainer@ner. Optimized Out-of-Order Parallel Discrete Event Simulation using Rredic
tions. InProceedings of the Design, Automation and Test in Europe (DATE) o March 2013.

[15] Weiwei Chen, Xu Han, Che-Wei Chang, Guantao Liu, and Rairiané&. Out-of-Order Parallel Discrete
Event Simulation for Transaction Level ModelfEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems (TCARBB(12):1859-1872, December 2014.

[16] Jianwen Zhu, Rainer @mer, and Daniel D. Gajski. Syntax and semantics of the SpecC language. |
Proceedings of the International Symposium on System SyntBssika, Japan, December 1997.

[17] Daniel D. Gajski, Jianwen Zhu, Rainebbher, Andreas Gerstlauer, and Shuging ZtgecC: Specification
Language and Design Methodolodyluwer Academic Publishers, 2000.

[18] Andreas Gerstlauer, Raineer, Junyu Peng, and Daniel D. Gajs8ystem Design: A Practical Guide
with SpecC Kluwer Academic Publishers, 2001.

[19] Rainer Dmer, Andreas Gerstlauer, and Daniel GajsBpecC Language Reference Manual, Version 2.0
SpecC Technology Open Consortiunttp://www.specc.org, December 2002.

[20] Open SystemcC Initiativéhttp://www.systemc.org. Functional Specification for SystemC 22000.

26

http://www.specc.org
http://www.systemc.org

[21] Thorsten Gitker, Stan Liao, Grant Martin, and Stuart Swa&ystem Design with SystemKluwer Aca-
demic Publishers, 2002.

[22] Guantao Liu, Tim Schmidt, Zhongqgi Cheng, Daniel Mendoza, ariddR@®oemer. Recoding Infrastructure
for SystemC (RISC)http://www.cecs.uci.edu/~doemer/risc.html.

[23] Rainer Dbmer, Guantao Liu, and Tim Schmidt. Parallel simulation. In Soonhoi Ha arged Teich,
editors,Handbook of Hardware/Software Codesjigrages 1-32. Springer Netherlands, Dordrecht, 2017.

[24] Guantao Liu, Tim Schmidt, and Raineber. RISC Compiler and Simulator, Alpha Release V0.2.1: Out-
of-Order Parallel Simulatable SystemC Subset. Technical Report CERE8702, Center for Embedded
and Cyber-physical Systems, University of California, Irvine, Oct@gd 5.

[25] Guantao Liu, Tim Schmidt, and RaineibBer. RISC Compiler and Simulator, Beta Release V0.3.0: Out-
of-Order Parallel Simulatable SystemC Subset. Technical Report CIRE8706, Center for Embedded
and Cyber-physical Systems, University of California, Irvine, Separb16.

[26] Guantao Liu, Tim Schmidt, Zhonggi Cheng, and Rainénigr. RISC Compiler and Simulator, Release
V0.4.0: Out-of-Order Parallel Simulatable SystemC Subset. Technical ReB@S-TR-17-05, Center for
Embedded and Cyber-physical Systems, University of California,dpaly 2017.

[27] Rainer Dbmer, Weiwei Chen, Xu Han, and Andreas Gerstlauer. Multi-Core Pb&atfteulation of System-
Level Description Languages. Rroceedings of the Asia and South Pacific Design Automation Conference
(ASPDAC) pages 311-316, January 2011.

[28] Anirudh Kaushik and Hiren D. Patel. SystemC-clang: An Opene®&ramework for Analyzing Mixed-
abstraction SystemC Models. Rroceedings of the Forum on Specification and Design Languages)(FDL
Paris, France, September 2013.

[29] Hiren Patel. "SystemC-clang: SystemC parser using the clang fratit-e
https://github.com/hdpatel/systemcclang.

[30] Tim Schmidt. Recoding Infrastructure for SystemC (RISC) API, siuar 0.5.0.
www.cecs.uci.edu/~doemer/risc/v050/html_risc/index.html.

[31] Tim Schmidt, Zhonggi Cheng, and Rainedmer. Port Call Path Sensitive Conflict Analysis for Instance-
Aware Parallel SystemC Simulation. Rroceedings of the Design, Automation and Test in Europe (DATE)
ConferenceDresden, Germany, March 2018.

[32] Tim Schmidt, Guantao Liu, and RaineoBer. Hybrid Analysis of SystemC Models for Fast and Ac-
curate Parallel Simulation. IRroceedings of the Asia and South Pacific Design Automation Conference
(ASPDAC) January 2017.

[33] Tim Schmidt, Guantao Liu, and Raineter. Exploiting Thread and Data Level Parallelism for Ultimate
Parallel SystemC Simulation. Proceedings of the Design Automation Conference (DA@M)e 2017.

[34] Guantao Liu. Out-of-Order Parallel SystemC (OOPSC) API, Versio0.5.0.
http://lwww.cecs.uci.edu/~doemer/risc/v0O50/html_oopsc/index.html.

[35] Frank Ghenassidlransaction-Level Modeling with SystemC: TLM Concepts and Applicatioisribed-
ded SystemsSpringer, 2005.

27

http://www.cecs.uci.edu/~doemer/risc.html
www.cecs.uci.edu/~doemer/risc/v050/html_risc/index.html
http://www.cecs.uci.edu/~doemer/risc/v050/html_oopsc/index.html

[36] Open SystemC Initiative (OSCIDSCI TLM-2.0 Language Reference Manu@SCl, July 2009.

[37] Rainer Dbmer. Seven Obstacles in the Way of Parallel SystemC SimulatlPresentation at SystemC
Evolution Day 2016, Munich, Germany, May 2016.

[38] Rainer mer. Seven obstacles in the way of standard-compliant parallel System@Gtgmu IEEE
Embedded Systems LetteB¢4):81-84, December 2016.

[39] David C. Black. The Definitive Guide to SystemC: TLM-2.0 and the IEEB6-2011 Standard. Tutorial
at Design Automation Conference, San Francisco, California, Jurle 201

[40] Daniel Mendoza and Rainerdiner. A Tool for Visualization of SystemC Models. Technical Report CECS
TR-17-06, Center for Embedded and Cyber-physical Systems, tditivef California, Irvine, November
2017.

[41] Tim Schmidt, Guantao Liu, and Raineder. Automatic Generation of Thread Communication Graphs
from SystemC Source Code. Rroceedings of the International Workshop on Software and Compilers fo

Embedded Systemiday 2016.

[42] Guantao Liu, Tim Schmidt, and Rainerder. A Segment-Aware Multi-Core Scheduler for SystemC
PDES. InProceedings of the IEEE International High Level Design Validation st WorkshopOctober
2016.

[43] Kasra Moazzemi, Rainer@ner, and Aparna Chandramowlishwaran. A SystemC Model for N-boaly-Pr
lems and its Parallel Design Space Exploration. Technical Report CEEE85109, Center for Embedded
and Cyber-physical Systems, University of California, Irvine, Noven#16.

[44] Zhongqi Cheng and Rainerdiner. A SystemC Model of a Bitcoin Miner. Technical Report CECS-TR-16
04, Center for Embedded and Cyber-physical Systems, Universitgldb@ia, Irvine, September 2016.

[45] Farah Arabi and Rainerd@mer. A Light Weight SystemC Library for Faster Compilation. Technical Re-
port CECS-TR-16-07, Center for Embedded and Cyber-physicks)s, University of California, Irvine,
October 2016.

28

A Appendix

A.1 Manual Page of the RISC Compiler and Simulator
NAME

risc — Recoding Infrastructure for SystemC (RISC) Compiler and Simulator

SYNOPSIS

risc [options] design[options]

DESCRIPTION

risc is a dedicated compiler for the SystemC language. The purposscas to parse, analyze, in-
strument, and compile a SystemC source program into an executable prifog@umt-of-order parallel
simulation.risc is a frontend source-to-source compiler for SystemcC built on top of theER8piler
infrastructure with GNU or Intel C++ as backend target compiler. As stistirelies on and supports
also most of the ROSE and GNU compiler options.

Using the command syntax shown in the synopsis above, the speatifséghis compiled. By de-
fault, risc reads the SystemC source file, performs preprocessing and builds mralimepresentation
(abstract syntax tree) and a Segment Graph (SG) of the model. Nextesegonflict analysis is per-
formed and the design model is instrumented for Out-of-Order ParalletddsEvent Simulation (00O
PDES). Finally, instrumented C++ code is generated, compiled, and linkednrexegutable file that
can be run for fast parallel simulation.

On successful completion, the exit value O is returned. In case okatuwing processing, an error
code with a brief diagnostic message is written to the standard error strehtheucompilation is
aborted with an exit value greater than zero.

For preprocessing and C++ compilation into an executablerfile relies on the availability of an
external C++ compiler which is used automatically in the background. Byutethe GNU C++
compilerg++is used. Alternatively (see optionsisc:icpcand—risc:micbelow), the Intel C++ compiler
icpc may be used to generate an executable optimized for Intel processorsiMiEhcapabilities or
the Intel Many-Integrated-Core (MIC) architecture.

ARGUMENTS
design specifies the file name of the input SystemC design model; by default, the hase of
designis used as base name for the intermediate and output files;

OPTIONS

—h | —-help print therisc compiler version and a brief usage information message to standard output
and quit;

—v | —-verbose increment the verbosity level so that all tasks performed are logged tdastherror
(default: be silent); at level 1, high-level messages about the tast@amped are dis-
played; at level 2, additional details such as input and output file naredsstad; at
level 3, very detailed information about each executed task is printed;

29

A

—VVvVv

increment the verbosity level by two counts (same\asv);

increment the verbosity level by three counts (samevasv —V);

—w | —-warningsincrement the warning level so that compiler warning messages are eiidbfadit:

-0 | -0 level

—Idir

—Ldir

—llib

—0 output file

—Psg

warnings are disabled); four levels are supported ranging from onlgritaupt warnings
(level 1) to pedantic warnings (level 4); for most cases, warning Bigtecommended
(—w —w);

increment the warning level by two counts (same-as-w);
increment the warning level by three counts (samevasw —w);

add a symbol table suitable for debugging (e.g. usgidiy) to the generated object files
and simulation executable (default: no debugging symbols);

optimize the generated simulation executable for higher execution speed &sd/or
memory usage (default: no optimization);

add the specifiedir to the include path (extend the list of directories to be searched
for including source files); include directories are searched in ther asfigheir
specification; the standard include path ($SYSTEME_HOME/include or $SYS-
TEMC_OOP.HOME/include) is automatically appended to this list; by default, only
the standard include directories are searched;

add the specifiedir to the library path (extend the list of directories to be searched for
linker libraries); the library path is searched in the specified order; tinelatd library
path ($SYSTEMCOOP.HOME/lib) is automatically appended to this list; by default,
only the standard library path is searched;

add the specifietb to the list of libraries for the linker so that the executable is linked
againstlib; libraries are linked in the specified order; the standard libraries (i.e. -
Isystemc) are automatically appended to this list; by default, only standardidibrar
are used;

perform only the preprocessing, analysis, instrumentation, and compitasks; skip
the final linking stage so that only an object file is created (default: perfdl tasks
including linking);

specify the name of the final output file explicitly (default: a.out);

switch to partial segment graph (PSG) generation mode (and do not lifkgjetherates
a file with suffix .psg for the current translation unit; PSG files follow the D®@dpb
description language and can be processed with DOT file tools (e.g. didphath the
xdot.py tool); for 3rd-party IP components, PSG files may be edited with aetbtar
for further fine-tuning and IP protection;

—psginput PSG filespecifies the name of a PSG input file; the specified file will be loaded and@s PS

will be integrated with the current translation unit to form a complete segmephgr

30

—psgoutput output filein PSG generation mode (see above), this specifies the name of the PSG out-
put file explicitly; by default, the output PSG file has the same basename agtlte in
SystemC file;

—risc:dump output the computed segment graph (SG) and conflict tables as HTMLd@éaut: no
HTML files are generated); these files may be viewed by a user in a browseder to
inspect the out-of-order execution conditions of the model and improveardingly;

—risc:icpc use the Intel C++ compildcpc in the backend for generating the executable (default:
GNU C++ compilerg++);

—risc:mic use the Intel C++ compilécpc with option—micin the backend for cross-compiling an
executable for the Intel Many Integrated Core (MIC) architectureafglefgenerate an
executable for the same processor the compiler is running on);

—risc:elab filenameimport the elaboration result produced by the RISC elabortdy from file file-
nameand use it for segment conflict analysis based on a dynamic elaboratse ph
(default: pure static analysis);

—<rose:option> pass this option through to the underlying ROSE compiler (default: none);

—<GNU option> pass this option through to the underlying GNU compiler (default: none);

ENVIRONMENT
SYSTEMAQ.W_.HOME

SYSTEMGOOP-HOME

SYSTEMQMIC_HOME

is used at compile-time to find the RISC light-weight SystemC header files
which are expected in directory $SYSTEM® _HOME/include (default:
none);

is used at compile-time to find the RISC out-of-order SystemC header files
which are expected in directory $SYSTEM®OP HOME/include, and the
RISC out-of-order SystemC library which is expected in directory $SYS-
TEMC_OOPHOME/lib (default: none);

is used at compile-time to find the RISC SystemC header files and li-
brary files for the Intel many-integrated-core (MIC) architecture wigid
expected in directory $SYSTEM®IIC _HOME/include and and $SYS-
TEMC_MIC_HOME/lib, respectively (default: none); this is used only when
the option—-micis used (see above);

SYSCPRINT.MODE MESSAGEIs used by the RISC simulator at run-time to print the mode

SYSCSYNCPARSIM

of simulation and also the actual values of the environment variables
listed below; these log lines start with "™***” and are only printed when
$SYSCPRINT_.MODE_MESSAGE is defined (default: no messages are
printed);

is used by the RISC simulator at run-time to force the RISC out-of-order
SystemC simulation to fall back to synchronous (in-order) PDES execution;
note that this mode is also automatically selected when SystemC primitive
channels with update requests are used (default: out-of-ordertexgcu

31

SYSCPRINT.VERBOSBVESSAGEis used by the RISC simulator at run-time to print de-
bugging information about the simulator queues, event processing,
and time advances; such debugging lines are only printed when
$SYSCPRINT.VERBOSEMESSAGE is defined (default: no debugging
infos are printed);

SYSCDISABLEPREDICTIONIs used by the RISC simulator at run-time to switch back to non-
predictive conflict detection; this avoids scheduling overhead at run
time, but usually results in slower simulation due to more conflicts; if
$SYSCDISABLE_PREDICTION is defined, thread state prediction is not
used during out-of-order scheduling (default: out-of-order ettecuwvith
prediction);

SYSCPARSIM_.CPUS is used by the RISC simulator at run-time to set the maximum number of
concurrent threads allowed in the RISC out-of-order SystemC simulation
(default: 64);

VERSION

The RISC compiler and simulator are release version 0.5.0.

AUTHORS

Zhongqgi Cheng <zhongqc@uci.edd, Rainer Doemer <doemer@uci.edyd, Guantao Liu
<guantaol@uci.edu, and Tim Schmidk schmidtt@uci.edx.

COPYRIGHT
(c) 2018 CECS, University of California, Irvine

LICENSE

Open source BSD license terms apply.

BUGS, LIMITATIONS

This is an academic proof-of-concept prototype implementation, not conahqu@lity software. See
the file BUGS in the software packages for known limitations.

32

A.2 Manual Page of the RISC Elaborator
NAME

elab— Recoding Infrastructure for SystemC (RISC) Dynamic Elaborator

SYNOPSIS

elab design[options]

DESCRIPTION

elabis a special compiler for the SystemC language. The purpos&bis to parse, analyze, instru-
ment, and compile a SystemC source program into an executable progmynéonic elaboratiorelab

is a frontend source-to-source compiler for SystemcC built on top of theER@8piler infrastructure
with GNU or Intel C++ as backend target compiler. As suglab relies on and supports also most of
the ROSE and GNU compiler options.

Using the command syntax shown in the synopsis above, the spedéfsaghis compiled. By de-
fault, elab reads the SystemC source file, performs preprocessing and builds sxaimepresentation
(abstract syntax tree) of the SystemC structural hierarelab then instruments the design model so
that its execution stops after the end of the elaboration phase (no actukdt@muwill take place); the
dynamically built hierarchy and instance connectivity data is then dumped fiddodeesign.elabwhich
can be passed to the RISC compilisc for more precise conflict analysis.

On successful completion, the exit value O is returned. In case okatuwing processing, an error
code with a brief diagnostic message is written to the standard error strehtheigompilation is
aborted with an exit value greater than zero.

For preprocessing and C++ compilation into an executable dlb) relies on the availability of
an external C++ compiler which is used automatically in the background. Byltlethe GNU C++
compilerg++is used.

ARGUMENTS

design specifies the file name of the input SystemC design model; by default, the aase of
designis used as base name for the intermediate and output files;

OPTIONS

—h | —-help print the elab elaborator version and a brief usage information message to standard
output and quit;

—v | —-verbose increment the verbosity level so that all tasks performed are logged tdastherror
(default: be silent); at level 1, high-level messages about the tastamped are dis-
played; at level 2, additional details such as input and output file naredsstad; at
level 3, very detailed information about each executed task is printed;

-V increment the verbosity level by two counts (sameasv);

—VWV increment the verbosity level by three counts (samevasv —V);

33

—w | —-warningsincrement the warning level so that compiler warning messages are eidéfadit:

-0 | -0 level

—Idir

—Ldir

—llib

—0 output file

—elab:o

warnings are disabled); four levels are supported ranging from onlgrit@pt warnings
(level 1) to pedantic warnings (level 4); for most cases, warning igtecommended
(—w —w);

increment the warning level by two counts (same-as-w);
increment the warning level by three counts (samevasw —w);

add a symbol table suitable for debugging (e.g. ugidiy) to the generated object files
and simulation executable (default: no debugging symbols);

optimize the generated simulation executable for higher execution speed bs¥/or
memory usage (default: no optimization);

add the specifiedir to the include path (extend the list of directories to be searched
for including source files); include directories are searched in ther avfigheir
specification; the standard include path ($SYSTEM& HOME/include or $SYS-
TEMC_OOPHOME/include) is automatically appended to this list; by default, only
the standard include directories are searched;

add the specifiedir to the library path (extend the list of directories to be searched for
linker libraries); the library path is searched in the specified order; timelatd library
path ($SYSTEMCOOP HOME/Iib) is automatically appended to this list; by default,
only the standard library path is searched;

add the specifietb to the list of libraries for the linker so that the executable is linked
againstlib; libraries are linked in the specified order; the standard libraries (i.e. -
Isystemc) are automatically appended to this list; by default, only standardidibrar
are used,;

perform only the preprocessing, analysis, instrumentation, and compitasks; skip
the final linking stage so that only an object file is created (default: perfdl tasks
including linking);

specify the name of the final output file explicitly (default: a.out);

specify the name of the elaboration result file with instance connectivity dptaidy
(default: design.elal); this file will be produced when the executable generateeldly
is run (after its elaboration phase);

—<rose:option> pass this option through to the underlying ROSE compiler (default: none);

—<GNU option> pass this option through to the underlying GNU compiler (default: none);

ENVIRONMENT

SYSTEMAQ.W_HOME is used at compile-time to find the RISC light-weight SystemC header files

which are expected in directory $SYSTEM® _HOME/include (default:
none);

34

SYSTEMQGOOP.HOME is used at compile-time to find the RISC out-of-order SystemC header files
which are expected in directory $SYSTEMGOP HOME/include, and the
RISC out-of-order SystemC library which is expected in directory $SYS-
TEMC_OOP.HOME/lib (default: none);

VERSION

The RISC Dynamic Elaborator is release version 0.5.0.

AUTHORS

Zhongqgi Cheng <zhongqc@uci.edd, Rainer Doemer <doemer@uci.edsd, Guantao Liu
<guantaol@uci.edu, and Tim Schmidkschmidtt@uci.ed.

COPYRIGHT
(c) 2018 CECS, University of California, Irvine

LICENSE

Open source BSD license terms apply.

BUGS, LIMITATIONS

This is an academic proof-of-concept prototype implementation, not corahqrality software. See
the file BUGS in the software packages for known limitations.

35

A.3 Manual Page of the RISC SIMD Advisor
NAME
simd — Recoding Infrastructure for SystemC (RISC) SIMD Advisor

SYNOPSIS

simd [options] design[options]

DESCRIPTION

simd is an analysis tool for exploiting data-level parallelism based on the RI&iter for the Sys-
temC language. The purpose sifnd is to parse and analyze a SystemC source program, and then
provide advise to the user regarding possible optimizations of the model tateXPUD parallelism

for faster out-of-order parallel simulation.

Using the command syntax shown in the synopsis above, the spatfigghis compiled and stat-
ically analyzed. By defaultsimd reads the SystemC source file, performs preprocessing and builds
an internal representation (abstract syntax tree) of the SystemC aiasirahe model. Next, thread
control flow analysis is performed and encountered loops are andlyzpdtential single-instruction-
multiple-data (SIMD) execution which exploits data-level parallelism and czohtie significantly im-
proved simulation performance in Out-of-Order Parallel Discrete Eviemil&tion (OoO PDES).

Specifically,simd presents to the user a list of loops that might be suitable for SIMD vectorizatio
The user is expected to review the options and, based on his applicatiateklge, select those loops
that do not contain SIMD conflicts, such as parallel accesses to opartamemory locations. For
confirmed loops, the user then inserts into the source#£pgyma omp simdannotations immediately
before the selected loops. The annotated model can then be compiledsaitimd option-risc:icpc
using the Intel C++ compileicpc to generate an executable for execution on a SIMD-capable target
architecture with improved performance.

The output oksimd lists the loops found in the control flow of the SystemC threads of the model. For
each loop, its line number in the source code is listed together with its analyltal @lalification. If
the loop is not qualified, a reason for its disqualification may or may not bershoform of an error
code.

A qualification error code of 1 indicates the use of an invalid array indexeénldbp. The code
2 indicates that a non-loop local variable is written. Finally, code 3 indicatsai unsupported
construct (e.g. goto statement) is found in the loop.

On successful completion, tlsémd advisor returns the value 0. In case of errors during processing,
an error code with a brief diagnostic message is written to the standarég&eam and the compilation
is aborted with an exit value greater than zero.

ARGUMENTS

design specifies the file name of the input SystemC design model; by default, the aase of
designis used as base name for the intermediate and output files;

OPTIONS

—h | —-help print thesimd advisor version and a brief usage information message to standard output
and quit;

36

—v | —-verbose increment the verbosity level so that the tasks performed are logged ttasfaerror
(default: be silent); at level 1, high-level messages about the tast@amped are dis-
played; at level 2, additional details such as input and output file naredgstad; at
level 3, very detailed information about each executed task is printed;

-V increment the verbosity level by two counts (sameasv);
—-VVV increment the verbosity level by three counts (samevasv —V);

—w | —-warningsincrement the warning level so that warning messages are enabledl{defrnings
are disabled); four levels are supported ranging from only importantings (level 1)
to pedantic warnings (level 4); for most cases, warning level 2 is recomene(—w —w

)i
—Ww increment the warning level by two counts (sameas-w);
—WWw increment the warning level by three counts (samevasw —w);
—Idir add the specifiedir to the include path (extend the list of directories to be searched

for including source files); include directories are searched in thea ofdbeir speci-
fication; the standard include path ($SYSTEM®W HOME/include) is automatically
appended to this list; by default, only the standard include directories axaheda

—o output file specify the name of the text output file explicitly (default: none);
—<rose:option> pass this option through to the underlying ROSE compiler (default: none);

—<GNU option> pass this option through to the underlying GNU compiler (default: none);

ENVIRONMENT

SYSTEMAQ.W_.HOME is used at compile-time to find the RISC light-weight SystemC header files
which are expected in directory $SYSTEM® _HOME/include (default:
none);

VERSION

The SIMD Advisor is release version 0.5.0.

AUTHORS

Zhonggi Cheng <zhonggc@uci.edy, Rainer Doemer <doemer@uci.edd, Guantao Liu
<guantaol@uci.edd, and Tim Schmidkschmidtt@uci.edx.

COPYRIGHT
(c) 2018 CECS, University of California, Irvine

LICENSE

Open source BSD license terms apply.

37

BUGS, LIMITATIONS

This is an academic proof-of-concept prototype implementation, not corahqrality software. See
the file BUGS in the software packages for known limitations.

38

A.4 Manual Page of the RISC Visual Tool
NAME

visual — Graphical SystemC Module Visualizer using RISC

SYNOPSIS

visual [options] design[options]

DESCRIPTION

visual is an analysis tool for graphical visualizing of ports and modules of Systemd€. It uses the
RISC compiler to parse and analyze the SystemC source code into a datarstrddie tool iterates
through this data structure and displays a visual representation of tlaedhmigof modules and ports.
visual provides a GUI to provide a graphical representation of the SystemC rasdetll as provide
user modifiable options during run-time to change the graphical propeftiles wisualization.

ARGUMENTS

design specifies the file name of the input SystemC model.

OPTIONS

—h | —-helpprints a brief message on the usage of the tool to standard output and quits;
—bw Modules are drawing without color;
—tm moduleOnly draw "module”;
—Il integer Draw only a certain depth in the hierarchy given by "integer”;

—s float Scale the drawing size by "float”. If "float” = 0.5, then the size of the drgnsiscaled by 50
percent.

-np The module hierachy will be drawn without ports or channels;

ENVIRONMENT

SYSTEMAQ.W_HOME is used at run-time to find the RISC light-weight SystemC header files which
are expected in directory $SYSTEMGN _HOME/include

VERSION

Visual is release version 0.5.0.

AUTHORS

Daniel Mendozacdmmendol@uci.eds

39

COPYRIGHT
(c) 2018 CECS, University of California, Irvine

LICENSE

Open source BSD license terms apply.

BUGS, LIMITATIONS

This is an academic proof-of-concept prototype implementation, not conahqrality software.
GTK is used at compile-time for the GUI. CAIRO is used at compile-time for drgsvidisplayed
on the GUI.

40

A.5 Manual Page of the RISC Tree Tool
NAME

tree — Textual SystemC Module Visualizer using RISC

SYNOPSIS

tree [options] design[options]

DESCRIPTION

tree is an analysis tool for textual visualizing of ports and modules of System€. dbdses the RISC
compiler to parse and analyze the SystemC source code into a data strilibeiteol iterates through
this data structure and displays a visual representation of the hierdroigdoles and ports.

ARGUMENTS

design specifies the file name of the input SystemC model.

OPTIONS

—h | —-helpprints a brief message on the usage of the tool to standard output and quits;

ENVIRONMENT

SYSTEMA.W_HOME is used at tun-time to find the RISC light-weight SystemC header files which
are expected in directory $SYSTEMGV_HOME!/include

VERSION

Tree is release version 0.5.0.

AUTHORS

Daniel Mendozacdmmendol@uci.edu

COPYRIGHT
(c) 2018 CECS, University of California, Irvine

LICENSE

Open source BSD license terms apply.

BUGS, LIMITATIONS

This is an academic proof-of-concept prototype implementation, not conahkqrality software.

41

	1 Introduction
	2 Out-of-Order Parallel Simulation
	2.1 Notations
	2.2 Discrete Event Scheduler
	2.3 Parallel Discrete Event Scheduler
	2.4 Out-of-Order Parallel Discrete Event Scheduler

	3 RISC Compiler and Simulator
	3.1 Segment Graph
	3.2 Partial Segment Graph
	3.3 Conflict Analysis
	3.3.1 Static Analysis
	3.3.2 Dynamic Analysis

	3.4 Source Code Instrumentation
	3.5 Library Support
	3.6 Support for Data-Level Parallelism
	3.7 Compiler Backend
	3.8 Simulator

	4 Out-of-Order Parallel Simulatable SystemC Subset
	4.1 SystemC Hierarchical Structure of Modules and Channels
	4.2 SystemC Threads
	4.3 SystemC Transaction Level Modeling (TLM)
	4.4 SystemC Data Types
	4.5 SystemC Utilities and Other Constructs

	5 RISC Analysis and Transformation Tools
	6 Conclusion
	Acknowledgements
	References
	A Appendix
	A.1 Manual Page of the RISC Compiler and Simulator
	A.2 Manual Page of the RISC Elaborator
	A.3 Manual Page of the RISC SIMD Advisor
	A.4 Manual Page of the RISC Visual Tool
	A.5 Manual Page of the RISC Tree Tool

