Center for Embedded and Cyber-physical Systems
University of California, Irvine

RISC Compiler and Simulator, Release V0.4.0:
Out-of-Order Parallel Simulatable SystemC Subset

Guantao Liu, Tim Schmidt, Zhongqi Cheng and Rainénigr

Technical Report CECS-17-05
July 31, 2017

Center for Embedded and Cyber-physical Systems
University of California, Irvine
Irvine, CA 92697-2620, USA
+1 (949) 824-8919

{guantaol,schmidtt,zhongqgc,doemer}@uci.edu
http://www.cecs.uci.edu/~doemer/risc.html

{guantaol, schmidtt, zhongqc, doemer}@uci.edu
http://www.cecs.uci.edu/~doemer/risc.html

RISC Compiler and Simulator, Release V0.4.0:
Out-of-Order Parallel Simulatable SystemC Subset

Guantao Liu, Tim Schmidt, Zhongqgi Cheng and Rainénigr

Technical Report CECS-17-05
July 31, 2017

Center for Embedded and Cyber-physical Systems
University of California, Irvine
Irvine, CA 92697-2620, USA
+1 (949) 824-8919

{guantaol,schmidtt,zhonggc,doemer}@uci.edu
http://www.cecs.uci.edu/~doemer/risc.html

Abstract

SystemC is widely used in industry and academia to specdysanulate Electronic System Level (ESL)
models. Despite the wide availability of multi-core prasmshosts, however, the reference SystemC simulator is
still based on sequential Discrete Event Simulation (DE®) @xecutes only a single thread at any time.

In recent years parallel SystemC simulators were proposadhwun multiple threads in parallel based on
synchronous Parallel Discrete Event Simulation (PDES)as#ins. Synchronous PDES, however, limits parallel
execution to threads that run at the same time and delta cj¢$®, most approaches require manual preparation
of the SystemC model and rely on the designer to performuliflionflict analysis.

In this report, we describe the advanced Recoding Infrastme for SystemC (RISC) approach where a
dedicated SystemC compiler and advanced parallel simuiatplement Out-of-Order Parallel Discrete Event
Simulation (OoO PDES) for SystemC. Using automatic corfhiatysis based on Segment Graph (SG) abstrac-
tion, 000 PDES can execute threads safely in parallel anebbutrder (ahead of time) and thus achieves fastest
simulation speed but nevertheless maintains the classie® modeling semantics.

This report describes the RISC Compiler and Simulator andildethe SystemC subset supported by the
RISC Release V0.4.0, as of July 31, 2017.

{guantaol, schmidtt, zhongqc, doemer}@uci.edu
http://www.cecs.uci.edu/~doemer/risc.html

Contents

Introduction\

Out-of-Order Parallel Simulation

RISC Compiler and Simulator

5

Out-of-Order Parallel Simulatable SystemC Subset
4.1 SystemC Hierarchical Structure of Modules and Channels

Conclusion

Acknowledgemenﬂs

References

A Appendix
A.1 Manual Page of the RISC Compiler and Simulator.
\A.Z Manual Page of the RISC Elaborator
A.3 Manual Page of the RISC SIMD AdVISOr . « « .« o oo e

2.1 Notations e e
2.2 Discrete EventScheduler oo

2.3 Parallel Discrete EventScheduler.
2.4 Out-of-Order Parallel Discrete Event Scheduler

3.1 SegmentGraph
3.2 ConflictAnalysis e
3.2.1 Static Analysis
3.2.2 Dynamic Analysis e
3.3 Source Code INStrumentation o
3.4 Library Support e
3.5 Support for Data-Level Parallelism
3.6 CompilerBackend
3.7 Simulator e

42 SystemCThreads i

4.3 SystemC Transaction Level Modeling (TLM)
4.4 SystemC Data Tydes
4.5 SystemC Utilities and Other Constructs

List of Figures

1 Traditional Discrete Event Simulation (DES) scheduler for Systme 3
\2 Synchronous Parallel Discrete Event Simulation (PDES) schedul8y&temC. 4
3 Out-of-Order Parallel Discrete Event Simulation (000 PDES) schethri®ystemC. 5
4 RISC Compiler and Simulator for Out-of-Order PDES of SystemC. 6
5 RISC Elaborator feeds dynamic elaboration information to RISC Compilgurmise conflict
analysis. L e e 8
6 Control-flow abstractions fosai t in library fUNCHONS. « . + v o e 10
7 Different source code domains of adesignmodel. 10

List of Tables

1 RISC V0.4.0 Out-of-Order Parallel Simulatable SystemC Subset 14
2 RISC V0.4.0 Out-of-Order Parallel Simulatable SystemC Subset (con)mued 15
3 RISC V0.4.0 Out-of-Order Parallel Simulatable SystemC Subset (conjinued. 16
4 RISC V0.4.0 Out-of-Order Parallel Simulatable SystemC Subset (conjinued. 17
5 RISC V0.4.0 Out-of-Order Parallel Simulatable SystemC Subset (conjinued. 18
6 RISC V0.4.0 Out-of-Order Parallel Simulatable SystemC Subset (con}inued. 19
7 RISC V0.4.0 Out-of-Order Parallel Simulatable SystemC Subset (conjinued. 20
8 RISC V0.4.0 Out-of-Order Parallel Simulatable SystemC Subset (con}inued. 21

RISC Compiler and Simulator, Release V0.4.0:
Out-of-Order Parallel Simulatable SystemC Subset

Guantao Liu, Tim Schmidt, Zhonggi Cheng and Rainer Domer
Center for Embedded and Cyber-physical Systems
University of California, Irvine
Irvine, CA 92697-2620, USA
{guantaol,schmidtt,zhonggc,doemer}@uci.edu
http://www.cecs.uci.edu/~doemer/risc.html

Abstract

SystemC is widely used in industry and academia to specify and simulate Ele&ystem Level (ESL) models.
Despite the wide availability of multi-core processor hosts, however, tieeerece SystemC simulator is still
based on sequential Discrete Event Simulation (DES) and executes sintyl@thread at any time.

In recent years parallel SystemC simulators were proposed whictmultiple threads in parallel based on
synchronous Parallel Discrete Event Simulation (PDES) semanticgh&yrous PDES, however, limits parallel
execution to threads that run at the same time and delta cycle. Also, npyebahes require manual preparation
of the SystemC model and rely on the designer to perform difficult caandidysis.

In this report, we describe the advanced Recoding Infrastructure fste8yC (RISC) approach where a dedi-
cated SystemC compiler and advanced parallel simulator implement Gitdlef- Parallel Discrete Event Sim-
ulation (OoO PDES) for SystemC. Using automatic conflict analysis bas&ggment Graph (SG) abstraction,
000 PDES can execute threads safely in parallel and out-of-order (hbésime) and thus achieves fastest
simulation speed but nevertheless maintains the classic SystemC modelargiss.

This report describes the RISC Compiler and Simulator and details then8ystebset supported by the RISC
Release V0.4.0, as of July 31, 2017.

1 Introduction

As an IEEE standard [1], the SystemC System Level Description Laegi®dL) is widely used for the spec-
ification, modeling, validation and evaluation of Electronic System Level jESbdels. Under the Accellera
Systems Initiative [2], the SystemC Language Working Group [3] maintaihemig the official SystemC lan-
guage definition, but also provides an open source proof-of-goriteary [4] that can be used to simulate
SystemC design models. However, implementing the classic scheme of Disceste3iwiulation (DES), this
reference simulator runs sequentially and cannot utilize the parallel corgpatources available on multi-core
(or many-core) processor hosts. This severely limits the execution sp&ydtemC simulation.

In order to provide faster simulation, Parallel Discrete Event Simulation @& has recently gained again
significant attraction (examples include [6], [7], [8], [9], [10], aridl]). The PDES approach issues multiple
threads (i.e SC_METHOD, SC_THREAD andSC_CTHREAD) concurrently and runs them on the available proces-
sor cores in parallel. In turn, the simulation speed increases significantly.

Regular PDES is synchronous, however. That is, time advances glaipalgll threads execute in lock-step
fashion. Here, the total order of time imposed by synchronous PDES still lingitsghortunities for parallel ex-

{guantaol, schmidtt, zhongqc, doemer}@uci.edu
http://www.cecs.uci.edu/~doemer/risc.html

ecution. When a thread completes its evaluation phase, it has to wait untileltbtbads finish their evaluation
phases as well. Earlier completed threads must stop at the simulation cyate dad available processor cores
are left idle until all runable threads reach the cycle barrier.

In order to overcome this problem, we have developed a novel techradjad ©ut-of-Order Parallel Discrete
Event Simulation (OoO PDES) [12, 13, 14, 15]. By localizing the simulation time divitiual threads and
carefully handling events at different times, the simulation kernel can thseiads in parallel and ahead of time,
following a partial order of time without loss of accuracy. Thus, Ooo PBIg8ificantly reduces the idle time
of available parallel processor cores and results in maximum simulation, spleiéel maintaining the traditional
language and modeling semantics.

The O00 PDES technique was originally implemented based on the SpecCdarj@6al7, 18, 19]. In this
report, we document our efforts to apply OoO PDES to the SystemC SLDI2[2a] which is both the de-facto
and official standard for ESL design today. In particular, we desaibbeRecoding Infrastructure for SystemC
(RISC) [22] which consists of a dedicated SystemC compiler and comdgmpout-of-order parallel simulator
and implements OoO PDES with prediction for SystemC [23].

The remainder of this report is organized as follows: After a brief dehon of the simulator scheduling
algorithms used for DES, PDES and OoO PDES in Section 2, we describd 3z Gmpiler and Simulator
proof-of-concept prototype in Section 3. In Section 4, we then list inildb@SystemC subset that is supported
by the current RISC Release V0.4.0 (2017—0ﬁ331)d finally conclude this report in Section 5.

2 Out-of-Order Parallel Simulation

In this section, we briefly outline the scheduling algorithm used in out-ofrgpdeallel simulation. We do
this incrementally, starting from the traditional Discrete Event Simulation (DEBgduler, then describe the
synchronous Parallel DES (PDES) extension, and finally define thef@Dtder PDES (OoO PDES) scheduling
algorithm.

2.1 Notations

To formally describe the discrete event scheduling algorithms, the followdtegions are introduced.

1. Each SystemC threa&C_METHOD, SC_THREAD and SC_CTHREAD) is assigned a localized time stamp
(tth, Oth)-

2. Each eventgc_event) is assigned a notification time stantg @¢), whereEVENT S= UEVENT $s.
3. Threads are grouped into different queues. Specifically,

(a) QUEUES= {READY, RUN, WAIT, WAIT TIME}.

(b) READY= Uth, 5 where Threadh is ready to run at timet (J).

(c) RUN= Uth 5 where Threadh is running at timet(, d).

(d) WAIT = Uth; 5 where Threadh is waiting since timet(d).

(e) WAITTIME= uth; o where Threadh is waiting for simulation time advance to Q).

1 Earlier versions [24, 25] of this technical report document the pljgitaaand beta releases in 2015 and 20186.

start

Yes
READY == 27

No
th =Pick(READY); Run(th);

| yield
v

vch e PRIM_CHANNEL, if ch's update method
is requested; perform ch's update method;

]

vth € WAIT, if th's event is triggered; Remove(th,
WAIT); Insert(th, READY); clear triggered events;

No
READY == @7

0

Yes

advance the simulation time;
move the first th € WAITTIME to READY;

No
READY == o7

Figure 1: Traditional Discrete Event Simulation (DES) scheduler for &ySte

2.2 Discrete Event Scheduler

The Accellera reference simulation library of SystemC [4] is based on Blg8re 1 depicts such a traditional
DES scheduling algorithm. In DES, a single thread is running at all times. \&hémreads in thdREADY and
RUN queues complete their current delta cycle, the root thread resumesrémnsehe update and notification
phase. Then threads are woken up and moved frorMAET queue back into thREADY queue. A new delta
cycle begins.

If no threads are ready after the update and notification phase, tlentctime cycle finishes. The simulation
kernel advances the simulation time and processes the earliest timed evethé&VAIT TIME queue. A new
cycle begins for the updated simulated time.

Finally, when both th&/AIT TIMEandREADY queues are empty, the simulation terminates.

2.3 Parallel Discrete Event Scheduler

In comparison to DES, regular synchronous PDES issues multiple thr8&ds8HTHOD, SC_THREAD and
SC_CTHREAD) concurrently in a delta cycle. These threads can then execute trulyatigbam the multiple
available processor cores of the host.

Figure 2 shows the regular synchronous PDES scheduling algorithme kevetiuation phase, as long as the
READY queue is not empty and an idle core is available, the PDES scheduler willassew thread from the
READY queue. If a thread finishes earlier than other threads in the same cyels,raady thread is assigned to
the idle processor core, unless there is no thread available RE#ADY queue, in which case the core is kept
idle until the next delta cycle.

It should be emphasized that synchronous PDES implies an absolute bathe end of each delta and time
cycle. All threads need to wait at the barrier until all other runable tlw@atsh their current evaluation phase.

3

No
READY == @7 ~
IRUNI < #CPUs
&& READY = 27 Immediate
Notification
th =Pick(READY);
Run(th); <
vch € PRIM_CHANNEL, if ch's update method R
is requested; perform ch's update method;
]
vth e WAIT, if th's event is triggered; Remove(th, Delta Cycle
WAIT); Insert(th, READY); clear triggered events;
No
READY == 27 -
advance the simulation time;
move the first th e WAITTIME to READY; .
Timed Cycle
No
READY == 27

Figure 2: Synchronous Parallel Discrete Event Simulation (PDES) atdrddr SystemC.

Only then the synchronous PDES scheduler resumes and performgitite apd notification phases, and finally
advances to the next delta or time cycle.

For the SystemC language in particular, there is yet another very imposjaetteto consider when applying
PDES. For semantics-compliant SystemC simulation, complex inter-dependealggis over all variables in
the system model is a prerequisite to parallel simulation [26].

The Standard SystemC Language Reference Manual (LRM) [1] clstatgs thatprocess instances execute
without interruption”. This requirement is also known as cooperative (or co-routine) multitgskirich is
assumed by the SystemC execution semantics. As detailed in [26], the pampicdbem of parallel simulation
is specifically addressed in the SystemC LRM [1]:

“An implementation running on a machine that provides hardware supfporconcurrent processes
may permit two or more processes to run concurrently, provided tiedb@mavior appears identical to
the co-routine semantics defined [...]. In other words, the implementatioidvibe obliged to analyze
any dependencies between processes and constrain their executiatthothe co-routine semantics.”

We will describe the required dependency analysis in more detail belovwe(iticf 3.2), as it is also needed
for out-of-order PDES.

2.4 Out-of-Order Parallel Discrete Event Scheduler

In OoO PDES, we break the strict order of time (the synchronous bahyelocalizing time stamps to each
thread. Figure 3 shows the out-of-order parallel DES schedulingitiigor Since each thread has its own
time stamp, the OoO PDES scheduler relaxes the event and simulation time uptiatéag more threads (at

4

different simulation cycles!) to run in parallel and ahead of time. This resulishigher degree of parallelism
and thus higher simulation speed.

[e |

| sleep | ()
vth € WAIT, if th's event is triggered at (te, de);
Remove(th, WAIT, . 5,); Insert(th, READYt, 5e+1); update

th's local time stamp to (te, de+1); clear triggered events;

move vth € WAITTIMEt, o to READY4, o;
update th's local time stamp to (t, 0);

No
READY == 27

No Yes

IRUNI < #CPUs
&& READY != 27

No
| th =Pick(READY); | RUN == o7

Yes

Yes
Remove(th, READVY4, 5);
Insert(th, RUN, 5); —
Run(th); end

Figure 3: Out-of-Order Parallel Discrete Event Simulation (OoO PDEIS)daler for SystemC.

In comparison to the synchronous PDES in Figure 2, Figure 3 moves ghfiread the W AIT andWAITTIME
gueues into th&EADY queueas soon as possihléAlso, there is no specific point in the scheduling flow any
more for the classic delta and time cycles. Both delta and time updates arerpatflmcally for each thread,
provided that there are no possible conflicts in the way Ktb€on flictgth) condition is explained below).

In contrast to Figure 2 which performs requested update methods in primitarnels in each delta cycle,
Figure 3 does not contain this step any more. Due to the out-of-ordeddaig and the eliminated central
scheduling point for delta cycles, it is difficult to determine an efficientsafd point in the OoO PDES scheduler
when primitive channel update requests can be served. However, htagsapossible to safely fall back to
synchronous PDES when primitive channel updates are requested.

Note theNoConflictgth) condition shown in Figure 3. As already mentioned above for the synobson
PDES, detailed dependency analysis is needed to avoid data or evitiste&or any shared variables among the
parallel threads. Only iNoConflictsth) is true, a new thread is issued for parallel execution (moved from the
READYto theRUN queue).

We will be using advanced static compile-time analysis (and optionally dynamitmenanalysis, see Sec-
tion|3.2.2) to identify all such potential conflicts. Based on this information (alsitaple look-up is sufficient),
the O0O PDES scheduler can then at run-time quickly decide whether arseitof threads has any conflicts
with each other.

3 RISC Compiler and Simulator

To realize the 00O PDES approach for the SystemC language, we pneseour Recoding Infrastructure for
SystemC (RISC) and describe the overall RISC Compiler and Simulator-pfamfncept prototype (Release
V0.4.0 as of 2017-07-31). The RISC software is available as openesand can be downloaded freely from the
following web site [22]:http://www.cecs.uci.edu/~doemer/risc.html

Input Model Instrumented Model Executable
. systemc - Model
RISC Compiler ypar h Target Compiler
systemc.h \ -
L > Segment Graph || Source Code || | Model | | Ct+t | O“;;’:éﬁé?er
i i i ar.c i
Modelcop V] Conflict Analysis || Instrumentation iﬁ Compiler Simulation
7 RISC
SystemC
“Library >

Figure 4: RISC Compiler and Simulator for Out-of-Order PDES of SystemC.

To perform semantics-compliant SystemC simulation with maximum parallelism, we uiccatedicated
SystemC compilerThis is in contrast to the traditional SystemC simulation where a regular Syshgmastic
C++ compiler includes the SystemC headers and links the input model direathsathe SystemcC library.

As shown in Figure 4, our RISC compiler acts as a frontend that praedisseénput SystemC model and
generates an intermediate model with special instrumentation for OoO PDEsttumented parallel model
is then linked against the extended RISC SystemC library by the target corfgilegular C++ compiler) to
produce the final executable output model. OoO PDES is then performedy dpunning the generated
executable model.

From the user perspective, we essentially replace the regular SysigmoSta C++ compiler with the
SystemC-aware RISC compiler (which in turn calls the underlying C++ compif)erwise, the overall Sys-
temC validation flow remains the same as before. It is just faster due to tHiepsiraulation.

For reference, the detailed Linux manual page of the RISC compilsc and simulator is included in Ap-
pendix A.1 of this report.

Internally, the RISC compiler performs three major tasks, namely Segmeph @3&) construction, conflict
analysis, and source code instrumentation.

3.1 Segment Graph

The first task of the RISC compiler is to parse the SystemC input model intostraessyntax tree (AST) and

then create a SystemC structural representation from the AST whichtsafiecSystemC module and channel
hierarchy, connectivity, and other SystemC-specific relations, similar t8yseemC-clang representation [27,
28]. For details on this part of the RISC application programming interfaé&d)(Alease refer to the Doxygen-

generated documentation [29].

On top of this, the RISC compiler then buildSagment Graph (S@ata structure for the model. A Segment
Graph (SG) [12, 15] is a directed graph that represents the code sexgERecuted during the simulation between
scheduling steps. That is, every segment is associated with a scheslmepa@nt, i.e. awai t statement in
SystemC.

At run time, threads switch back and forth between the stataswiing (threads irREADYandRU N queues)
andwaiting (threads inWAIT andWAIT TIME queues). Whenunning, they execute specific segments of their
code. These code segments make up the nodes in the Segment Gragasvauges in the graph indicate the

6

http://www.cecs.uci.edu/~doemer/risc.html

possible transitions from one segment to another. In other words, tles @éuighe Segment Graph reflect an
abstraction of the model’s control flow.

For a formal description of the Segment Graph and its construction algotilenmterested reader may refer
to [15]. For details on the RISC compiler API, please refer to the Doxygererated documentation [29].

3.2 Conflict Analysis

The Segment Graph data structure serves as the foundation for seggm#tict analysis As outlined earlier, the
000 PDES scheduler must ensure that every parallel thread to be sasi@0 conflicts with any other threads
currently in theREADY andRUN queues. Here, we utilize the RISC compiler to detect any possible conflicts
between these threads already at compile time.

Potential conflicts in SystemC include data hazards, event hazards, angl tiaziards, all of which may exist
among the segments executed by the threads considered for paraligi@xeBlease refer to [15] for a detailed
discussion of these hazards which, if ignored, would become dargyexoe conditions at run time.

Both possible hazard detection approaches, nastaticanalysis at compile time ardynamicanalysis at run
time, are supported by RISC Compiler and Simulator ReleaseV0.4.0.

3.2.1 Static Analysis

Static analysis relies purely on the available information in the SystemC soudeeotdhe design model at
hand. In this case, the RISC compiler carefully performs conservatrgiittation of the potential hazards in
the model.

Identifying all possible hazards is a complex analysis task that requiréslithenderstanding” of the module
hierarchy. One option is to statically extract the module hierarchy and antigzandividual threads. Here, the
RISC compiler follows the approach outlined in [15].

In many cases, however, not all of the needed information can be gdthttically. For instance, design
parameters may be passed via the command line, for example, to define the néimbdules, certain channel
characteristics, or other configuration information. In such SystemC muaidtbla dynamic elaboration phase,
the instantiated modules, channels, and ports are typically created bylaspoénchewoperators in a dynamic
fashion. Thus, the structural parameters of the model are only availahie ame, so they cannot be statically
analyzed. In these cases, dynamic analysis is needed.

3.2.2 Dynamic Analysis

Dynamic analysis takes run-time information into account and then augmenttatis& static analysis. The
combination of static and dynamic analysis is here caildatid analysig30].

Figure 5 shows the extended RISC design flow with support of dynamigsisaAs in the regular compilation
flow discussed above in Figure 4, the input SystemC model is processbe BISC Compiler to generate an
executable model for out-of-order parallel simulation, as shown on thleatibpf Figure 5 from left to right.

The dynamic analysis step, shown on the bottom half of Figure 5, extendsitigilation flow by a prepro-
cessing step. The input SystemC model is fed into the RISC Elabarheds which produces an executable
model that only performs the SystemC elaboration phase when run. At thefehe elaboration, the ex-
ecutable model automatically traverses the created module hierarchy via dteen®yintrospection API and
dumps this detailed structural design information, shown as Instance @witgeData in Figure 5, into a file
(model _nare. el ab). This file is in turn provided as an input to the RISC compiler, so that therdiazdly
created design hierarchy and specific instance connectivity can defarsprecise conflict analysis. The in-

7

Input Model Executable Model

Out-of-Order
S)'\//lstzrr}c » RISC Compiler Parallel
oae Simulation
RISC Instance
Elaborator Elaboration Model Congeelglvny

Dynamic
Elaboration

Figure 5: RISC Elaborator feeds dynamic elaboration information to RIS@pBer for precise conflict analysis.

stance connectivity data file includes the actual module hierarchy, thgispect mapping, and the actual target
variable mapping of references.

Note that the use of the RISC Elaborator is optional. Design models, thatecéullyp analyzed in static
fashion, can be fed directly into the RISC Compiler without any pre-psicgsy the RISC Elaborator.

For reference, the detailed Linux manual pages of the RISC Compilec and RISC Elaboratogl ab are
included in Appendix A.1 and Appendix A.2, respectively.

3.3 Source Code Instrumentation

As a result of the conflict analysis (static, dynamic, or hybrid [30]), tHeGRcompiler generates several conflict
tables that describe all possible conflicts between threads in any two ssgrosing this conservative conflict
information, the simulator can then at run-time quickly determine by a simple tableujp@khether or not it is
safe to issue any given thread in parallel or ahead of time.

As shown above in Figure 4, the RISC compiler and simulator work closelyttegerhe compiler performs
conservative conflict analysis and passes the analysis results to theismaliieeh then can make safe scheduling
decisions quickly.

To pass information from the compiler to the simulator, we use automatic modelmesitation. That is,
the intermediate model generated by the compiler contains instrumented (auttiyngénarated) source code
which the simulator can then rely on. Atthe same time, the RISC compiler also instisioser-defined SystemC
channels with automatic protection against race conditions among communicadadsh

In total, the RISC source code instrumentation includes four major components

1. Segment and instance IDs: Individual threads are uniquely idenkifiezl creator instance ID and their
current code location (segment ID). Both IDs are passed into the simiktoel as additional arguments
to scheduler entry functions, includingai t and thread creation.

2. Data and event conflict tables: Segment concurrency hazarde gatential data conflicts, event conflicts,
or timing conflicts are provided to the simulator as two-dimensional tables indaxedsegment ID and
instance 1D pair. For efficiency, these table entries are filtered foreséogtance path, and reference and
port mappings.

3. Current and next time advance tables, and thread state prediction ta@blesimulator can make bet-
ter scheduling decisions by looking ahead in time if it can predict the posgiltleef thread states.
This optimization is discussed in detail in [14] and is now available in the cuREEC Compiler and
Simulator V0.4.0. Since thread state prediction for most models requires only titfiscemal compile

8

time but results often in higher simulation speed, it is enabled by default (ibeamrned off with the
SYSC_DI SABLE_PREDI CTI ON environment variable, see below).

4. User-defined channel protection: SystemC allows the user to designals for custom inter-thread com-
munication. To ensure such communication is safe also in the OoO PDES situatoa threads execute
truly in parallel, the RISC compiler automatically inserts locks (binary semaphor® these channels so
that mutually-exclusive execution of the channel methods is guarantabdrwise, race conditions could
exist when communicating threads exchange data.

Note that the source code instrumentation is performed automatically by the ®8piler and no user-
interaction is necessary. However, the interested user may inspectttiueiested source code. It is stored in a
file namedr i sc_nodel _name. cpp which serves as the input file to the compiler backend which in turn then
generates the final executable.

3.4 Library Support

There exists a significant limitation for the described conflict analysis amdte@ode instrumentation. It only
works if the compiler has access to the entire source code of the desigh mbids typically fine for smaller
SystemC benchmark examples, but does not hold true for more complexni&ystedels where multiple trans-
lation units and/or library files are used. In these cases, the compiler tessamly to the function signatures
(function declarations in header files), but not to their implementation (fumbtidies which are pre-compiled in
the library or object files). Thus, the compiler cannot analyze the funbtiaiies for potential conflicts, neither
can it instrument any segment boundaries (ia.t calls) in the library code with segment and instance IDs.

In its initial alpha version [24], the RISC Compiler and Simulator operatednthéeassumption that all library
code is thread-safe without any conflicts and does not contain any segondaries (nevai t statements).
This is reasonable for the standard C/C++ libraries used in a modern Limdsoement, as well as for the
specially prepared RISC SystemC simulator library. However, this assunpuig®s a significant limitation for
more complex SystemC models built around custom application libraries.

In order to mitigate this limitation, the beta version [25] and the current RISC @engnd Simulator Re-
lease V0.4.0 offer basic support for library code by usduoiction annotations This annotation scheme for
library functions provides abstract information for both conflict analgsid segment boundaries [30].

Specifically, the user can annotate function declarations mritagna statements which specify whether or
not the function poses any potential conflicts. Pnegna statements can also describe basic situatiomsabt
calls that the control flow in the function body contains. For example, thelatdrmath functiosqr t and the
blockingr ead function of the System&c _f i f o channel can be annotated as follows:

/1 standard math square-root function
#pragma RI SC sqrt conflict-free no-wait
doubl e sqgrt(double x);

/1l sc_fifo blocking read function
#pragma RI SC read conflict-free | ooped-wait event
virtual T read();

Here, thesqrt function is declared¢onf | i ct - f r ee because it is thread-safe and has no dangerous side

effects. Since this is true for many functions (e.g. most functions in the @atadibrary), the RISC Compiler
assumes this by default. Thus, thisagnma statement is not explicitly needed.

9

Thesc fifo::readfunctionis also declaredonf | i ct - f r ee because it operates in a standard SystemC
channel that is safely protected by a lock in the RISC simulator library. Meryvthis blockingsc fi f o: : r ead
function is annotated dsooped- wai t because it does containnai t statement in the body of a loop that is
waiting for available data, which is indicated by someent . Thus, the RISC Compiler can take this segment
boundary into account when building the Segment Graph for a threadahsthis function.

In general, a function is considerednf | i ct - f r ee if the corresponding function body contains no poten-
tial read/write access conflicts to any shared state with the other threadssimitilation model. Otherwise, it
must be annotated a®t - confl i ct-free.

no wait unconditional conditional looped
wait wait wait

Figure 6: Control-flow abstractions femi t in library functions.

For the annotation of segment boundaries contained in library functions,e®6 shows the different control-
flow abstractions with regards teai t function calls in the corresponding function body. In the first case,
no_wai t , the function contains nwoai t statement and thus is a non-blocking function during the SystemC
simulation. The next two casespndi ti onal .wai t anduncondi ti onal _wai t, apply to functions with
a conditional or non-conditionalai t statement, respectively. The last case covers the possible encouater of
wai t statement in a loop, such as the blockirepd call to asc_f i f o channel discussed above.

The last parameter in the RIS agma annotation specifies the type of thai t statement in the function
body, eitherevent for waiting for any notified event, or the minimum time increment that the simulator will
incur when executing the corresponding function, suchaszer o-ti me or (42, SC.VB) .

Sender Receiver
| |
\ 1
setId(42) ~[i~ . ~1” “settd (43) 8
send(...}—__ ,'w?lt("') ! __‘\receive() v
/ -
\ / \ Vorinee 047
/ 3rd Party \ Standard
User Domain i P Library \ } User Domain . C Library
RISC - Semmmmme- ’
Parallel SystemC Void wait()
Library ... = getID(); ... }

Figure 7: Different source code domains of a design model.

Figure/ 7 [30] illustrates the different domains of source code in a Systendelmdiere only the code in
the user domain is available for the instrumentation described above in Se&ioRd3 library code, any con-
tainedwai t () calls cannot be instrumented. Here, the RISC Compiler and Simulator (asstérvé/0.4.0)
instruments the code before such library function calls wigh | D(Segl D) functions that store the upcoming
segment IDs for th@ai t statements in the library in thread-local data. Then, wh&nt statements without

10

explicit segment ID arguments are executed in the library, the segmentéDsbtained from the thread-local
data by use of get | D() function in the RISC simulation library.

With the RISC Compiler and Simulator V0.4.0, library support has significantly ongat. However, two
limitations remain to be addressed in future work. First, the annotations showigune 6 only cover the
cases of zero or oneai t statement in a library function, multipleai t statements are not covered. For
this the annotation scheme needs to be extended or revised in order togeoezal control-flow inside of
library functions which may be represented by their own partial segmephgr Second, for supporting multiple
separate translation units, a technique needs to be developed that caanougtbre a partial segment graph
with a generated object file that then can be integrated again with other gaajdds when the final simulation
executable is build (i.e. ideally at link time).

3.5 Support for Data-Level Parallelism

As of version V0.4.0, the RISC Compiler and Simulator comes with supporkfidoiting data-level parallelism,
also known as Single-Instruction-Multiple-Data (SIMD) vectorization [3Here, an advanced analysis tool,
namely the SIMD Advisosi nd (see Appendix A.3), can identify possible locations in the SystemC model’'s
source code where data-level parallelism may be exploited for faster siomulan top of the thread-level paral-
lelism already exploited due to OoO PDES).

The SIMD Advisor adds a pre-analysis step to the RISC Compiler and Simtdatidtow wheresi nd pro-
vides the designer with candidates for loop vectorization. Specificliyd performs advanced thread control-
flow and variable access analysis and then reports to the user the sodeckne numbers where loops qualified
for SIMD vectorization are found. The user confirms suitable locationsdsrting#pr agna si nd statements
in front of the chosen loops. Finally, the design model is then compiled witmteedompileri cpc which per-
forms the vectorization and builds the executable for simulation with both theembdata-level parallelism.

Note that the manual confirmation by the designer is necessary. An exantpefgdlowing C function:

void add(float *a, float *b, float *c, int n)
{
for(int i=0; i<n; i++)
{ ali] =a[i] +b[i] +c[i];}
}

Here, arrays passed as pointers can only be vectorized if the useisdlat there is no vector dependence in the
way. This confirmation step is only possible with application knowledge, nbbjustatic compiler analysis. The
RISC SIMD Advisor is aware of SystemC and its concurrent multi-threadéngasitics, and thus can identify
certain loops as potential candidates, but the final data independessréicas must come from the user who
knows the application specifics (i.e. that the pointers point to non-ovénigaprays).

Exploiting both thread- and data-level parallelism can be very effeaiiveniny design models. Experimental
results in [31] show a nearly linear speedud\bk M, whereN andM denote the thread and data-level factors,
respectively.

The SIMD Advisor is documented in detail in the manual pagesfard listed in Appendix A.3.

3.6 Compiler Backend

After the automatic source code instrumentation, the RISC compiler passesntraigd intermediate model in
file ri sc_nodel _namre. cpp to the underlying regular C++ compiler. That target compiler then prodihees
final simulation executable by linking the instrumented code against the Rig@d®d SystemC library.

11

By default, the RISC Compiler and Simulator rely on the GNU C++ commglef for the backend code
generation. Alternatively, the Intel C++ compiliecpc may be used to generate a simulation executable that
is optimized for Intel processors with Single-Instruction-Multiple-Data (B)Mapabilities or the Intel Many-
Integrated-Core (MIC) architecture. Please refer to the command-limenepri sc: i cpc and-ri sc: ni ¢,
respectively, which are documented in the manual pagesifsic (see Appendix A.1) an@l ab (see Ap-
pendix A.2).

3.7 Simulator

Same as the classic Accellera proof-of-concept implementation [4], th€ RilBulator is not an explicit tool,
but a run-time library [32] that the generated executable SystemC model ésl ladainst. Thus, simulation is
performed by execution of the compiled model, the same way as in the clasdioto(lst faster).

The RISC simulator identifies itself by its log message at the beginning of the sinmutatio announcing
RI SC 0. 4. 0 execution after the SystemC language version numgst(enC 2. 3. 1). It also adds the
Center for Embedded and Cyber-physical Systems (CECS) as a ctmtiibihe RISC-extended SystemcC li-
brary.

A simple HelloWorld model is shown running in the following example:

sh % ./HelloWwrld

SystenC 2.3.1-RISC 0.4.0 --- Jul 28 2017 09:04: 24
Copyright (c) 1996-2017 by CECS and all Contributors,
ALL RI GHTS RESERVED

Hel | o Worl d!

There are several environment variables which the RISC out-of-gallel SystemC library recognizes.
These are logged at the beginning of the simulati®vSC_PRI NT_MODE_MESSACE is defined.

* Kk Rl SC sinul at or node: out-of-order parallel with prediction x*x

* ok SYSC PRI NT_MODE MESSAGE is defi ned * ok
* ok ok SYSC _SYNC PAR SIM is not defi ned * ok ok
* ok SYSC_PRI NT_VERBCSE MESSAGE is not defined * ok *
* k% SYSC DI SABLE_PREDI CTI ON is not defined * ok %
* k% SYSC _PAR _SI M CPUS is 64 * ok ok

The environment variablBYSC_SYNC_PAR_SI Mcan be used to force the default out-of-order parallel sched-
uler to fall-back to synchronous parallel execution. By default (whedefined),SYSC_SYNC_PAR_SI Mis
assumed to béal se, so out-of-order parallel simulation (OoO PDES) with prediction is perfokm@n the
other hand, iSYSC_SYNC_PAR_SI Mis defined, the simulator will execute in synchronous PDES fashion.

Also, as indicated above in Section 2.4, the RISC simulator automatically fallsdagkchronous execution
as soon as primitive SystemC channels are used with requests to updétsfunthus, such models will execute
in safe synchronous manner.

The variableSYSC_PRI NT_VERBOSE_MESSAGE is used by the RISC simulator at run-time to print debugging
information about the simulator queues, event processing, and time adva8ach debugging lines are only
printed whenSYSC_PRI NT_VERBOSE_MESSACE is defined.

The variableSYSC_DI SABLE_PREDI CTI ONis used by the RISC simulator to switch back to non-predictive
conflict detection. This avoids scheduling overhead at run time, butlysaaults in slower simulation due to

12

more false conflicts. IBYSC.DI SABLE_PREDI CTI ON is defined, thread state prediction is not used during
out-of-order scheduling.

The environment variabl&YSC_PAR_SI M CPUS specifies the maximum number of parallel threads al-
lowed in out-of-order parallel simulation (nameCPUs in Figure3). For efficient simulation, this variable
should be set to a value suitable for the simulation host, e.g. the number ofobvdlBU cores. If unset,
SYSC_PAR S| M CPUS defaults to 64.

4 Out-of-Order Parallel Simulatable SystemC Subset

Over more than a decade, the SystemC language [21], which technically s agplication programming
interface (API) with a corresponding simulation library, has evolved foasic constructs for modeling parallel
modules connected by signals and channels to a highly complex set of mypes, classes, templates, and
functions for very advanced modeling (i.e. Transaction Level ModelindV) [33, 34]) and highly optimized
simulation of SystemC models. Usually these optimization steps have aimed at hiighkation speed, i.e. by
minimizing context switches in the simulator, or at higher levels of abstractiomadoerposely relaxed timing.
Often, the uninterrupted (sequential) execution semantics on a singlespood®st have been presumed or are
explicitly required.

Along these lines, it has been recognized that there is considerabléonstedy and adjust @volvethe Sys-
temC language towards better support of parallel execution (following $ommeof suitable PDES semantics).
One example of the ongoing discussion within the SystemC community is a presetatie SystemC Evo-
lution Day 2016 where significant obstacles in the current languageasthhdve been identified [35]. These
seven obstaclgsave then been documented also in a letter to the editor of IEEE Embeddenh&ysters [36].

In contrast to the current SystemC standard [1], the RISC Compiler andeganoow aims for truly parallel
execution on multi- or many-core hosts. Changing the fundamental assumpbont SystemC simulator exe-
cution consequently may affect some constructs and APIs which needréwibged and evaluated anew. The
goal of this section is to start this process and enable fruitful discussions

Below, we describe and list the out-of-order parallel simulatable Systerh§essupported by the current
RISC Compiler and Simulator, Release V0.4.0. In particular, Table 1 throable B list for each SystemC
construct whether or not it is supported at this time. If applicable, an Baptm note is provided that briefly
outlines the status and/or the plans for the given feature.

Overall, the current RISC proof-of-concept prototype supportsldmesic SystemC constructs for hierarchical
modeling with modules and interconnected channels by featuring fast muklidéieexecution. However, sev-
eral specific SystemC features are not supported yet or left undeatdbis stage. The status “undecided” in
particular indicates that further study is needed to decide whether orengivibin construct can be supported in
efficient and reasonable manner by RISC and its OoO PDES approach.

4.1 SystemC Hierarchical Structure of Modules and Channels

RISC supports the regular hierarchical and structural composition @ystemC design model. This includes
the SystemC program stagg¢_nai n, sc_st art) and the general static or dynamic compositi&&CTOR)
of modules §c_nodul e, SCMODULE, sc _behavi or) and channelssc_channel , sc_pri mchannel).
Connectivity and communication of the instantiated components is supportediports§c _port,sc.i n,
sc_i nout, sc_out) and interfacesqc_i nt er f ace).
In contrast to the traditional Accellera library, which only provides a tyimsdt ypedef) sc_channel
for sc_nodul e, the RISC header files explicitly distinguish channel and module classes, Heweparate

13

Table 1: RISC V0.4.0 Out-of-Order Parallel Simulatable SystemC Subset

Name Type Supported or not Notes
. . This function may not work with
scabs function Undecided) .
some arithmetic SystemC datatypes.
scactions typedef Supported typedef unsigned sactions
scargc function Supported
scargv function Supported
scassemblevector function Undecided Work on this function in the future
scassert macro Undecided Work on this macro in the future
scattr_base class Undecided Work on this class in the future
scattr_cltn class Undecided Work on this class in the future
scattribute class Undecided Work on this class in the future
sc.behavior typedef Supported typedef scmodule scbehavior
sc.bigint class template Supported
sc.biguint class template Supported
sc.bind_proxy class Supported
scbind macro Undecided Work on this macro in the future
scbit type (deprecated Undecided Work on this type in the future
scbitref_r class template Undecided Work on this class template in the future
sc bitref class template Undecided Work on this class template in the future
scbuffer class Supported
schv_base class Undecided Work on this class in the future
scbv class template Undecided Work on this class template in the future
sc.channel class Supported
scclock class Not Supported Now scclock::beforeend of_elaboration()
calls scspawn().
scclosevcd tracefile function Undecided Work on this function in the future
sc.concatref class Undecided Work on this class in the future
sc.concrefr class template Undecided Work on this class template in the future
sc.contextbegin enumeration Supported
sc.copyright function Supported
sc.cor class Supported
sc.corpkg class Supported
sc.cor_pthread class Supported
sc.cor_pkg pthread class Supported
sccreatevcd. tracefile function Undecided Work on this function in the future
sccref macro Undecided Work on this macro in the future
sc.cthreadprocess class Supported
The risc compiler can generate
SC CTHREAD macro Supported the segment graph for SCTHREAD,
however, it cannot handle the clock.
SCCTOR macro Supported

14

Table 2: RISC V0.4.0 Out-of-Order Parallel Simulatable SystemC Subssair{ued)

Name Type Supported or not Notes
sc.cycle() calls scsimcontext::cycle(),
function which is not supported in
sceycle (deprecated) Not Supported Now the out—of—orderps?mulation
in the current release.
sc deltacount function Modified semantics This function returns'the local
delta count of the running process.
scelahandsim function Supported
scend of_simulationinvoked function Undecided Work on this function in the future
sceventandexpr class Supported Initial support as of v0.3.0
sceventandlist class Supported Initial support as of v0.3.0
sceventfindert class template Undecided Work on this class template
in the future
sc eventfinder class Undecided Work on this class in the future
sc.eventor_expr class Supported Initial support as of v0.3.0
sceventor_list class Supported Initial support as of v0.3.0
sceventqueueif class Supported
The constructor function is not
sceventqueue class Not Supported Now supported by the out-of-order
simulation in the current release.
The immediate notification is not
scevent class Supported supported by the out-of-order
simulation in the current release.
scexception typedef Undecided Work on this typedef in the future
scexportbase class Not Supported Now No port following in compiler analysis
sc.export class Not Supported Now No port following in compiler analysis
scfifo_blocking.in_if class Supported
scfifo_in_if class Supported
scfifo_in class Supported
scfifo_nonblockingin _if class Supported
scfifo_out.if class Supported
scfifo_out class Supported
scfifo::trace() and sdifo::operator =
scfifo class Limited Support are not supported in this release;
execution falls back to synchronous PDES
scfind_event function Undecided Work on this function in the future
scfind_object function Undecided Work on this function in the future
sc fix_fast class Undecided Work on this class in the future
scfix class Supported
sc fixed_fast class template Undecided Work on this class template
in the future
scfixed class template Supported

15

Table 3: RISC V0.4.0 Out-of-Order Parallel Simulatable SystemC Subssair{ued)

Name Type Supported or not Notes
SCFORK macro Undecided Work on this macro in the future
scfxcastcontext class Undecided Work on this class in the future
scfxcastswitch class Undecided Work on this class in the future
scfixnum_bitref class Undecided Work on this class in the future
scfxnum_fastbitref class Undecided Work on this class in the future
sc.fxnum_ fastsubref class Undecided Work on this class in the future
sc.fxnum_fast class Undecided Work on this class in the future
sc.fxnum_subref class Undecided Work on this class in the future
scfxnum class Supported
sc fxtype_context class Undecided Work on this class in the future
sc fxtype params class Undecided Work on this class in the future
sc fxval_fast class Undecided Work on this class in the future
scfxval class Undecided Work on this class in the future
scgenuniqguename function Undecided Work on this function in the future
sc.generichase class Undecided Work on this class in the future
function
scgetcurr_processhandle (deprecated Supported
scgetcurrentprocesshandle| function Supported
. . function
scgetdefaulttime_unit (deprecated Supported
scgetstatus function Supported
sc getstopmode function Supported
sc gettime_resolution function Supported
scgettop_level events function Undecided Work on this function in the future
scgettop_levelobjects function Undecided Work on this function in the future
SCHAS_PROCESS macro Supported
sc hierarchicalnameexists function Undecided Work on this function in the future
scin_clk typedef Supported
scin_resolved class Supported
scin_rv class Supported
scin::addtrace() and other tracing
. functions are not supported by
scin class Supported the out-of-order simulation
in the current release.
scin<bool>::addtrace() and other
scin<bool> class Supported tracing functions are npt supported by
the out-of-order simulation
in the current release.
scin<scdt::sclogic>::addtrace()
. 3 . and other tracing functions are
scin<scdt::sclogic> class Supported

not supported by the out-of-order
simulation in the current release.

16

Table 4: RISC V0.4.0 Out-of-Order Parallel Simulatable SystemC Subssir{aed)

Name Type Supported or not Notes
S function
scinitialize (deprecated) Supported
scinoutclk type (deprecated Supported
scinoutresolved class Supported
scinoutrv class Supported
scinout class Supported
scint_base class Supported
scint_bitref r class Undecided Work on this class in the future
scint_bitref class Undecided Work on this class in the future
scint class template Supported
scinterface class Supported
scinterrupthere function Undecided Work on this function in the future
scis_prerelease function Undecided Work on this function in the future
SCIS_.PRERELEASE macro Supported
scis_running function Supported
scis_unwinding function Supported
SCJOIN macro Undecided Work on this macro in the future
sclength context class Undecided Work on this class in the future
sclengthparam class Undecided Work on this class in the future
sclogic class Undecided Work on this class in the future
sclv_base class Undecided Work on this class in the future
sclv class template Undecided Work on this class template in the future
sc.main function Supported
This function is not supported by
sc.maxtime function Not Supported Now the out-of-order simulation
in the current release.
sc.max function Supported
sc.methodprocess class Supported
SCMETHOD macro Supported
sc.min function Supported
scmodulename class Supported
scmodule class Supported
SC.MODULE macro Supported
This class is not supported
scmutexif class Not Supported Now by the risc compiler
in the current release.
This class is not supported
sc.mutex class Not Supported Now by the risc compiler
in the current release.
scobject class Supported
scoutclk type (deprecated Supported

17

Table 5: RISC V0.4.0 Out-of-Order Parallel Simulatable SystemC Subssair{ued)

Name Type Supported or not Notes
scoutresolved class Supported
scoutrv class Supported
scout class Supported
scpause function Undecided Work on this function in the future
sc pendingactivity_at currenttime function Undecided Work on this function in the future
sc pendingactivity_at future time function Undecided Work on this function in the future
sc_pendingactivity function Undecided Work on this function in the future
scphash class (deprecated) Undecided Work on this class in the future
scplist class (deprecated) Undecided Work on this class in the future
scport class Supported
scportbase class Supported
scppq class (deprecated) Undecided Work on this class in the future
sc_prim_channel::update()
scprim_channel class Supported is performed in synchronous manner;
execution falls back to synchronous PDI
scprocessh type (deprecated Supported
scprocesshandle class Supported
sc pvector class (deprecated) Undecided Work on this class in the future
scref macro Undecided Work on this macro in the future
screlease function Supported
sc.reporthandlerproc typedef Undecided Work on this typedef in the future
screporthandler class Undecided Work on this class in the future
screport class Undecided Work on this class in the future
This class is not supported
sc.semaphoref class Not Supported Now by the risc compiler
in the current release.
This class is not supported
sc.semaphore class Not Supported Now by the risc compiler
in the current release.
This class is not supported
sc.sensitiveneg class (deprecated) Not Supported Now by the risc compiler
in the current release.
This class is not supported
sc.sensitivepos class (deprecated) Not Supported Now by the risc compiler
in the current release.
This class is not supported
sc.sensitive class Not Supported Now by the risc compiler
in the current release.
. . function
sc.setdefaulttime_unit (deprecated) Supported
sc.setstopmode function Undecided Work on this function in the future

18

Table 6: RISC V0.4.0 Out-of-Order Parallel Simulatable SystemC Subssir{ned)

Name Type Supported or not Notes
sc.settime_resolution function Supported
scsetvced time_unit member function Undecided Work on this function in the future
(deprecated)
scsignalin_if class Supported
scsignalin_if <boob> class Supported
scsignalin_if <sclogic> class Supported
scsignalinout.if class Supported
scsignalout.if type (deprecated Supported
scsignalresolved class Supported
scsignalrv class Supported
scsignalwrite_if class Supported
scsignal::trace() is not supported
scsignal class Supported by the out-of-order simulation
in the current release.
scsignakboob>::trace() is not
scsignakbool> class Supported supported by the out-of-order
simulation in the current release.
scsignaksclogic>::trace() is not
scsignhaksclogic> class Supported supported by the out-of-order
simulation in the current release.
scsignedbitref.r class Undecided Work on this class in the future
scsignedbitref class Undecided Work on this class in the future
scsignedsubrefr class Undecided Work on this class in the future
scsignedsubref class Undecided Work on this class in the future
scsigned class Supported
sc.simcontext::initialcrunch(), cycle()
scsimcontext class Supported and other functions are partially
(deprecated) supported by the out-of-order
simulation in the current release.
: o function
scsimulationtime (deprecated) Supported
sc.spawnoptions class Supported
sc.spawn() is not supported
sc.spawn function Not Supported Now by the out-of-order simulation
in the current release.
scstartof_simulationinvoked function Undecided Work on this function in the future
scstart function Supported
This function is not supported by
scstart(double) function Not Supported Now the out-of-order simulation
in the current release.
scstatus enumeration Supported

19

Table 7: RISC V0.4.0 Out-of-Order Parallel Simulatable SystemC Subssair{ued)

Name Type Supported or not Notes
scstophere function Undecided Work on this function in the future
sc.stop function Supported supported as of v0.3.0
scstring class Undecided Work on this class in the future
(deprecated)
scsubrefr class template Undecided Work on this class template
in the future
scsubref class Undecided Work on this class in the future
sc.switch enumeration Supported
scthreadprocess class Supported
SC.THREAD macro Supported
sctime class Supported
sctime_stamp function Supported
sctime_to_pendingactivity function Undecided Work on this function in the future
sctracedeltacycles function Undecided Work on this function in the future
(deprecated)
sctracefile class Undecided Work on this class in the future
sctrace function Undecided Work on this function in the future
sc.ufix_fast class Undecided Work on this class in the future
sc.ufix class Supported
sc.ufixed fast class template Undecided Work on this class template in the future
sc.ufixed class template Supported
sc.uint_base class Supported
scuint bitref r class Undecided Work on this class in the future
sc uint_bitref class Undecided Work on this class in the future
scuint_subrefr class Undecided Work on this class in the future
scuint_subref class Undecided Work on this class in the future
sc.uint class template Supported
sc.unsignedbitref_r class Undecided Work on this class in the future
sc.unsignedbitref class Undecided Work on this class in the future
sc.unsignedsubrefr class Undecided Work on this class in the future
scunsignedsubref class Undecided Work on this class in the future
scunsigned class Supported
sc.unwind.exception class Undecided Work on this class in the future
scvaluebase class Undecided Work on this class in the future
sc.vectorassembly class Undecided Work on this class in the future
scvectorbase class Undecided Work on this class in the future
sc.vector class Undecided Work on this class in the future
scversionmajor function Supported
sc.versionminor function Supported
sc.versionoriginator function Supported
scversionpatch function Supported

20

Table 8: RISC V0.4.0 Out-of-Order Parallel Simulatable SystemC Subssair{ued)

Name Type Supported or not Notes
scversionprerelease| function Supported
scversionreleasedate | function Supported
sc.versionstring function Supported
scversion function Supported
wait function | Limited Support wait(void) is not supported
This function is not supported
nexttrigger function | Not Supported Now by the risc compiler
in the current release.
This function is not supported
halt function | Not Supported Now by the risc compiler
in the current release.

sc_channel class is inherited fronsc_nodul e, providing the same functionality, but making the two class
types explicit.

Most of the SystemC predefined primitive charﬁcﬂmch assc_si gnal andsc_fif o) are supported for
000 PDES, excepc fifo::trace andsc_fifo:: operator=which are not supported in the current
release. For more details, please refer to the Doxygen-generatethelatzdion of the RISC simulation library
[32].

4.2 SystemC Threads

The explicit and statically or dynamically [30] analyzable multi-threading oft&wC design model is naturally
supported in RISC 000 PDES. This includes SystemC proceS€adAS_PROCESS, sc _pr ocess_handl e,
sc_ct hread_process,sc_nmet hod_pr ocess, sc_t hr ead_pr ocess) and the corresponding threads and
methods $C_CTHREAD, SC_METHOD, SC_THREAD). For basic inter-thread synchronization, SystemC event no-
tifications 6c_event . not i f y) and waiting for events or simulation time advanse (wai t) are supported.

However, dynamic SystemC thread creation and delefongpawn, SC_FORK, SC_JQA N) is not supported
at this time.

While the application programming interface (API) for these constructs remaimodified from the SystemC
user perspective, the RISC SystemC kernel internally supports exénaeters or arguments for these constructs
which are utilized after the automatic source code instrumentation by the Ri8flleo(see Sectian 3.3 above).
In particular, segment and instance identifiers are supplied with eachsef filnection calls so that the simulator
kernel is aware of the exact thread state upon every scheduler &hisyincludes in particular the thread cre-
ation constructs§C_CTHREAD, SC_METHOD, SC_THREAD) and wait 6c _wai t) statements, as well as standard
communication interface methods (esg.fi fo_i n_i f: : r ead).

4.3 SystemC Transaction Level Modeling (TLM)

While transaction level modeling in general is a natural feature suppoyt€b® PDES|[15], the modeling and
implementation choices made by SystemC TLM 2.0 [34] create significant prolidemispporting it efficiently

2 As described in Section 2.4 and Secfion 3.7, the RISC Compiler and SimRatease V0.4.0 falls back to synchronous PDES
execution when primitive channels with update requests are used in flge dexdel.

21

in RISC. The root problem here lies in the elimination of explicit channels, wviere a key contribution in the
early days of research on system-level design [16, 17, 18]. As mesarchers agreed, the concept of separation
of concerns was of highest importance, and for system-level desigrticydar, this meant the clear separation
of computation (in behaviors or modules) and communication (in channels).

Regrettably, SystemC TLM 2.0 chose to implement communication interfaces diasdilyckets in modules
[37] and this indifference between channels and modules thus breaksstimption of communication being
safely encapsulated in channels. Without such encapsulating chaheedsis little opportunity for safe parallel
execution.

With TLM-2.0 modeling guidelines, threads intentionally execute code directlfh@ranodules’ boundaries
(i.e. in "foreign territory”) without any protection. Channel boundases omitted and trespassing across module
boundaries (via sockets) is encouraged (for the sake of savingxtemigches in sequential simulation). Such
violation of a thread’s "home territory” cannot be analyzed by the RIS@\@ier and Simulator this time.

A possible solution to this problem is the introduction and analysis of so-cRdedCall-Pathsin the RISC
thread control-flow analysis which, however, is only at an idea stagesdirte and thus requires further study
and research.

While a discussion of this obstacle has started at the SystemC Languaged\@roup [3, 35] and in the
overall ESL community [36], it remains unclear at this point how the agre§4iM-2.0 modeling situation can
be supported, revised, or worked around. Thus, the RISC CompieBiamulator V0.4.0 only supports SystemC
TLM 1.0, not SystemC TLM-2.0.

4.4 SystemC Data Types

A large part of the SystemC language covers special data types designduit-accurate hardware
modeling, simulation time representation, and other ESL specifics. Thesem®&ydata types include
sc_bi gint, sc_biguint, scbit, sc_bv, scfix, scufix, scfixed, sc_ufixed, sc_.int,
sc_ui nt,sc.l ogic,andsc.|v.

While all these SystemC data types are available in RISC, only a few of theenblesn validated and tested
for being safe in a truly parallel multi-threading context. At this point, RIS@psutssc_i nt, sc_ui nt,
sc_fi xed, andsc_uf i xed (which are MT-safe). All other data types are so far untested and masapmot
be safely used in OoO PDES.

4.5 SystemC Utilities and Other Constructs

As listed in Table 1 through Table 8, there is a plethora of other SystemC ARifalzle. Some of
these are easily supported in RISC (suctsascopyri ght, sc_ver si on_ngaj or, sc_ver si on_m nor,
sc_versi on_pat ch, sc_ver si on), others are not supported at this time, such as the SystemC built-in trac-
ing featuresgc _trace,sc_tracefil e).

At this point, there is also a large number of special SystemC constructshiochw is unclear whether
or not these can be supported in an OoO PDES context with reasonéditeaeid efficiency. An example
of such constructs are those functions which involve or allow to inspecsithelator state at run-time, such
as scfindevent, scfindobject, sc._get_current _process_handle, sc_get _status,
sc_get _ti me_resol ution, sc_get top_l evel _events, sc_get _t op_l evel _obj ect s,
sc_hi erarchi cal _nane_exi sts, sc. s_running, sc.s_unw nding, sc.sincontext, and
sc_st at us.

On the other hand, access to the current simulated sme § me, sc_si nul ati on_t i e, an essential part
of every SystemC model evaluation, is fully supported by RISC OoO PDES.

22

5 Conclusion

While SystemC is the de-facto and official standard language for ESLrde3ygtemC simulation largely is still
performed sequentially following classic DES semantics. Thus, SystemC simutatimot utilize the parallel
processing capabilities available on today’s multi- and many-core host ¢erapu

In this report, we have described the Recoding Infrastructure fae8ys (RISC), an aggressive simulation
approach beyond traditional parallel DES, where a dedicated Systemgleoand advanced parallel simulator
implement Out-of-Order Parallel Discrete Event Simulation (OoO PDES) wildigtion for SystemC. This
approach can exploit parallel computing resources at the thread-asadedtel to the maximum extend and thus
reaches fastest simulation speed. At the same time, RISC OoO PDES largdiginsatihe traditional SystemC
modeling semantics.

This technical report documents the RISC Compiler and Simulator and thersingptools RISC Elaborator
and SIMD Advisor, and details the SystemC subset supported by the Ré®&@ade V0.4.0. In contrast to the
previous alpha [24], and beta [25] releases, the RISC Compiler and $SimRlelease V0.4.0 is more robust and
easier to install, features new support for dynamic conflict analysisSse#on 3.2.2) and data-level parallelism
(aka. SIMD vectorization) (see Section 3.5), safely supports primitia@éls with update methods, offers new
support of library functions by use é&fpr agma annotations (see Section 3.4), and provides new support for the
Intel compiler and special target processors in the back end (seerg@)o

Future work includes several areas of technical extensions and eetearch. Technical improvements in-
clude addressing the limitations in the currently supported SystemC subsetyiingptioe compilation speed
(e.g. by use of light-weight SystemC headers [38] and newer versidihg ainderlying ROSE compiler), and
other maintenance tasks including bug fixes.

In terms of future research, two main limitations need to be addressed. Farsyrtiently limited library sup-
port facilities (see Sectian 3.4) need revision and extension in order tosfulgort multiple separate translation
units and more complex control flow structures in library code, beyondatmer simple templates supported
in the current release. Second, TLM-2.0 modeling should be suppdfieik, communication is not properly
encapsulated in channels as it was in TLM-1.0 and classic SystemC modaktead, TLM-2.0 modeling lets
threads execute directly in "foreign context” without any protection and ttespasses channel boundaries which
cannot be analyzed by RISC at this time. A possible solution to this problemirgttbduction of so-calledPort-
Call-Pathsinto the RISC analysis which, however, remains at an early idea stage pbthisand thus requires
further study.

As we move on in these future endeavors, we will update the Recodirastnicture for SystemC (RISC) and
this corresponding technical report accordingly.

Acknowledgements

This work has been supported in part by substantial funding from G@aeboration under an initial seed grant
and a following three year grant for the project titt€at-of-Order Parallel Simulation of SystemC Virtual Plat-
forms on Many-Core Architectures'The authors thank Intel Corporation for the valuable support anteegp
special gratitude to Abhijit Davare, Ajit Dingankar and Desmond KirkpatfiecKruitful discussions, productive
feedback and invaluable insights.

References

[1] IEEE Computer SocietylEEE Standard 1666-2011 for Standard SystemC Language Refdviarusal
IEEE, New York, USA, 2011.

23

[2] Accellera Systems Initiativehttp://www.accellera.org.
[3] SystemC Language Working Group (LW@itp://accellera.org/activities/working-groups/systemc-language.

[4] SystemC Language Working Group. SystemC 2.3.1, Core SystemC &agegand Examples.
http://accellera.org/downloads/standards/systemc.

[5] Richard Fujimoto. Parallel Discrete Event SimulatioBommunications of the ACM3(10):30-53, Oct
1990.

[6] Christoph Schumacher, Rainer Leupers, Dietmar Petras, and asmHi@fmann. parSC: Synchronous Par-
allel SystemC Simulation on Multi-Core Host ArchitecturesPhoceedings of the International Conference
on Hardware/Software Codesign and System Syntheessiges 241-246, 2010.

[7] Dukyoung Yun, Jinwoo Kim, Sungchan Kim, and Soonhoi Ha. Simulationi@nment Configuration for
Parallel Simulation of Multicore Embedded SystemsPtaceedings of the Design Automation Conference
(DAC), pages 345-350, 2011.

[8] Ezudheen P, Priya Chandran, Joy Chandra, Biju Puthur Simon Daegpak Ravi. Parallelizing Sys-
temC Kernel for Fast Hardware Simulation on SMP MachinesPADS '09: Proceedings of the 2009
ACM/IEEE/SCS 23rd Workshop on Principles of Advanced and Distritsitedlation pages 80-87, 2009.

[9] Rohit Sinha, Aayush Prakash, and Hiren D. Patel. Parallel simulatioixed-abstraction SystemC models
on GPUs and multicore CPUs. Rroceedings of the Asia and South Pacific Design Automation Conference
(ASPDAC) 2012.

[10] Weiwei Chen, Xu Han, and Rainerdmer. Multi-Core Simulation of Transaction Level Models using the
System-on-Chip EnvironmentEEE Design and Test of Compute28(3):20-31, May/June 2011.

[11] J.H. Weinstock, C. Schumacher, R. Leupers, G. Ascheid, afddaratto. Time-decoupled parallel systemc
simulation. InProceedings of the Design, Automation and Test in Europe (DATE) @ofe Dresden,
Germany, March 2014.

[12] Weiwei Chen, Xu Han, and Rainerdmer. Out-of-Order Parallel Simulation for ESL Design.Proceed-
ings of the Design, Automation and Test in Europe (DATE) Conferdarch 2012.

[13] Weiwei Chen and Rainer @ner. An Optimizing Compiler for Out-of-Order Parallel ESL Simulation
Exploiting Instance Isolation. IRroceedings of the Asia and South Pacific Design Automation Conference
(ASPDAC) pages 461-466, February 2012.

[14] Weiwei Chen and Rainer@ner. Optimized Out-of-Order Parallel Discrete Event Simulation using Rredic
tions. InProceedings of the Design, Automation and Test in Europe (DATE) feoefe March 2013.

[15] Weiwei Chen, Xu Han, Che-Wei Chang, Guantao Liu, and Rair@ané&. Out-of-Order Parallel Discrete
Event Simulation for Transaction Level ModelfEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems (TCARBB(12):1859-1872, December 2014.

[16] Jianwen Zhu, Rainer @mer, and Daniel D. Gajski. Syntax and semantics of the SpecC language. |
Proceedings of the International Symposium on System SyntBssika, Japan, December 1997.

[17] Daniel D. Gajski, Jianwen Zhu, Rainebber, Andreas Gerstlauer, and Shuging ZtgqmecC: Specification
Language and Design Methodologyluwer Academic Publishers, 2000.

24

http://www.accellera.org
http://accellera.org/activities/working-groups/systemc-language
http://accellera.org/downloads/standards/systemc

[18] Andreas Gerstlauer, Rainener, Junyu Peng, and Daniel D. GajsBystem Design: A Practical Guide
with SpecC Kluwer Academic Publishers, 2001.

[19] Rainer Dmer, Andreas Gerstlauer, and Daniel GajsBpecC Language Reference Manual, Version 2.0
SpecC Technology Open Consortiunttp://www.specc.org, December 2002.

[20] Open SystemC Initiativéhttp://www.systemc.org. Functional Specification for SystemC 22000.

[21] Thorsten Gitker, Stan Liao, Grant Martin, and Stuart Swa&ystem Design with SystemKluwer Aca-
demic Publishers, 2002.

[22] Guantao Liu, Tim Schmidt, and Rainer Doemer. Recoding Infrastredar SystemC (RISC) Compiler
and Simulatorhttp://www.cecs.uci.edu/~doemer/risc.html.

[23] Rainer Dbmer, Guantao Liu, and Tim Schmidt. Parallel simulation. In Soonhoi Ha arged Teich,
editors,Handbook of Hardware/Software Codesigiages 1-32. Springer Netherlands, Dordrecht, 2017.

[24] Guantao Liu, Tim Schmidt, and RainebBer. RISC Compiler and Simulator, Alpha Release V0.2.1: Out-
of-Order Parallel Simulatable SystemC Subset. Technical Report CIRE8702, Center for Embedded
and Cyber-physical Systems, University of California, Irvine, Oct@d.5.

[25] Guantao Liu, Tim Schmidt, and RainebBer. RISC Compiler and Simulator, Beta Release V0.3.0: Out-
of-Order Parallel Simulatable SystemC Subset. Technical Report CIRE83706, Center for Embedded
and Cyber-physical Systems, University of California, Irvine, Separb16.

[26] Rainer Dbmer, Weiwei Chen, Xu Han, and Andreas Gerstlauer. Multi-Core Pbgaiteulation of System-
Level Description Languages. Rroceedings of the Asia and South Pacific Design Automation Conference
(ASPDAC) pages 311-316, January 2011.

[27] Anirudh Kaushik and Hiren D. Patel. SystemC-clang: An Open®&ramework for Analyzing Mixed-
abstraction SystemC Models. Rroceedings of the Forum on Specification and Design Languages)(FDL
Paris, France, September 2013.

[28] Hiren Patel. "SystemC-clang: SystemC parser using the clang fralit-e
https://github.com/hdpatel/systemcclang.

[29] Tim Schmidt. Recoding Infrastructure for SystemC (RISC) API, siar 0.4.0.
www.cecs.uci.edu/~doemer/risc/v040/html_risc/index.html.

[30] Tim Schmidt, Guantao Liu, and Raineer. Hybrid Analysis of SystemC Models for Fast and Ac-
curate Parallel Simulation. IRroceedings of the Asia and South Pacific Design Automation Conference
(ASPDAC) January 2017.

[31] Tim Schmidt, Guantao Liu, and RainebBer. Exploiting Thread and Data Level Parallelism for Ultimate
Parallel SystemC Simulation. Proceedings of the Design Automation Conference (DA@)e 2017.

[32] Guantao Liu. Out-of-Order Parallel SystemC (OOPSC) API, Versio0.4.0.
http://www.cecs.uci.edu/~doemer/risc/v040/html_oopsc/index.html.

[33] Frank Ghenassidlransaction-Level Modeling with SystemC: TLM Concepts and Applicatioisribed-
ded SystemsSpringer, 2005.

25

http://www.specc.org
http://www.systemc.org
http://www.cecs.uci.edu/~doemer/risc.html
www.cecs.uci.edu/~doemer/risc/v040/html_risc/index.html
http://www.cecs.uci.edu/~doemer/risc/v040/html_oopsc/index.html

[34] Open SystemC Initiative (OSCIDSCI TLM-2.0 Language Reference Manu@SCl, July 2009.

[35] Rainer Dbmer. Seven Obstacles in the Way of Parallel SystemC Simulatlmresentation at SystemC
Evolution Day 2016, Munich, Germany, May 2016.

[36] Rainer dmer. Seven obstacles in the way of standard-compliant parallel System@Gtgmu IEEE
Embedded Systems LetteB¢4):81-84, December 2016.

[37] David C. Black. The Definitive Guide to SystemC: TLM-2.0 and the IEEB6-2011 Standard. Tutorial
at Design Automation Conference, San Francisco, California, Jurle 201

[38] Farah Arabi and Rainerd@mer. A Light Weight SystemC Library for Faster Compilation. Technical Re-
port CECS-TR-16-07, Center for Embedded and Cyber-physicsk8)s, University of California, Irvine,
October 2016.

[39] Tim Schmidt, Guantao Liu, and Rainebber. Automatic Generation of Thread Communication Graphs
from SystemC Source Code. Rroceedings of the International Workshop on Software and Compilers fo
Embedded Systemiday 2016.

[40] Guantao Liu, Tim Schmidt, and RainedBer. A Segment-Aware Multi-Core Scheduler for SystemC
PDES. InProceedings of the IEEE International High Level Design Validation st WorkshopOctober
2016.

[41] Kasra Moazzemi, Rainer@ner, and Aparna Chandramowlishwaran. A SystemC Model for N-boaly-Pr
lems and its Parallel Design Space Exploration. Technical Report CEEE85109, Center for Embedded
and Cyber-physical Systems, University of California, Irvine, Noven#16.

[42] Zhongqi Cheng and Rainerdner. A SystemC Model of a Bitcoin Miner. Technical Report CECS-TR-16
04, Center for Embedded and Cyber-physical Systems, Universitgldb@ia, Irvine, September 2016.

26

A Appendix

A.1 Manual Page of the RISC Compiler and Simulator
NAME

risc — Recoding Infrastructure for SystemC (RISC) Compiler and Simulator

SYNOPSIS

risc [options] design[options]

DESCRIPTION

risc is a dedicated compiler for the SystemC language. The purposscas to parse, analyze, in-
strument, and compile a SystemC source program into an executable prifog@umt-of-order parallel
simulation.risc is a frontend source-to-source compiler for SystemcC built on top of theER8piler
infrastructure with GNU or Intel C++ as backend target compiler. As stistirelies on and supports
also most of the ROSE and GNU compiler options.

Using the command syntax shown in the synopsis above, the speatifséghis compiled. By de-
fault, risc reads the SystemC source file, performs preprocessing and builds mralimepresentation
(abstract syntax tree) and a Segment Graph (SG) of the model. Nextesegonflict analysis is per-
formed and the design model is instrumented for Out-of-Order ParalletddsEvent Simulation (00O
PDES). Finally, instrumented C++ code is generated, compiled, and linkednrexegutable file that
can be run for fast parallel simulation.

On successful completion, the exit value O is returned. In case okatuwing processing, an error
code with a brief diagnostic message is written to the standard error strehtheucompilation is
aborted with an exit value greater than zero.

For preprocessing and C++ compilation into an executablerfile relies on the availability of an
external C++ compiler which is used automatically in the background. Byutethe GNU C++
compilerg++is used. Alternatively (see optionsisc:icpcand—risc:micbelow), the Intel C++ compiler
icpc may be used to generate an executable optimized for Intel processorsiMiEhcapabilities or
the Intel Many-Integrated-Core (MIC) architecture.

ARGUMENTS
design specifies the file name of the input SystemC design model; by default, the hase of
designis used as base name for the intermediate and output files;

OPTIONS

—h | —-help print therisc compiler version and a brief usage information message to standard output
and quit;

—v | —-verbose increment the verbosity level so that all tasks performed are logged tdastherror
(default: be silent); at level 1, high-level messages about the tast@amped are dis-
played; at level 2, additional details such as input and output file naredsstad; at
level 3, very detailed information about each executed task is printed;

27

A

a'A'AY

increment the verbosity level by two counts (same\asv);

increment the verbosity level by three counts (samevasv —V);

—w | —-warningsincrement the warning level so that compiler warning messages are ertdéfadlt:

-0 | -0 level

—Idir

—Ldir

—llib

—0 output file

—risc:dump

—risc:icpc

—risc:mic

warnings are disabled); four levels are supported ranging from onlgritzpt warnings
(level 1) to pedantic warnings (level 4); for most cases, warning Rigtecommended
(-w-w);

increment the warning level by two counts (same-as-w);
increment the warning level by three counts (samevasw —w);

add a symbol table suitable for debugging (e.g. usidiy) to the generated object files
and simulation executable (default: no debugging symbols);

optimize the generated simulation executable for higher execution speed &s¥or
memory usage (default: no optimization);

add the specifiedir to the include path (extend the list of directories to be searched
for including source files); include directories are searched in ther avtigheir
specification; the standard include path ($SYSTEM&E HOME/include or $SYS-
TEMC_OOPHOME/include) is automatically appended to this list; by default, only
the standard include directories are searched;

add the specifiedir to the library path (extend the list of directories to be searched for
linker libraries); the library path is searched in the specified order; tinelate library
path ($SYSTEMCOOP HOME/lib) is automatically appended to this list; by default,
only the standard library path is searched;

add the specifietb to the list of libraries for the linker so that the executable is linked
againstlib; libraries are linked in the specified order; the standard libraries (i.e. -
Isystemc) are automatically appended to this list; by default, only standardidibrar
are used,;

perform only the preprocessing, analysis, instrumentation, and compitasks; skip
the final linking stage so that only an object file is created (default: partdl tasks
including linking);

specify the name of the final output file explicitly (default: a.out);

output the computed segment graph (SG) and conflict tables as HTMLd@éau(t: no
HTML files are generated); these files may be viewed by a user in a browseler to
inspect the out-of-order execution conditions of the model and improvedtrdingly;

use the Intel C++ compildcpc in the backend for generating the executable (default:
GNU C++ compilerg++);

use the Intel C++ compilecpc with option—micin the backend for cross-compiling an
executable for the Intel Many Integrated Core (MIC) architectureafdefgenerate an
executable for the same processor the compiler is running on);

28

—risc:elab filenameimport the elaboration result produced by the RISC elabortdy from file file-
nameand use it for segment conflict analysis based on a dynamic elaboratse ph
(default: pure static analysis);

—<rose:option> pass this option through to the underlying ROSE compiler (default: none);

—<GNU option> pass this option through to the underlying GNU compiler (default: none);

ENVIRONMENT

RISC is used at compile-time to determine the installation directory of the RISC compilesirmd
ulator where the RISC system components are located (default: none);

SYSTEMA.W_HOME is used at compile-time to find the RISC light-weight SystemC header files which
are expected in directory $SYSTEM@V _HOME/include (default: none);

SYSTEMQOOP.HOME is used at compile-time to find the RISC out-of-order SystemC header files
which are expected in directory $SYSTEMOGOP HOME/include, and the RISC out-of-order
SystemcC library which is expected in directory $SYSTEMOP HOME/lib (default: none);

SYSTEMMMIC_HOME is used at compile-time to find the RISC SystemC header files and library
files for the Intel many-integrated-core (MIC) architecture which angeeted in directory
$SYSTEMCMIC _HOME/include and and $SYSTEM®IIC HOME!/lib, respectively (de-
fault: none); this is used only when the optiemicis used (see above);

SYSCPRINT.MODE_MESSAGEIs used by the RISC simulator at run-time to print the mode of simu-
lation and also the actual values of the environment variables listed bel®s&; ldgelines start
with ™**” and are only printed when $SYSGRINT_MODE_MESSAGE is defined (default:
no messages are printed);

SYSCSYNCPARSIM is used by the RISC simulator at run-time to force the RISC out-of-order Sys
temC simulation to fall back to synchronous (in-order) PDES execution;thatehis mode
is also automatically selected when SystemC primitive channels with update tegreegsed
(default: out-of-order execution);

SYSCPRINT.VERBOSEMESSAGEIs used by the RISC simulator at run-time to print debugging in-
formation about the simulator queues, event processing, and time advaocé debugging
lines are only printed when $SYSEPRINT_VERBOSEMESSAGE is defined (default: no
debugging infos are printed);

SYSCDISABLEPREDICTIONis used by the RISC simulator at run-time to switch back to non-
predictive conflict detection; this avoids scheduling overhead at run boteysually results
in slower simulation due to more conflicts; if $SYIWSABLE _PREDICTION is defined,
thread state prediction is not used during out-of-order schedulingytiebut-of-order execu-
tion with prediction);

SYSCPARSIM_CPUS is used by the RISC simulator at run-time to set the maximum number of con-
current threads allowed in the RISC out-of-order SystemC simulationu(diet);

29

VERSION

The RISC compiler and simulator is release version 0.4.0.

AUTHORS

Zhonggi Cheng <zhonggc@uci.edy, Rainer Doemer <doemer@uci.edd, Guantao Liu
<guantaol@uci.edd, and Tim Schmidkschmidtt@uci.edx.

COPYRIGHT
(c) 2017 CECS, University of California, Irvine

LICENSE

Open source BSD license terms apply.

BUGS, LIMITATIONS

This is an academic proof-of-concept prototype implementation, not corahgt@lity software. See
the file BUGS in the software packages for known limitations.

30

A.2 Manual Page of the RISC Elaborator
NAME

elab— Recoding Infrastructure for SystemC (RISC) Dynamic Elaborator

SYNOPSIS

elab design[options]

DESCRIPTION

elabis a special compiler for the SystemC language. The purpos&bis to parse, analyze, instru-
ment, and compile a SystemC source program into an executable progmynéonic elaboratiorelab

is a frontend source-to-source compiler for SystemcC built on top of theER@8piler infrastructure
with GNU or Intel C++ as backend target compiler. As suglab relies on and supports also most of
the ROSE and GNU compiler options.

Using the command syntax shown in the synopsis above, the spedéfsaghis compiled. By de-
fault, elab reads the SystemC source file, performs preprocessing and builds sxaimepresentation
(abstract syntax tree) of the SystemC structural hierarelab then instruments the design model so
that its execution stops after the end of the elaboration phase (no actukdt@muwill take place); the
dynamically built hierarchy and instance connectivity data is then dumped fiddodeesign.elabwhich
can be passed to the RISC compilisc for more precise conflict analysis.

On successful completion, the exit value O is returned. In case okatuwing processing, an error
code with a brief diagnostic message is written to the standard error strehtheigompilation is
aborted with an exit value greater than zero.

For preprocessing and C++ compilation into an executable dlb) relies on the availability of
an external C++ compiler which is used automatically in the background. Byltlethe GNU C++
compilerg++is used.

ARGUMENTS

design specifies the file name of the input SystemC design model; by default, the aase of
designis used as base name for the intermediate and output files;

OPTIONS

—h | —-help print the elab elaborator version and a brief usage information message to standard
output and quit;

—v | —-verbose increment the verbosity level so that all tasks performed are logged tdastherror
(default: be silent); at level 1, high-level messages about the tastamped are dis-
played; at level 2, additional details such as input and output file naredsstad; at
level 3, very detailed information about each executed task is printed;

-V increment the verbosity level by two counts (sameasv);

—VWV increment the verbosity level by three counts (samevasv —V);

31

—w | —-warningsincrement the warning level so that compiler warning messages are eidéfadit:

-0 | -0 level

—Idir

—Ldir

—llib

—0 output file

—elab:o

warnings are disabled); four levels are supported ranging from onlgrit@pt warnings
(level 1) to pedantic warnings (level 4); for most cases, warning igtecommended
(—w —w);

increment the warning level by two counts (sameas-w);
increment the warning level by three counts (samevasw —w);

add a symbol table suitable for debugging (e.g. usidiy) to the generated object files
and simulation executable (default: no debugging symbols);

optimize the generated simulation executable for higher execution speed bsd/or
memory usage (default: no optimization);

add the specifiedir to the include path (extend the list of directories to be searched
for including source files); include directories are searched in ther avtigheir
specification; the standard include path ($SYSTEM& HOME/include or $SYS-
TEMC_OOPHOME/include) is automatically appended to this list; by default, only
the standard include directories are searched;

add the specifiedir to the library path (extend the list of directories to be searched for
linker libraries); the library path is searched in the specified order; tinelatd library
path ($SYSTEMCOOP.HOME/Iib) is automatically appended to this list; by default,
only the standard library path is searched;

add the specifietib to the list of libraries for the linker so that the executable is linked
againstlib; libraries are linked in the specified order; the standard libraries (i.e. -
Isystemc) are automatically appended to this list; by default, only standardidrar
are used;

perform only the preprocessing, analysis, instrumentation, and compitasks; skip
the final linking stage so that only an object file is created (default: partdltasks
including linking);

specify the name of the final output file explicitly (default: a.out);

specify the name of the elaboration result file with instance connectivity dptaidy
(default: design.elal; this file will be produced when the executable generateeldly
is run (after its elaboration phase);

—<rose:option> pass this option through to the underlying ROSE compiler (default: none);

—<GNU option> pass this option through to the underlying GNU compiler (default: none);

ENVIRONMENT

RISC is used at compile-time to determine the installation directory of the RISC compilesimd
ulator where the RISC system components are located (default: none);

SYSTEMA.W_HOME is used at compile-time to find the RISC light-weight SystemC header files which
are expected in directory $SYSTEM@V _HOME/include (default: none);

32

SYSTEMQGOOP.HOME is used at compile-time to find the RISC out-of-order SystemC header files
which are expected in directory $SYSTEMGOP HOME/include, and the RISC out-of-order
SystemC library which is expected in directory $SYSTEMOP HOME/lib (default: none);

VERSION

The RISC Dynamic Elaborator is release version 0.4.0.

AUTHORS

Zhongqgi Cheng <zhonggc@uci.edy, Rainer Doemer <doemer@uci.edd, Guantao Liu
<guantaol@uci.edd, and Tim Schmidkschmidtt@uci.edx.

COPYRIGHT
(c) 2017 CECS, University of California, Irvine

LICENSE

Open source BSD license terms apply.

BUGS, LIMITATIONS

This is an academic proof-of-concept prototype implementation, not conahqt@lity software. See
the file BUGS in the software packages for known limitations.

33

A.3 Manual Page of the RISC SIMD Advisor
NAME
simd — Recoding Infrastructure for SystemC (RISC) SIMD Advisor

SYNOPSIS

simd [options] design[options]

DESCRIPTION

simd is an analysis tool for exploiting data-level parallelism based on the RI&iter for the Sys-
temC language. The purpose sifnd is to parse and analyze a SystemC source program, and then
provide advise to the user regarding possible optimizations of the model tateXPUD parallelism

for faster out-of-order parallel simulation.

Using the command syntax shown in the synopsis above, the spatfigghis compiled and stat-
ically analyzed. By defaultsimd reads the SystemC source file, performs preprocessing and builds
an internal representation (abstract syntax tree) of the SystemC aiasirahe model. Next, thread
control flow analysis is performed and encountered loops are andlyzpdtential single-instruction-
multiple-data (SIMD) execution which exploits data-level parallelism and czohtie significantly im-
proved simulation performance in Out-of-Order Parallel Discrete Eviemil&tion (OoO PDES).

Specifically,simd presents to the user a list of loops that might be suitable for SIMD vectorizatio
The user is expected to review the options and, based on his applicatiateklge, select those loops
that do not contain SIMD conflicts, such as parallel accesses to opartamemory locations. For
confirmed loops, the user then inserts into the source#£pgyma omp simdannotations immediately
before the selected loops. The annotated model can then be compiledsaitimd option-risc:icpc
using the Intel C++ compileicpc to generate an executable for execution on a SIMD-capable target
architecture with improved performance.

The output oksimd lists the loops found in the control flow of the SystemC threads of the model. For
each loop, its line number in the source code is listed together with its analyltal @lalification. If
the loop is not qualified, a reason for its disqualification may or may not bershoform of an error
code.

A qualification error code of 1 indicates the use of an invalid array indexeénldbp. The code
2 indicates that a non-loop local variable is written. Finally, code 3 indicatsai unsupported
construct (e.g. goto statement) is found in the loop.

On successful completion, tlsémd advisor returns the value 0. In case of errors during processing,
an error code with a brief diagnostic message is written to the standarég&eam and the compilation
is aborted with an exit value greater than zero.

ARGUMENTS

design specifies the file name of the input SystemC design model; by default, the aase of
designis used as base name for the intermediate and output files;

OPTIONS

—h | —-help print thesimd advisor version and a brief usage information message to standard output
and quit;

34

—v | —-verbose increment the verbosity level so that the tasks performed are logged ttasfaerror
(default: be silent); at level 1, high-level messages about the tast@amped are dis-
played; at level 2, additional details such as input and output file naredgstad; at
level 3, very detailed information about each executed task is printed;

—wV increment the verbosity level by two counts (same\asv);

—-VVV increment the verbosity level by three counts (samevasv —V);

—w | —-warningsincrement the warning level so that warning messages are enabledl{detnings
are disabled); four levels are supported ranging from only importartings (level 1)
to pedantic warnings (level 4); for most cases, warning level 2 is recaomate(—w —w

)i
—Ww increment the warning level by two counts (sameas-w);
—WWW increment the warning level by three counts (samevasw —w);
—Idir add the specifiedir to the include path (extend the list of directories to be searched

for including source files); include directories are searched in the ofdéeir speci-
fication; the standard include path ($SYSTEM®W HOME/include) is automatically
appended to this list; by default, only the standard include directories axdheda

—o output file specify the name of the text output file explicitly (default: none);

—<rose:option> pass this option through to the underlying ROSE compiler (default: none);

—<GNU option> pass this option through to the underlying GNU compiler (default: none);

ENVIRONMENT

RISC is used at compile-time to determine the installation directory of the RISC compilesimd

ulator where the RISC system components are located (default: none);

SYSTEMA.W_HOME is used at compile-time to find the RISC light-weight SystemC header files which

are expected in directory $SYSTEM@N _HOME/include (default: none);

VERSION

The SIMD Advisor is release version 0.4.0.

AUTHORS

Zhongqi Cheng <zhongqc@uci.edd, Rainer Doemer <doemer@uci.edy,
<guantaol@uci.edd, and Tim Schmidkschmidtt@uci.edx.

COPYRIGHT
(c) 2017 CECS, University of California, Irvine

35

Guantao Liu

LICENSE

Open source BSD license terms apply.

BUGS, LIMITATIONS

This is an academic proof-of-concept prototype implementation, not corahkqrality software. See
the file BUGS in the software packages for known limitations.

36

	1 Introduction
	2 Out-of-Order Parallel Simulation
	2.1 Notations
	2.2 Discrete Event Scheduler
	2.3 Parallel Discrete Event Scheduler
	2.4 Out-of-Order Parallel Discrete Event Scheduler

	3 RISC Compiler and Simulator
	3.1 Segment Graph
	3.2 Conflict Analysis
	3.2.1 Static Analysis
	3.2.2 Dynamic Analysis

	3.3 Source Code Instrumentation
	3.4 Library Support
	3.5 Support for Data-Level Parallelism
	3.6 Compiler Backend
	3.7 Simulator

	4 Out-of-Order Parallel Simulatable SystemC Subset
	4.1 SystemC Hierarchical Structure of Modules and Channels
	4.2 SystemC Threads
	4.3 SystemC Transaction Level Modeling (TLM)
	4.4 SystemC Data Types
	4.5 SystemC Utilities and Other Constructs

	5 Conclusion
	Acknowledgements
	References
	A Appendix
	A.1 Manual Page of the RISC Compiler and Simulator
	A.2 Manual Page of the RISC Elaborator
	A.3 Manual Page of the RISC SIMD Advisor

