
Center for Embedded Computer Systems
University of California, Irvine

ConcurrenC: A Novel Model of Computation
for Effective Abstraction of C-based SLDLs

Weiwei Chen, Rainer D̈omer

Technical Report CECS-09-07
May 27, 2009

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

{weiweic, doemer}@uci.edu
http://www.cecs.uci.edu/

http://www.cecs.uci.edu/

ConcurrenC: A Novel Model of Computation
for Effective Abstraction of C-based SLDLs

Weiwei Chen, Rainer D̈omer

Technical Report CECS-09-07
May 27, 2009

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

{weiweic, doemer}@uci.edu
http://www.cecs.uci.edu

Abstract

System design in general can only be successful if it is basedon a suitable formal Model
of Computation (MoC) that can be well represented in an executable System-level Description
Language (SLDL) and is supported by a matching set of design tools. While C-based SLDLs are
popular in system-level modeling and validation, current tool flows impose almost arbitrary re-
strictions on the synthesizable subset of the supported SLDL. A properly aligned and consistent
system-level MoC is often neglected or even ignored.

In this report, we motivate the need for a well-defined MoC in system design. We discuss
the close relationship between SLDLs and the abstract models they can represent, in contrast
to the smaller set of models the tools can support. Based on these findings, we then propose
a novel MoC, calledConcurrenC, that defines a clear system level of abstraction, aptly fits
system modeling requirements, and can be expressed precisely in both SystemC and SpecC
SLDLs. Using a H.264 video decoder example, we demonstrate how the proposed ConcurrenC
MoC fits the features and characteristics of a real-world embedded application.

This work has been supported in part by NSF Grant #0747523

http://www.cecs.uci.edu

Contents

1 Introduction 1
1.1 System-level Design . 2
1.2 Abstract Modeling . 3

2 Related Work 5
2.1 Model of Computation . 5

2.1.1 Kahn Process Network . 5
2.1.2 Petri Net . 6
2.1.3 Dataflow Graph and Finite State Machine 6
2.1.4 Program State Machine . 7
2.1.5 Transaction Level Modeling (TLM) . 8

2.2 Modern C-based SLDLs .8

3 Problem Definition 8

4 ConcurrenC MoC 10
4.1 Relationship to C-based SLDLs . 10
4.2 ConcurrenC Features .. 11

4.2.1 Communication & Computation Separation 11
4.2.2 Hierarchy . 12
4.2.3 Concurrency . 12
4.2.4 Abstract Communications (Channels) . 13
4.2.5 Timing . 13
4.2.6 Execution . 13

4.3 Communication Channel Library . 13
4.4 Relationship to KPN and SDF . 14
4.5 ConcurrenC-based Design Flow .. . 15

5 Experiment 15

6 Conclusion 19
6.1 Future Work . 19

References 19

i

ConcurrenC: A Novel Model of Computation
for Effective Abstraction of C-based SLDLs

Weiwei Chen, Rainer D̈omer

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

{weiweic, doemer}@uci.edu
http://www.cecs.uci.edu

Abstract

System design in general can only be successful if it is based on a suitableformal Model of Com-
putation (MoC) that can be well represented in an executable System-level Description Language
(SLDL) and is supported by a matching set of design tools. While C-basedSLDLs are popular in
system-level modeling and validation, current tool flows impose almost arbitrary restrictions on the
synthesizable subset of the supported SLDL. A properly aligned and consistent system-level MoC is
often neglected or even ignored.

In this report, we motivate the need for a well-defined MoC in system design. We discuss the
close relationship between SLDLs and the abstract models they can represent, in contrast to the
smaller set of models the tools can support. Based on these findings, we then propose a novel
MoC, calledConcurrenC, that defines a clear system level of abstraction, aptly fits system modeling
requirements, and can be expressed precisely in both SystemC and SpecC SLDLs. Using a H.264
video decoder example, we demonstrate how the proposed ConcurrenC MoC fits the features and
characteristics of a real-world embedded application.

This work has been supported in part by NSF Grant #0747523

1 Introduction

Embedded system is one of the most popular computational systems in our current information
era. With applications ranging from portable media player to medical equipments, from consumer

1

http://www.cecs.uci.edu

electronic devices to communication satellites, from real-time automotive applications to highly-
reliable space transportation systems, embedded system has a profound impact on our everyday
life.

An embedded system is a special-purpose computer system which is designed to perform one
or multiple functions. It usually has tight constraints on its size, power, timing, and cost. With
the development of semiconductor technology, embedded systems gain a tremendous amount of
functionality and processing ability by integrating multiple components / intellectualproperties (IP)
onto a single Multi-Processor System-on-Chip (MPSoC). The complexity of the system is growing
rapidly with the increasing of those integrated components which have to cooperate properly and run
in parallelism. Due to the complexity and tight constraints of the expected system, design engineers
are facing great challenges to build up a satisfactory system within a shorttime-to-market design
period.

According to the 2007 edition of the International Technology Roadmap forSemiconductors
(ITRS) [13], system-level design, listed as one of the top overall designchallenges for productivity,
is a promising solution to improve the design productivity. Critical factors include high level of
abstraction and platform-based design. Systems have been described atdifferent abstraction levels
(block diagram, state charts, program model, etc.) but with mismatching design automation tools
for many years. A new matching abstract system model is needed to simplify design, including
simulation, estimation, synthesis, verification, implementation, and design space exploration [13].

In this report, we aim to establish a properly aligned relation between the threeessential ingre-
dients for successful system design, namely (1) a suitable formal Modelof Computation (MoC), (2)
an executable System-level Description Language (SLDL), and (3) a matching set of design tools.

1.1 System-level Design

Figure 1 illustrates that the need of additional software required for hardware is doubling every ten
months, and the capability of technology is doubling every thirty-six months. On the other hand,
since the hardware productivity improved over the last several years by putting multiple cores on
to a single chip, the productivity especially for hardware-dependent software is far behind which is
doubling only every five years. Thus System-on-Chip design productivity cannot follow the speed
of the nanoelectronics technology development which is characterized byMoore’s Law. As a result,
an additional higher level of abstraction - the so-called System Level - should be introduced and
utilized.

Sangiovanni-Vincentelli mentioned in [23] that system-level design is placedas “a level above
RTL including both HW and SW design”. More specifically, System-level design is defined to
“consist of a behavioral (before HW/SW partition) and architectural level (after)” and is claimed to
increase productivity by 200K gates/designer year.

According to ITRS 2007, at system-level, silicon resources are definedin terms of abstract
functions and blocks. Abstract functions are related with embedded software, e.g. embedded coded
high-level and assembly programming language, configuration data, etc. And blocks are related
with embedded hardware, e.g. processing cores, buses, peripherals, reconfigurable components,
etc. Hardware (HW) corresponds to implemented electronic circuit components, while software

2

Figure 1: Hardware and software design gaps over time [13]

(SW) corresponds to those logic abstract functions performed on the hardware. A whole embedded
system should be a well designed integration of hardware and software elements.

There are two independent degrees of design freedom, behavior andarchitecture, where the
aggregate of behavior defines the function of a system and the aggregate of architecture defines
the system platform. Platform mapping from system functionality onto platform architecture is the
major task of embedded system-level design due to the special purpose andtight constraints of the
embedded systems. Now, this task becomes more difficult with the increased system complexity
and heterogeneity [13].

ITRS 2007 also mentioned that systems have been reasoned about at different abstraction levels
(block diagram, state charts, program model, etc.) but with little support of design automation
tools for many years. Such situation should be changed in the near future toachieve proper design
productivity. New abstract system models are needed to simplify design tasks, including simulation,
estimation, synthesis, verification, system implementation, and design space exploration [13].

Figure 2 predicts that the research for HW-SW co-design and verification will be required until
2010 and the development of such technology will be underway till 2014. Therefore, system-
level design methodology research is a necessary, promising, and long-term goal for semiconductor
industry.

1.2 Abstract Modeling

A model is the abstraction of reality. An embedded system model is the representation of actual and
intended characteristics of the whole system. Only a well-defined model will reflect the essential

3

Figure 2: System-level design potential solutions [13]

features of the system and provides the possibility for efficient system design and implementation.
In system-level design, abstract modeling is of most importance. A proper abstraction and spec-

ification system model is key to accomplish efficient design tasks, including simulation, estimation,
synthesis, verification, design space exploration, and the final successful implementation. The need
of abstract models is significant since it is the foundation of the following design tasks. However,
a lot of research tasks have focused on the steps after the system specification phase, such as syn-
thesis and verification. Little has been done on modeling itself. The complexity ofthe system is an
obstacle. Another challenge is that the quality of the model cannot be straightforward measured and
compared.

The level of abstraction is an essential issue for modeling. A good model should reflect the
essential functions and properties of the system and hide those implementationdetails which distract
from the system-level view and increase the difficulty of the design tasks. Ideally, multiple well-
defined abstraction levels are needed to enable gradual system refinement and synthesis by adding
more details at each step. In other words, a good abstraction level shouldretain only those features
desired by the current job, and abstract away the other unnecessarydetails.

4

2 Related Work

There has been considerable effort on the improvement of system design. Related work exists on
many models of computation and SLDLs, as well as existing system design flows.

2.1 Model of Computation

Edwards et al. argue in [5] that the design approach should be based on the use of formal methods
to describe the system behavior at a higher level of abstraction. A Modelof Computation (MoC) is
such formal method for system design. MoC is a formal definition of the set of allowable operations
used in computation and their respective costs [17]. This defines the behavior of the system as at a
certain abstract level to reflect the essential system features. Many different models of computation
have been proposed for different domains. An overview can be found in [9] and [16].

2.1.1 Kahn Process Network

Kahn Process Network (KPN) is a deterministic MoC where deterministic processes are con-
nected by unbounded FIFO communication channels [15]. The output of the KPN network does
not depend on the execution order of the processes. Therefore, it isquite flexible to schedule a
KPN network. For a KPN system, no global scheduler is needed and the partitioning over a number
of KPN components is a simple task since the control is distributed to individual processes. Data
exchanges are distributed over FIFO channels between processes and therefore resource contention
is avoided. However, unbounded FIFOs are not realistic for real-world implementation. Artificial
deadlock may occur if the FIFO bounds are not safely designed. Proofs have been provided that in
general it is an undecidable problem to test whether a KPN is strictly boundedor not [20].

Dataflow Process Network (DFPN)[20], is a special case of KPN in which dataflow can be
shown as a process network and the size of the communication buffers is bounded. A variety of
dataflow models are proposed and studied over the years. Lee and Messerschmitt [3] discussed
Synchronous dataflow (SDF)in which each actor consumes and produces a fixed number of tokens
on each port of each firing and static scheduling is possible on a single processor and on multiple
processors in parallel. Engels et al. [7] proposedCyclo-static dataflowwhose actors’ consumption
and production rates vary in a cyclic but predetermined pattern.Heterochronous dataflow (HDF)
[11] by Girault and Lee composes finite state machine (FSM) with SDF, allowingactors to change
their rate signatures between global iterations of a model.Parameterized Synchronous dataflow
(PSDF)[1] discussed by Bhattacharya and Bhattacharyya is an extension of synchronous dataflow
which is suitable for reconfiguration. Buck [14] proposed theBoolean dataflow (BDF)which allows
the use of dynamic actors, like BooleanSelect and BooleanSwitch, and is Turing-complete so that
the static analysis does not guarantee that the scheduling algorithm will always succeed. Zhou [27]
discussedDynamic dataflow (DDF)which adopts runtime analysis without answering the question
of deadlock analysis and boundedness statically.

Software/hardware integration medium (SHIM) [6] is a concurrent asynchronous determin-
istic model which is essentially an effective KPN with rendezvous communicationfor heteroge-
neous embedded systems. According to Edwards et al. [6], concurrency, asynchronicity and deter-

5

minism are the three major characteristics of the SHIM model. Concurrency models the cooperating
work among those hardware components and software modules. Asynchronicity allows the abstrac-
tion of the software details in order to deal with the difficulty in predicting the software timing issues
due to the complexity in instruction interaction at the low level architecture, like cache, pipeline,
branch predictions. Determinism ensures the behavior of the simulator, simplifies debugging due to
the bug reproduction, and provides benefits for formal verification by reducing the number of the
possible behaviors and computational burden.

While these MoCs are popular for modeling signal processing applications,they are not well-
suited for controller applications.

2.1.2 Petri Net

Petri Net, an abstract, formal model of information flow, is a state-oriented hierarchical model,
especially for systems that are concurrent, distributed, asynchronous, parallel, non-deterministic,
or stochastic activities [21]. The Petri net model consists of a set of places, a set of transitions,
and a set of tokens. Tokens reside in places, and circulate through the whole net, being consumed
and produced according to transition fires. As a mathematical tool, it is possible to set up state
equations, algebraic equations, and other mathematical models governing thebehavior of systems
by using Petri Net [18]. Petri nets have a great ability to model differentsystems, like computer
hardware, computer software, concurrent systems. They also have the ability to describe a system
hierarchically by replacing an entire net by a single place at a more abstract level, or a transition,
or represent places and transitions by subnets to provide more detail refinement. However, Petri
nets are uninterpreted models which means in general no meaning is attached tothe places and
transitions in the net and it deals only with the abstract features inherent in the structure of the net.
Petri net can also quickly become incomprehensible with a system complexity increase.

2.1.3 Dataflow Graph and Finite State Machine

Dataflow Graph (DFG) and its derivatives are MoCs for describing computational intensive sys-
tems [10]. DFG is a directed graph consisting of nodes where the nodes represent operations or
functions, and the arcs represent data flow through the graph. DFG model has two principles: asyn-
chrony and functionality. The asynchrony principle states that all operations cannot be executed
until the required operands are available. This implies the data dependencyof the system. The
functionality principle states that all operations behave as functions which do not have any side ef-
fects. It means that any two enabled operations can be executed in either order, or in parallel. DFG
is excellent for representing computations described by complex functions. It is very popular for
describing DSP components and systems. However, DFG is not suitable to represent control parts
which are commonly found in most programming languages.

Finite State Machine (FSM) is popular for describing control systems and is widely adopted
in hardware design since the temporal behavior of the system can naturallybe represented in the
form of states and transitions [10]. The FSM model consists of a set of states, a set of transitions
between states, and a set of actions associated with these states or transitions. FSM is simple and
easy for design, implementation and execution. Given a set of inputs and a known current state,

6

the state transitions can be predicted and thus allow easy testing. FSM also helps to transfer from
a meaningful abstract representation to a specific implementation. It is flexibleto implement a
FSM-based system in different topology, and it is easy to incorporate many other techniques. FMS
also has some limitations. The conditions for state transitions are fixed and cannot be dynamically
changed. Larger systems implemented by using FSM can be difficult to manageand maintain since
the model becomes incomprehensible when the complexity of the system increases. Furthermore,
FSM should only be used when a systems behavior can be decomposed into separate states with
well defined conditions for state transitions. It is not easy to clearly separate different states for real
systems at different abstraction level.

Several new models of computation are discussed in [10] based on FSM to extend the modeling
ability. In order to describe systems that require both control and computation, FSM and DFG
are combined to formFinite-State Machine with Datapath (FSMD) . FSMD is the extended
definition of a FSM by including a datapath with the set of datapath variables, input and outputs
added. In order to get a concise behavior specification, a superstate isintroduced to extend FSMD by
merging programming language models to form thesuperstate Finite-State Machine with Datapath
(SFSMD)in which each state can represent any number of clock cycles and the operations in each
superstate are specified by a function or procedure written in a certain programming language, or by
mathematical expressions. The SFSMD model is suitable for describing the behaviors for behavioral
synthesis [10]. In order to eliminate the potential for the state and arc explosion, hierarchical and
concurrent systems with FSM models, an extension of FSM model calledhierarchical concurrent
finite-state machine (HCFSM), is proposed by adding the support for hierarchy and concurrency.
In the HCFSM each state can be further decomposed into a set of substatesso that hierarchy can
be modeled, and each state can also be decomposed into concurrent substates, which can execute
concurrently and communicate through global variables. HCFSM model is well-suited to represent
complex control systems without complex data structures [10].

2.1.4 Program State Machine

Program-state machine (PSM)[25] is an extension of FSM that supports both hierarchy and con-
currency, and allows states to contain regular program code. It combines the description of both
hardware and software models. The PSM model contains hierarchical program-states and a set
of transition arcs. Program-states are eithercompositeones, which can be further decomposed into
concurrent or sequential substates, orleaf ones, which are at the bottom of the hierarchy and contain
computations described with programming language statements. Transition arcsare contained in a
sequentially decomposed program-state to represent the sequencing between the program-substates.
At the bottom of the hierarchy, there are those leaf states. A PSM can also overcome the primary
limitation of programming languages, since it can model states explicitly [10]. PSMcan be cap-
tured by both SpecCharts (an extension of VHDL) and SpecC (an extension of C) programming
languages.

7

2.1.5 Transaction Level Modeling (TLM)

Transaction-level modeling (TLM) [12] is a well-accepted approach to model digital systems
where the implementation details of the communication and functional units are abstracted and
separated. At the transaction level, the emphasis is more on the functionality ofthe data transfers
and less on their actual implementation. TLM abstracts away the low level systemdetails about pins,
wires and waveforms, which results in a model that executes dramatically faster than synthesizable
models. However, this benefit generally comes at the price of low accuracy. In general, TLMs pose
a trade-off between simulation speed and simulation accuracy. High simulation speed is traded in
for low accuracy, and a high degree of accuracy comes at the price oflow speed. Having both
high speed and high accuracy at the same time requires sophisticated modelingand is only possible
in special situations [24]. TLM is mainly used for communication simulation but lackthe path to
vertical integration of the models for implementation and synthesis. It is popularbut not yet a well-
defined MoC since it does not have any specific definition of the abstraction level nor transaction
semantics. Moreover, TLM does not specify a well-defined MoC, but relies on the system design
flow and the used SLDL to define the details of supported syntax and semantics.

2.2 Modern C-based SLDLs

System-level description languages (SLDL), like SpecC [10] and SystemC[12], are available for
modeling and describing an embedded system at different levels of abstraction.

SpecCis a system level description language (as well as a system level design methodology).
SpecC is a superset of ANSI-C. SpecC includes support for three computation models: concurrent
sequential processes (CSP) for software, finite state machine with datapath (FSMD) for hardware
and discrete event (DE) for protocols [10], by introducing new data structures, like behaviors, inter-
faces, and communication channels.

SystemCis the de-facto standard SLDL, supported by the Open SystemC Initiative. It is a C++
language library for system modeling. It builds systems from Verilog- and VHDL-like modules,
each of which have a collection of I/O ports and instances of other modules or processes written
in C++. It uses a discrete-event simulation model, and is quite flexible to interact with by general
programming languages [4].

However, both C-based SLDLs do not define any details of an actual design flow. Moreover,
there is a lack of efficient system-level formal models behind these SLDLs.

3 Problem Definition

For system-level design, the importance of abstract modeling cannot be over-emphasized. Proper
abstraction and specification of the system model is a key to accurate and efficient estimation and
the final successful implementation.

Digital circuit design provides a good example to show the importance of a well-defined model
of computation. Designers describe the hardware components in hardware description languages
(HDL) like VHDL and Verilog. Both languages have strong abilities to support different types
of hardware structures and functionalities. By using the HDL, designerscan use FSMs to model

8

Abstraction
Schematics Language MoC Tool

Level

RTL
VHDL, FSM, Synopsys Design Compiler
Verilog FSMD Cadence RTL Compiler

...

System
MIP

P1M

MIP

P1M P2

SpecC, PSM, SoC Environment [2]
SystemC TLM (?) Synopsys System Studio

ConcurrenC ! ...

Table 1: System-level design in comparison with the well-established RTL design

synthesizable controllers or other parts of their design. FSM plays a crucial role in digital circuit
design as a formal model behind the hardware description language. TheFSM MoC allows the
designer to describe their components in an efficient and accurate way. It also helps the synthesis
tools to have a better understanding of the behavior and characteristics ofthe implemented circuit.

The importance of the model for system design is the same as for digital logic design. Due to
the complexity of the system, which integrates multiple hardware components and various software
processes together, a formal model is needed to clearly describe the critical features and ignore
unnecessary details.

Note that commercial computer aided design (CAD) tools cannot synthesize all the VHDL /
Verilog statements into a real hardware netlist. Special design guidelines areprovided together with
the CAD tools to restrict the designer from using specific syntax elements, orto prevent generation
of improper logics, e.g. latches. For system-level design, guidelines are also needed for building
systems by use of those SLDLs for efficient execution of the following design tasks by the tools.

Table 1 compares the situation in system-level design against the mature designmethodology at
the register-transfer level (RTL). RTL design is supported by the strong MoCs of FSM and FSMD,
and well-accepted ”coding guidelines” exist for the HDLs VHDL and Verilog, so that established
commercial tool chains can implement the described hardware. It is importantto notice that here
the MoC was defined first, and the coding style in the respective HDLs followed the needs of the
MoC.

At the system level, on the other hand, we have the popular C-based SLDLs SystemC and SpecC
which are more or less supported by early academic and commercial tools. Asat RTL, the languages
are restricted to a (small) subset of supported features, but these ”modeling guidelines” are not very
clear. Moreover, the MoC behind these SLDLs is unclear. SpecC is defined in context of the PSM
MoC [10], but so is SpecCharts [9] whose syntax is entirely different. For SystemC, one could
claim TLM as its MoC [12], but a wide variety of interpretations of TLM exists.

We conclude that in contrast to the popularity of the C-based SLDLs for system-level model-
ing and validation, and the presence of early design flows supported by existing tools, the use of
a well-defined and consistent system-level MoC is neglected or even completely ignored. As a re-
sult, serious restrictions are imposed on the usable (i.e. synthesizable and verifiable) subset of the
supported SLDL. Without a clear MoC behind these syntactical ”modeling” guidelines, such restric-
tions appear almost arbitrary. Clearly, a well-defined and formal model is needed for the modern

9

system description languages to improve and simplify the system design challenge.

4 ConcurrenC MoC

In the following, we discuss the close relationship and tight dependencies between SLDLs (i.e.
syntax), their expressive abilities (i.e. semantics), and the abstract modelsthey can represent. At the
same time, we will point out that, in contrast to the large set of models the SLDL can describe, the
available tools usually support only a small subset of these models. In order to avoid this discrepancy
that clearly hinders the effectiveness of the system design methodology,we propose a novel MoC,
called ConcurrenC, that aptly fits both the system modeling requirements and the capabilities of the
supporting tool chain.

Generally speaking, we propose ConcurrenC as a system-level FSM extension with support for
concurrency and hierarchy. As such, it falls into the program-state machine MoC category. The
ConcurrenC model has clear separation of concerns on computation andcommunication.

In the realm of computation abstraction, the ConcurrenC model consists of blocks, channels, and
interfaces, and fully supports structural and behavioral hierarchy.Blocks can be flexibly composed
in space and time to execute sequentially, in parallel/pipelined fashion, or by use of state transi-
tions. The blocks themselves are internally based on C, the most popular programming language
for embedded system design.

In the realm of communication abstraction, ConcurrenC is intentionally restricted to a set of
predefined channels that follow a typed message passing paradigm, rather than using user-defined
freely programmable channels.

ConcurrenC is also platform-agnostic. It will not contain any details aboutthe platform and
hardware components used. Void of any implementation details other than functionality will make
it possible for a ConcurrenC model to freely map to any platform in later design steps.

4.1 Relationship to C-based SLDLs

More specifically, ConcurrenC fits into the SpecC and SystemC SLDLs. Aimedat a formal model,
ConcurrenC abstracts the embedded system features and provides clear guidelines for the designer
to efficiently use the SLDLs to build a system. On the other hand, the ConcurrenC model is captured
and described by using the SLDLs. In other words, ConcurrenC is represented in C-based SLDLs.

Figure 3 shows the relationship between the C-based SLDLs, SystemC and SpecC, and the
MoC, ConcurrenC. ConcurrenC is a true subset of the MoCs that can be described by SpecC and
SystemC. This implies that ConcurrenC contains only those model features that can be described by
both SpecC and SystemC. For example, exception handling, i.e. interrupt and abortion, is supported
in SpecC by using thetry-trap syntax, but SystemC does not have the capability to handle exceptions
explicitly. On the other hand, SystemC supports the feature of waiting for a certain timeand for
some events at the same time, but SpecC does not have such ability. As shownin Figure 3, such
features which can only be supported by one SLDL, will not be included inthe ConcurrenC model.

Moreover, ConcurrenC excludes some features that both SpecC and SystemC can support (the
shadow overlap part in Figure 3). We exclude these to make the ConcurrenC model more concise

10

and convenient for modeling and design space exploration. For example,as mentioned before,
ConcurrenC will restrict its communication channels to a predefined library rather than allowing
the user to define the channels freely by themselves. This allows tools to recognize the channels and
implement them in optimal fashion.

SpecC

Abstraction
Descriptive

Capability

SystemC

ConcurrenC
SpecC

MoCs

SystemC

MoCs

SLDLs

MoCs MoCs

SLDLs

Exception Handling

(i.e. interrupt, abortion), Wait time and event

...

User-defined Channels

...

Try-trap

...
Wait 10ns and e1

...

Figure 3: Relationship between C-based SLDLs: SystemC and SpecC, andMoC: ConcurrenC

4.2 ConcurrenC Features

A ConcurrenC Model can be visualized in four dimensions, as shown in Figure 4. There are three
dimensions in space, and one in time. The spatial dimensions consist of two dimensions for struc-
tural composition of blocks and channels and their connectivity through ports and signals (X, Y
coordinates in Figure 4), and one for hierarchical composition (Z-axis inFigure 4). The temporal
dimension specifies the execution order of blocks in time, which can be sequential or FSM-like
(thick arrows in Figure 4), parallel (dashed lines in Figure 4), or pipelined (dashed lines with arrows
in Figure 4).

More detailed features of the proposed ConcurrenC MoC are discussed in the following subsec-
tions.

4.2.1 Communication & Computation Separation

Separating communication from computation allows “plug-n-play” features ofthe embedded sys-
tem. In ConcurrenC, the communication contained in channels (shown as ellipses in Figure 4) is
separated from the computation part contained in blocks (shown as rectangular blocks with rounded
corners in Figure 4). The purpose of each statement in the model can be clearly identified whether

11

t

Execution Order

Temporal Dimension

Y

X

Z

StructureH
ie

ra
rc

h
y

Spatial Dimension

Figure 4: Visualization of a ConcurrenC Model in three spatial and one temporal dimensions

it is for communication or computation. This also helps for architecture refinement and hardware
software partitioning.

4.2.2 Hierarchy

Hierarchy eliminates the potential explosion of the model size. It helps for comprehensible model-
ing of complex systems. This can be easily seen in Figure 4 where a single platform is much easier
to understand than the entire system across all levels.

4.2.3 Concurrency

The need for concurrency is apparent. A common embedded system will have multiple hardware
units work in parallel and cooperate through certain communication mechanisms. In Figure 4,
parallel execution is shown by dashed border lines across a platform.

Pipelining is a special kind of parallelism. It is a common technique to improve the efficiency
for both hardware and software. ConcurrenC explicitly supports the pipelining feature in order to
provide simple and clear description of the intended system concurrency.In Figure 4, we show

12

pipelining as dashed border lines combined with thick arrows indicating the pipeline flow.

4.2.4 Abstract Communications (Channels)

A predefined set of communication channels is available in ConcurrenC forthe simplicity of system
modeling and further synthesis work. We believe that the restriction to predefined channels not only
avoids coding errors by the designer, but also simplifies the later refinement steps, since the channels
can be easily recognized by the tools. More details will be discussed below inSection 4.3.

4.2.5 Timing

The execution time of the model should be evaluated to observe the efficiencyof the system. System
function calls written in C represent and maintain timing information since ConcurrenC models are
internally pure C-based.

4.2.6 Execution

A model should be able to be executed in order to validate its correctness andobtain performance
estimation. Since our ConcurrenC model can easily converted to SpecC andSystemC, the execution
of the model is definitely possible.

4.3 Communication Channel Library

There are two kinds of communication channels: data transfer channel and synchronization chan-
nel. Channel properties, like blocking mode, data type support, data transfer support, flow direc-
tion, buffer size, and communication parties, should be considered to build acomprehensive but
minimum set channel library. Moreover, in SpecC SLDL, we have three models of communica-
tion: shared memory, message passing (via function calls to channel methods), and protocol stack
(via hierarchy channels). Since protocol stack is just a hierarchical channel, we could reduce the
communication library to shared variables (for shared memory) and some kindof communication
channels (for data transfer, message passing and protocol stack building), including channels for
synchronization and data transfer.

As for data transfer channels, we limit the ConcurrenC channels to transfer data in FIFO fash-
ion. FIFO channels are adopted in many MoCs, including KPN, SDF, and SHIM. In many cases,
such channels make the model deterministic and allow static scheduling. For KPN, the buffer size
is infinite (Q∞), however, this is not practical for real-world applications despite of its powerful
deterministic and deadlock-free property. For SDF, the buffer size is fixed (Qn) which is more prac-
tical for real-world systems. Double handshake communication mechanism, which behaves in a
rendezvous fashion, should also be supported. This can be seen as aFIFO with buffer size of zero
(Q0). Signals could be used to design a 1-N (broadcasting) channel. Furthermore, shared variables
are regarded as a special kind of communication channel without any built-in synchronization that
is often convenient (especially in software).

As for pure synchronization channels, mutex, semaphore, critical section, token, and barrier are
often used. Mutex is a special semaphore with binary variable. The key to acritical section is to use

13

a semaphore. Therefore, we can reduce both mutex and critical section tosemaphores. Moreover,
FIFO channel can be used to implement a semaphore.

We conclude that ConcurrenC should1 support the following predefined communication chan-
nel library. There are five types of channels:Q0, Qn, Q∞, signal, and shared variable. Here,Q
stand for queue which behaves in FIFO fashion, and the indices0, n, ∞ stands for zero, a certain
finite number, and an infinite buffer size in the queue, respectively. Table2 shows the proposed
parameterized channel library.

Channel Type Receiver Sender Buffer Size
Q0 Blocking Blocking 0
Qn Blocking Blocking n
Q∞ Blocking – ∞

Signal Blocking – 1
Shared Variable – – 1

Table 2: Parameterized Communication Channels

4.4 Relationship to KPN and SDF

With the features discussed above, it is quite straightforward to convert both KPN and SDF MoCs
into ConcurrenC .

The conversion rules from KPN to ConcurrenC are listed as the pseudo-code in Algorithm 1.
Input : A general KPN model
Output : A ConcurrenC model with the same function

1: for all processes i∈ KPN do
2: make ConcurrenC blocks
3: end for
4: for all channels i∈ KPN do
5: make ConcurrenC channels of typeQ∞
6: end for
7: keep the same connectivity in ConcurrenC as in KPN
8: If desired, group processes in hierarchy and size the channels for real-world implementation

Algorithm 1 : Algorithm to convert KPN model into ConcurrenC

The conversion rules from SDF to ConcurrenC are listed as the pseudo-code in Algorithm 2.

1At this time, this decision is subject to further refinement in the future.

14

Input : A general SDF model
Output : A ConcurrenC model with the same function

1: for all actors∈ SDFdo
2: make ConcurrenC blocks
3: end for
4: for all arcs∈ SDFdo
5: make ConcurrenC channels of typeQn (n is the size of the buffer)
6: end for
7: keep the same connectivity in ConcurrenC as in SDF.
8: If desired, group actor in hierarchy.

Algorithm 2 : Algorithm to convert SDF model into ConcurrenC

As such, ConcurrenC is essentially a superset MoC of KPN and SDF. Itis a versatile and con-
venient vehicle to implement KPN and SDF into SpecC or SystemC, i.e. by using ConcurrenC as
the intermediate MoC since ConcurrenC is straightforward to implement via the well-established
SLDLs. Moreover, the strong formal properties of KPN and SDF, suchas deadlock-free guarantees
(KPN) and static schedulability (SDF), are still inherited when modeled in ConcurrenC.

4.5 ConcurrenC-based Design Flow

The envisioned ConcurrenC is a MoC at system abstraction level. System features can be captured
and execution is possible for validation and simulation by modeling a system in ConcurrenC and
converting the model to SpecC and/or SystemC SLDL in order to perform fast and accurate de-
sign space exploration. Furthermore, based on this flexible model, a systemcan be mapped to a
suitable target platform and implemented. Finally, the system can be synthesizedto be a prototype
implementation on an FPGA platform or a real MPSoC chip.

Figure 5 shows our envisioned design flow of ConcurrenC based system-level design.

5 Experiment

The Advanced Video Coding (AVC) standard H.264, also known as MPEG-4, is a real-world ap-
plication for advanced video compression [19], [22]. Its high complexity,free availability, and
industry-size make it an ideal, realistic and challenging example for system-level design. The H.264
standard includes both encoding and decoding for video streams with different resolution. We focus
on the decoding part in this section. Figure 6 shows the basic block diagramof the H.264 decoder
algorithm.

The input of the decoder is an H.264 stream file, while the output is an uncompressed YUV file.
The compressed input video stream, from the network or other media and wrapped as the network
abstraction layer (NAL) unit, is first entropy decoded and reordered.Then the decoded data is
sent to inverse quantization and transformation, which means the output dataare in time domain
then. A picture frame is then rendered based on frame predictions. Thereare two types of frame
prediction: intra-frame prediction (with motion compensation) and inter-frame prediction. How to
predict depends on the frame types in the input video streams. At any time, a certain number of

15

Recoding

ROM

TLM-COMP

HW / SW / IF

Implementation

MPSoC

Validation,

Estimation

Validation,

Exploration

Reference

Code

Platform

Mapping

Validation,

Testing

Figure 5: Envisioned ConcurrenC System Design Flow

decoded frames will be stored for inter-frame prediction since these are required by their following
frames as references. In the final stage, the reconstructed video appears after the deblocking filter.

ConcurrenC modeling features can be easily applied to the H.264 decoder system. Figure 7
shows our ConcurrenC model of the H.264 decoder.

• Hierarchy : At the top level of the ConcurrenC model, there are three behavioral blocks:
stimulus, decoder, and monitor. Thestimulus reads the input yuv file, while the monitor
receives and displays the decoded information, including signal-to-noiseratio (SNR), frame
information, and system time, and writes those reconstructed frames into the output file.

Decodercontains multiple blocks for concurrent slice decoding. A stream processing block
prepares the settings,n decode units decoden slices in parallel, and the decoding synchronizer
combines the decoded slices for output by the monitor. The number of the slicedecoders is
scalable depending on the number of slices contained in one frame of the input stream file.
Inside the slice decode blocks, sub functional blocks are modeled for thedetailed decoding
tasks, e.g. entropy decoding & reordering, inverse quantization & transformation, motion
compensation & Inter-frame prediction, deblock filtering, and buffer controlling. Blocks are
in different colors for different levels in Figure 7. Hierarchical modelingallows convenient

16

Entropy Decode

& Reordering

Inv. Quantization

& Transformation

Motion

Compensation

Intra-

Prediction

Buffer Control

Reference

Frames

Output

Buffer

Network Abstract

Layer wrapped Unit
Deblock Filter

Figure 6: H.264 Decoder Algorithm Block Diagram

filename boat.264 coastguard.264
macroblocks/frame 396 396

frames 73 (2.43 secs) 299 (9.97 secs)
slices/frame 4 8 4 8

max # macroblocks/slice 150 60 150 60
model type seq par seq par seq par seq par

host sim time (s) 4.223 4.258 4.557 4.550 12.191 12.197 12.860 12.846
estimated exec time (s) 11.13 4.43 11.49 1.80 18.78 7.20 20.31 3.33

speedup 1 2.51 1 6.38 1 2.61 1 6.10

Table 3: Simulation Results, H.264 Decoder modeled in ConcurrenC

and clear system description.

• Concurrency: [26] confirms that it is possible to have multiple slices in one frame being
decoded at the same time. Parallelism is also usable for rendering (inter-prediction and intra-
prediction) and filtering (deblock filter) stages inside the slice decoding [8].

Consequently, our H.264 decoder model consists of multiple blocks for concurrent slice de-
coding for each picture frame. Additional parallelism is exploited inside the rendering and
filtering stages, considering the properties of the filtering and transformation algorithms.

• Communication Abstraction: FIFO channels and shared variables are used for communica-
tion in our H.264 decoder model. FIFO queues are used for data exchange between different
blocks. For example, the decoder synchronizer sends the decoded frame via a FIFO channel
to the monitor for output. Shared variables, i.e. reference frames, are used to simplify the
coordination for decoding multiple slices in parallel.

• Timing The decoding time can be observed by using timing function calls written in C (since

17

Monitor

Stream

Processing

StimulusIn file

.h264

Out file

.yuv

Decoder

Decoding

Synchronizer

Shared Data Structure

Entropy

Decode

Inv.

Quantization

&

Transformation

Motion

Compensation

Intra-

Prediction

Deblock

Filter

Slice

Decode

One Slice

Decode

One Slice

Decode

One Slice

Shared

Data Structure

Signal

FIFO channel

Figure 7: ConcurrenC H.264 Decoder Diagram

the ConcurrenC model is internally C-based). We have obtained the estimatedexecution
time for different hardware architectures by using simulation and profiling tools of the SpecC
SLDL.

• Execution We have successfully converted and executed our model using the SoC Environ-
ment [2].

Table 3 shows the simulation results of our H.264 decoder modeling in ConcurrenC. The model
has been converted to SpecC and is simulated on a host machine with Intel(R) Pentium(R) 4 CPU
at 3.00GHz. We have tested the decoder with two stream files, one with 73 frames, and the other
with 299 frames. For each test stream, we have created two types of streams, 4 slices and 8 slices
per frame. We run the model by decoding the input streams in two ways: slice by slice (seq model),
and slices in one frame concurrently (par model). The estimated execution time ismeasured by
annotating the timing information manually into the model according to the profiling andestimation
results generated by the SCE tool with ARM7TDMI 400 MHz processor mapping. The simulation
results show that the application modeled by ConcurrenC is scalable. High speedup is gained by
decoding the slices in the parallel fashion. We can expect that it is possibleto decode the test streams

18

in three platform configurations in real-time when using the system running ona ARM7TDMI CPU
with 400 MHz (bold times).

6 Conclusion

In this report, we propose a new model of computation, ConcurrenC, thatis suited to C-based
SLDLs. ConcurrenC is a concurrent, hierarchical system model of computation with abstractions
of both communication and computation. The features of the new MoC and its relationship with C-
based SLDLs have been discussed in detail. A real-world driver application, H.264 decoder, which
is a suitable application with great complexity and industrial size, is used to demonstrate how the
proposed ConcurrenC features match the system design requirements.

We conclude that the proposed ConcurrenC will be a new MoC that aptly fitsthe system-level
abstraction and can be captured by modern C-based SLDLs. As such, we expect ConcurrenC to be
a practical solution to improving embedded system modeling and design.

Conceptually, ConcurrenC fills the gap between the theoretical MoCs KPN and SDF, and the
practical SLDLs SpecC and SystemC.

6.1 Future Work

This report is only the beginning of a challenging research project. While the basic ideas and
foundations have been laid, there are several milestones ahead. Futurework includes the definition
of a formal execution semantics of ConcurrenC, the design and implementationof a robust data
structure and software framework, and the integration with existing or future design flows and tool
suites. We look forward to solving these exciting challenges.

Acknowledgment

This work has been supported in part by funding from the National Science Foundation under research grant
NSF Award #0747523. The authors thank the NSF for the valuable support.

References

[1] B.Bhattacharya and S.S.Bhattacharyya. ParameterizedDataflow Modeling of DSP Systems. InInter-
national Conference on Acoustics, Speech, and Signal Processing, Istanbul, Turkey, June 2000.

[2] R. Dömer, A. Gerstlauer, J. Peng, D. Shin, L. Cai, H. Yu, S. Abdi, and D. D. Gajski. System-on-chip
environment: a specc-based framework for heterogeneous mpsoc design.EURASIP J. Embedded Syst.,
2008(3):1–13, 2008.

[3] E.A.Lee and D. Messerschmitt. Synchronous Data Flow. 75(9):1235–1245, September 1987.

[4] S. A. Edwards. Design Languages for Embedded Systems. Technical report, Columbia University, New
York, 2003.

19

[5] S. A. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-Vincentelli. Design of Embedded Systems:
Formal Models, Validation, and Synthesis.Proc. of the IEEE, 85(3), Mar. 1997.

[6] S. A. Edwards and O. Tardieu. SHIM: A Deterministic Modelfor Heterogeneous Embedded Systems.
IEEE Transactions on VLSI Systems, 14(8):854–867, 2006.

[7] M. Engels, G. Bilsen, R. Lauwereins, and J. Peperstraete. Cyclo-static data flow: Model and implemen-
tation. Proc. 28th Asilomar Conf. on Signals, Systems, and Computers, pages 503–507, 1994.

[8] K. Fleming, C.-C. Lin, N. Dave, Arvind, G. Raghavan, and J. Hicks. H.264 decoder: A case study in
multiple design points. InFormal Methods and Models for Co-Design, 2008. MEMOCODE 2008. 6th
ACM/IEEE International Conference on, June 2008.

[9] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong.Specification and Design of Embedded Systems.
Prentice Hall, 1994.

[10] D. D. Gajski, J. Zhu, R. D̈omer, A. Gerstlauer, and S. Zhao.SpecC: Specification Language and Design
Methodology. Kluwer Academic Publishers, 2000.

[11] A. Girault, B. Lee, and E. A. Lee. Hierarchical Finite State Machines with Multiple Concurrency
Models. IEEE Transactions on Computer-Aided Design of IntergratedCircuits and Systems (TCAD),
18(6), June 1999.

[12] T. Grötker, S. Liao, G. Martin, and S. Swan.System Design with SystemC. Kluwer Academic Publishers,
2002.

[13] International Semiconductor Industry Association. International Technology Roadmap for Semicon-
ductors (ITRS).http://www.itrs.net, 2007.

[14] J.T.Buck.Scheduling Dynamic Dataflow Graphs with Bounded Memory Using the Token Flow Model.
PhD thesis, Department of EECS, University of California, Berkeley, CA 94720, 1993.

[15] G. Kahn. The semantics of a simple language for parallelprogramming.Information Processing, pages
471–475, 1974.

[16] E. A. Lee and A. Sangiovanni-Vincentelli. A Framework for Comparing Models of Computation.IEEE
Transactions on Computer-Aided Design of Intergrated Circuits and Systems (TCAD), 17(12), Dec.
1998.

[17] MoC wikipedia.http://en.wikipedia.org/wiki/Model of computation.

[18] T. Murata. Petri nets: Properties, analysis and applications. 77(4):541–580, April 1989.

[19] J. V. T. of ITU-T and I. J. 1. Draft ITU-T Recommendation and Final Draft International Standard
of Joint Video Specification (ITU-T Rec. H.264 — ISO/IEC 14496-10 AVC). Document JVT-G050r1,
2003.

[20] T. M. Parks.Bounded Scheduling of Process Networks. PhD thesis, Electrical Engineering and Com-
puter Science, University of California, Berkeley, December 1995.

[21] J. L. Peterson. Petri Nets.ACM Computing Surveys, 9(3):223–252, September 1977.

[22] I. E. G. Richardson. H.264/MPEG-4 Part 10 White Paper.http://www.vcodex.com/, 2002.

[23] A. Sangiovanni-Vincentelli. Quo Vadis SLD: Reasoningabout Trends and Challenges of System-Level
Design.Proceedings of the IEEE, 95(3):467–506, March 2007.

20

http://www.itrs.net
http://en.wikipedia.org/wiki/Model_of_computation
http://www.vcodex.com/

[24] G. Schirner and R. D̈omer. Result Oriented Modeling - A Novel Technique for Fast and Accurate
TLM. IEEE Transactions on Computer-Aided Design of IntergratedCircuits and Systems (TCAD),
26(9):1688–1699, 2007.

[25] F. Vahid, S. Narayan, and D. D. Gajski. SpecCharts: A VHDL frontend for embedded systems.IEEE
Transactions on Computer-Aided Design of Intergrated Circuits and Systems (TCAD), 14(6):694–706,
June 1995.

[26] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra. Overview of the H.264/AVC video coding
standard.IEEE Transactions on Circuits and Systems for Video Technology, 13(7):560–576, 2003.

[27] G. Zhou. Dynamic Dataflow Modeling in Ptolemy II.Technical Memorandum No. UCB/ERL M05/2,
University of California, Berkeley, CA, 94720, USA, December 2004.

21

	1 Introduction
	1.1 System-level Design
	1.2 Abstract Modeling

	2 Related Work
	2.1 Model of Computation
	2.1.1 Kahn Process Network
	2.1.2 Petri Net
	2.1.3 Dataflow Graph and Finite State Machine
	2.1.4 Program State Machine
	2.1.5 Transaction Level Modeling (TLM)

	2.2 Modern C-based SLDLs

	3 Problem Definition
	4 ConcurrenC MoC
	4.1 Relationship to C-based SLDLs
	4.2 ConcurrenC Features
	4.2.1 Communication & Computation Separation
	4.2.2 Hierarchy
	4.2.3 Concurrency
	4.2.4 Abstract Communications (Channels)
	4.2.5 Timing
	4.2.6 Execution

	4.3 Communication Channel Library
	4.4 Relationship to KPN and SDF
	4.5 ConcurrenC-based Design Flow

	5 Experiment
	6 Conclusion
	6.1 Future Work

	References

