C Center for Embedded Computer Systems
S University of California, Irvine

ConcurrenC: A Novel Model of Computation
for Effective Abstraction of C-based SLDLs

Weiwei Chen, Rainer Bmer

Technical Report CECS-09-07
May 27, 2009

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA
(949) 824-8059

{weiweic, doemef@uci.edu
http://www.cecs.uci.edu/

http://www.cecs.uci.edu/

ConcurrenC: A Novel Model of Computation
for Effective Abstraction of C-based SLDLs

Weiwei Chen, Rainer Bmer

Technical Report CECS-09-07
May 27, 2009

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA
(949) 824-8059

{weiweic, doemer@uci.edu
http://www.cecs.uci.edu

Abstract

System design in general can only be successful if it is basexdsuitable formal Model
of Computation (MoC) that can be well represented in an etedde System-level Description
Language (SLDL) and is supported by a matching set of des@s.tWhile C-based SLDLs are
popular in system-level modeling and validation, currer flows impose almost arbitrary re-
strictions on the synthesizable subset of the supported. SAProperly aligned and consistent
system-level MoC is often neglected or even ignored.

In this report, we motivate the need for a well-defined MoCyistean design. We discuss
the close relationship between SLDLs and the abstract rmdtey can represent, in contrast
to the smaller set of models the tools can support. Basedesetfindings, we then propose
a novel MoC, calledConcurrenCthat defines a clear system level of abstraction, aptly fits
system modeling requirements, and can be expressed pyetiseoth SystemC and SpecC
SLDLs. Using a H.264 video decoder example, we demonstoateéhe proposed ConcurrenC
MoC fits the features and characteristics of a real-world edded application.

This work has been supported in part by NSF Grant #0747523

http://www.cecs.uci.edu

Contents

1 Introduction 1
1.1 System-levelDesign e 2
1.2 Abstract Modelin\g 3
2 Related Work 5
2.1 Model of Computation e 5
2.1.1 Kahn Process Netwd)rk 5
2.1.2 POUINEL . o oot ot 6
2.1.3 Dataflow Graph and Finite State Machine 6
2.1.4 ProgramStateMachine. 7
2.1.5 Transaction Level Modeling (TLM) 8
2.2 Modern C-based SLDLS . . . v o v v 8
3 Problem Definition 8
4 ConcurrenC MoC 10
4.1 Relationshipto C-based SLDLs 01
\4.2 ConcurrenC Features i i i it e e e e e 11
4.2.1 Communication & Computation Separation 11
4.2.2 Hierarchy e e e e e 12
4.2.3 CONCUIENCY . . . i i i i i i e e e e e e e e e e e e e s e 12
4.2.4 Abstract Communications (Chann\els) 13
425 TiMING e e e e e 13
4.2.6 EXECULON . . . o o o oo oo 13
4.3 Communication Channel Library 31
4.4 Relationship o KPNand SDF v o oo e e 14
4.5 ConcurrenC-based DesignFlow 15
5 Experimenﬂ 15
6 Conclusion 19
6.1 FUUIE WOTK .« o o o oo e e e e e 19
References 19

ConcurrenC: A Novel Model of Computation
for Effective Abstraction of C-based SLDLs

Weiwei Chen, Rainer Dbmer

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

{weiweic, doemef@uci.edu
http://www.cecs.uci.edu

Abstract

System design in general can only be successful if it is based on a sudahkd Model of Com-
putation (MoC) that can be well represented in an executable SystehBleseription Language
(SLDL) and is supported by a matching set of design tools. While C-l&isbtds are popular in
system-level modeling and validation, current tool flows impose almbistaay restrictions on the
synthesizable subset of the supported SLDL. A properly aligned arsistent system-level MoC is
often neglected or even ignored.

In this report, we motivate the need for a well-defined MoC in system desigrisdlss the
close relationship between SLDLs and the abstract models they carsesprén contrast to the
smaller set of models the tools can support. Based on these findingsew@rtipose a novel
MoC, calledConcurrenCthat defines a clear system level of abstraction, aptly fits system modeling
requirements, and can be expressed precisely in both SystemC ard SpBLs. Using a H.264
video decoder example, we demonstrate how the proposed ConCuvtef fits the features and
characteristics of a real-world embedded application.

This work has been supported in part by NSF Grant #0747523

1 Introduction

Embedded system is one of the most popular computational systems in oemtdaformation
era. With applications ranging from portable media player to medical equipieotsconsumer

http://www.cecs.uci.edu

electronic devices to communication satellites, from real-time automotive applisdatidmghly-
reliable space transportation systems, embedded system has a profoaoet éGmmur everyday
life.

An embedded system is a special-purpose computer system which is desigrezform one
or multiple functions. It usually has tight constraints on its size, power, timind,cst. With
the development of semiconductor technology, embedded systems gain adeerme@mount of
functionality and processing ability by integrating multiple components / intelleptoglerties (IP)
onto a single Multi-Processor System-on-Chip (MPSoC). The complexityeafythtem is growing
rapidly with the increasing of those integrated components which have teeproperly and run
in parallelism. Due to the complexity and tight constraints of the expected systsigndengineers
are facing great challenges to build up a satisfactory system within at#herto-market design
period.

According to the 2007 edition of the International Technology Roadmajséoniconductors
(ITRS) [13], system-level design, listed as one of the top overall detighenges for productivity,
is a promising solution to improve the design productivity. Critical factors ireloigh level of
abstraction and platform-based design. Systems have been desciiliféetant abstraction levels
(block diagram, state charts, program model, etc.) but with mismatching dasigmation tools
for many years. A new matching abstract system model is needed to simgifyngéncluding
simulation, estimation, synthesis, verification, implementation, and design spgaoeation [13].

In this report, we aim to establish a properly aligned relation between thedhseatial ingre-
dients for successful system design, namely (1) a suitable formal Mb@simputation (MoC), (2)
an executable System-level Description Language (SLDL), and (3) @imgtset of design tools.

1.1 System-level Design

Figure 1 illustrates that the need of additional software required fomrzaedis doubling every ten
months, and the capability of technology is doubling every thirty-six months. ©wotter hand,
since the hardware productivity improved over the last several ygapsiting multiple cores on
to a single chip, the productivity especially for hardware-dependdmaie is far behind which is
doubling only every five years. Thus System-on-Chip design prodtycti@nnot follow the speed
of the nanoelectronics technology development which is characteriZgidbre’s Law. As a result,
an additional higher level of abstraction - the so-called System Levaduldtbe introduced and
utilized.

Sangiovanni-Vincentelli mentioned in [23] that system-level design is plaséd level above
RTL including both HW and SW design”. More specifically, System-leveigiess defined to
“consist of a behavioral (before HW/SW patrtition) and architecturadlléfter)” and is claimed to
increase productivity by 200K gates/designer year.

According to ITRS 2007, at system-level, silicon resources are definéerms of abstract
functions and blocks. Abstract functions are related with embeddedazefte.g. embedded coded
high-level and assembly programming language, configuration data, eid.blacks are related
with embedded hardware, e.g. processing cores, buses, periphecalsfigurable components,
etc. Hardware (HW) corresponds to implemented electronic circuit commpgnehile software

log # | Additional SW required for HW

P 2x10 maonths
LoC SWiChip
Gates/Chip
Technology capabilities
Gates/Day 2436 months
LoC/Day

HW design productivity
Filling with IF and memary

HW design productivity

— = == == SV Broductivity
2x/5 years

time

1981
1985
1989
1993
1997
2001
2005
2009
2013
2017

Figure 1: Hardware and software design gaps over time [13]

(SW) corresponds to those logic abstract functions performed on tteséige. A whole embedded
system should be a well designed integration of hardware and softieanerms.

There are two independent degrees of design freedom, behaviarelnitecture, where the
aggregate of behavior defines the function of a system and the atgdgarchitecture defines
the system platform. Platform mapping from system functionality onto platfochmtacture is the
major task of embedded system-level design due to the special purposgharubnstraints of the
embedded systems. Now, this task becomes more difficult with the increastedhsyomplexity
and heterogeneity [13].

ITRS 2007 also mentioned that systems have been reasoned abowgrandifibstraction levels
(block diagram, state charts, program model, etc.) but with little support sifjideautomation
tools for many years. Such situation should be changed in the near futachittye proper design
productivity. New abstract system models are needed to simplify desigs) taskiding simulation,
estimation, synthesis, verification, system implementation, and design spdosaggn [13].

Figure 2 predicts that the research for HW-SW co-design and verificaiibbe required until
2010 and the development of such technology will be underway till 201derefore, system-
level design methodology research is a necessary, promising, antelongioal for semiconductor
industry.

1.2 Abstract Modeling

A model is the abstraction of reality. An embedded system model is the repaen of actual and
intended characteristics of the whole system. Only a well-defined model fldtte¢he essential

3

2007 2010 2013 2016 2019 2022
] 2008 200 | 2011 2002 | 2014 2o | 2017 2ms | 20m0 2021 |

Systemtlevel conponent reuse

— AAANANNNNNNANANANNNNNN
| RERERER
AN \|_\\\\\\\,\\\\\\\\

Chip-package co-design methods,

D Pt e | \\E\\l\\\;\\:\\|\\\§\\:\‘
On-chip network design methods \\\\\\\\\\\\\\\\\
et sinalFE verticaton \\\\\ \\\\\\\\\\\\\\
Automsted merace syniness | \\\\\\\\\\\\\
o e i \\,\\\\\\\\\\
blanning (AVE, R NV, .. n xi\\\|\\xl\\

This legend indicates the fime during which research. development, and qualification/pre-production shouid be taling place for the solution

Figure 2: System-level design potential solutions [13]

features of the system and provides the possibility for efficient systsigrdand implementation.

In system-level design, abstract modeling is of most importance. A prbg&aation and spec-
ification system model is key to accomplish efficient design tasks, includindatiomny estimation,
synthesis, verification, design space exploration, and the final sfatesplementation. The need
of abstract models is significant since it is the foundation of the followinigdesasks. However,
a lot of research tasks have focused on the steps after the systdfitapen phase, such as syn-
thesis and verification. Little has been done on modeling itself. The complexite aystem is an
obstacle. Another challenge is that the quality of the model cannot be s$tomiglrd measured and
compared.

The level of abstraction is an essential issue for modeling. A good modaldheflect the
essential functions and properties of the system and hide those implemed&tidsiwhich distract
from the system-level view and increase the difficulty of the design tasleally, multiple well-
defined abstraction levels are needed to enable gradual system refirserdesynthesis by adding
more details at each step. In other words, a good abstraction level sktaildonly those features
desired by the current job, and abstract away the other unnecessaitg.

2 Related Work

There has been considerable effort on the improvement of systerndé&gated work exists on
many models of computation and SLDLs, as well as existing system design flows

2.1 Model of Computation

Edwards et al. argue in [5] that the design approach should be bagbd ase of formal methods
to describe the system behavior at a higher level of abstraction. A Md@dmputation (MoC) is

such formal method for system design. MoC is a formal definition of thefsdlioovable operations
used in computation and their respective costs [17]. This defines theibebbthe system as at a
certain abstract level to reflect the essential system features. Mderedif models of computation
have been proposed for different domains. An overview can baifouf®] and [16].

2.1.1 Kahn Process Network

Kahn Process Network (KPN)is a deterministic MoC where deterministic processes are con-
nected by unbounded FIFO communication channels [15]. The outpued{PN network does
not depend on the execution order of the processes. Thereforgjuttésflexible to schedule a
KPN network. For a KPN system, no global scheduler is needed andtiiteop&ng over a number

of KPN components is a simple task since the control is distributed to individoakpses. Data
exchanges are distributed over FIFO channels between processiegefore resource contention

is avoided. However, unbounded FIFOs are not realistic for redEvimplementation. Artificial
deadlock may occur if the FIFO bounds are not safely designed. $°hawe been provided that in
general it is an undecidable problem to test whether a KPN is strictly bowordwest [20].

Dataflow Process Network (DFPN)20], is a special case of KPN in which dataflow can be
shown as a process network and the size of the communication bufferariddzh A variety of
dataflow models are proposed and studied over the years. Lee andrbtdsnitt [[3] discussed
Synchronous dataflow (SDK) which each actor consumes and produces a fixed number of tokens
on each port of each firing and static scheduling is possible on a singlegsar and on multiple
processors in parallel. Engels et al. [7] propo§sio-static dataflowvhose actors’ consumption
and production rates vary in a cyclic but predetermined pattelaterochronous dataflow (HDF)
[11] by Girault and Lee composes finite state machine (FSM) with SDF, alloadtays to change
their rate signatures between global iterations of a mo@ekameterized Synchronous dataflow
(PSDF)[1] discussed by Bhattacharya and Bhattacharyya is an extensiondireyious dataflow
which is suitable for reconfiguration. Buck [14] proposedBoelean dataflow (BDFR)hich allows
the use of dynamic actors, like BooleanSelect and BooleanSwitch, andigfwmplete so that
the static analysis does not guarantee that the scheduling algorithm wijlsabwaceed. Zhou [27]
discusseddynamic dataflow (DDFhich adopts runtime analysis without answering the question
of deadlock analysis and boundedness statically.

Software/hardware integration medium (SHIM) [6] is a concurrent asynchronous determin-
istic model which is essentially an effective KPN with rendezvous communicéioheteroge-
neous embedded systems. According to Edwards et al. [6], concyresynchronicity and deter-

minism are the three major characteristics of the SHIM model. Concurrencglstbe cooperating
work among those hardware components and software modules. Aswittyrallows the abstrac-
tion of the software details in order to deal with the difficulty in predicting thévgarie timing issues
due to the complexity in instruction interaction at the low level architecture, likbesapipeline,
branch predictions. Determinism ensures the behavior of the simulator, semplfbugging due to
the bug reproduction, and provides benefits for formal verificationeycing the number of the
possible behaviors and computational burden.

While these MoCs are popular for modeling signal processing applicatioegare not well-
suited for controller applications.

2.1.2 Petri Net

Petri Net, an abstract, formal model of information flow, is a state-oriented hieicicmodel,
especially for systems that are concurrent, distributed, asynchropatalel, non-deterministic,
or stochastic activities [21]. The Petri net model consists of a set oéplar set of transitions,
and a set of tokens. Tokens reside in places, and circulate througthtie met, being consumed
and produced according to transition fires. As a mathematical tool, it is pedsilset up state
equations, algebraic equations, and other mathematical models governimghthaor of systems
by using Petri Net [18]. Petri nets have a great ability to model diffesgatems, like computer
hardware, computer software, concurrent systems. They also teabithy to describe a system
hierarchically by replacing an entire net by a single place at a more ablstvat; or a transition,
or represent places and transitions by subnets to provide more detaéimefit. However, Petri
nets are uninterpreted models which means in general no meaning is attadhedptaces and
transitions in the net and it deals only with the abstract features inherer& girticture of the net.
Petri net can also quickly become incomprehensible with a system complexibagec

2.1.3 Dataflow Graph and Finite State Machine

Dataflow Graph (DFG) and its derivatives are MoCs for describing computational intensive sys
tems [10]. DFG is a directed graph consisting of nodes where the nopleseat operations or
functions, and the arcs represent data flow through the graph. DF@l magltwo principles: asyn-
chrony and functionality. The asynchrony principle states that all dipesacannot be executed
until the required operands are available. This implies the data dependetity system. The
functionality principle states that all operations behave as functions whbictothave any side ef-
fects. It means that any two enabled operations can be executed in edberar in parallel. DFG

is excellent for representing computations described by complex functibissvery popular for
describing DSP components and systems. However, DFG is not suitablgésent control parts
which are commonly found in most programming languages.

Finite State Machine (FSM)is popular for describing control systems and is widely adopted
in hardware design since the temporal behavior of the system can natgalgpresented in the
form of states and transitions [10]. The FSM model consists of a settesst set of transitions
between states, and a set of actions associated with these states or tanBbhis simple and
easy for design, implementation and execution. Given a set of inputs anovanlcurrent state,

the state transitions can be predicted and thus allow easy testing. FSM alsachegnsfer from

a meaningful abstract representation to a specific implementation. It is flégildeplement a

FSM-based system in different topology, and it is easy to incorporatg otaer techniques. FMS
also has some limitations. The conditions for state transitions are fixed anot cendynamically

changed. Larger systems implemented by using FSM can be difficult to mandgeaintain since
the model becomes incomprehensible when the complexity of the system agréasthermore,
FSM should only be used when a systems behavior can be decomposeépatats states with
well defined conditions for state transitions. It is not easy to clearly agpdifferent states for real
systems at different abstraction level.

Several new models of computation are discussed in [10] based on FS&&tal¢he modeling
ability. In order to describe systems that require both control and comput&®M and DFG
are combined to fornfFinite-State Machine with Datapath (FSMD) . FSMD is the extended
definition of a FSM by including a datapath with the set of datapath variablest and outputs
added. In order to get a concise behavior specification, a superstdatediced to extend FSMD by
merging programming language models to formghperstate Finite-State Machine with Datapath
(SFSMD)in which each state can represent any number of clock cycles and trediope in each
superstate are specified by a function or procedure written in a cer@irgmnming language, or by
mathematical expressions. The SFSMD model is suitable for describingtibeibes for behavioral
synthesis [10]. In order to eliminate the potential for the state and arc éxp)dserarchical and
concurrent systems with FSM models, an extension of FSM model dailiearchical concurrent
finite-state machine (HCFSMis proposed by adding the support for hierarchy and concurrency
In the HCFSM each state can be further decomposed into a set of sulsstated hierarchy can
be modeled, and each state can also be decomposed into concurréatesiifvghich can execute
concurrently and communicate through global variables. HCFSM modellisuited to represent
complex control systems without complex data structures [10].

2.1.4 Program State Machine

Program-state machine (PSM)25] is an extension of FSM that supports both hierarchy and con-
currency, and allows states to contain regular program code. It comtfiredescription of both
hardware and software models. The PSM model contains hierarchmgigpn-states and a set
of transition arcs. Program-states are eitt@npositeones, which can be further decomposed into
concurrent or sequential substatedearf ones, which are at the bottom of the hierarchy and contain
computations described with programming language statements. Transiti@remmtained in a
sequentially decomposed program-state to represent the sequenciegibéte/program-substates.
At the bottom of the hierarchy, there are those leaf states. A PSM canastome the primary
limitation of programming languages, since it can model states explicitly [10]. P&Mbe cap-
tured by both SpecCharts (an extension of VHDL) and SpecC (an éxteosC) programming
languages.

2.1.5 Transaction Level Modeling (TLM)

Transaction-level modeling (TLM) [12] is a well-accepted approach to model digital systems
where the implementation details of the communication and functional units ar@abdtiand
separated. At the transaction level, the emphasis is more on the functiondlity d&ta transfers
and less on their actual implementation. TLM abstracts away the low level sgsteiits about pins,
wires and waveforms, which results in a model that executes dramaticatly fiaan synthesizable
models. However, this benefit generally comes at the price of low agcurageneral, TLMs pose
a trade-off between simulation speed and simulation accuracy. High simulaged gptraded in
for low accuracy, and a high degree of accuracy comes at the prievapeed. Having both
high speed and high accuracy at the same time requires sophisticated madelisgnly possible
in special situations [24]. TLM is mainly used for communication simulation but thekpath to
vertical integration of the models for implementation and synthesis. It is poputarot yet a well-
defined MoC since it does not have any specific definition of the abstndetiel nor transaction
semantics. Moreover, TLM does not specify a well-defined MoC, Higs®n the system design
flow and the used SLDL to define the details of supported syntax and semantic

2.2 Modern C-based SLDLs

System-level description languages (SLDL), like SpecC [10] and Sys{é®iCare available for
modeling and describing an embedded system at different levels ofahsira

SpecCis a system level description language (as well as a system level desigodwoiety).
SpecC is a superset of ANSI-C. SpecC includes support for thraputation models: concurrent
sequential processes (CSP) for software, finite state machine with tha{&®MD) for hardware
and discrete event (DE) for protocols [10], by introducing new datecsires, like behaviors, inter-
faces, and communication channels.

SystemCis the de-facto standard SLDL, supported by the Open SystemC Initiatigea C++
language library for system modeling. It builds systems from Verilog- ardM-like modules,
each of which have a collection of 1/0O ports and instances of other modul@®oesses written
in C++. It uses a discrete-event simulation model, and is quite flexible to iht@rdcby general
programming languages [4].

However, both C-based SLDLs do not define any details of an actsajrdédow. Moreover,
there is a lack of efficient system-level formal models behind these SLDLs.

3 Problem Definition

For system-level design, the importance of abstract modeling cannotebbemphasized. Proper
abstraction and specification of the system model is a key to accuratefaehefstimation and
the final successful implementation.

Digital circuit design provides a good example to show the importance of adeBiled model
of computation. Designers describe the hardware components in hardeseription languages
(HDL) like VHDL and Verilog. Both languages have strong abilities to suppdferent types
of hardware structures and functionalities. By using the HDL, desigreraise FSMs to model

8

Abstraction Schematicyg Language MoC Tool
Level
VHDL, FSM, Synopsys Design Compiler
RTL @ Verilog FSMD Cadence RTL Compiler
O SpecC, PSM, SoC Environment [2]
System T SystemC TLM (?) Synopsys System Studig
ConcurrenC !

Table 1: System-level design in comparison with the well-established RTLrdesig

synthesizable controllers or other parts of their design. FSM plays @&ctrote in digital circuit
design as a formal model behind the hardware description languageFSMeMoC allows the
designer to describe their components in an efficient and accurate tago lhelps the synthesis
tools to have a better understanding of the behavior and characteridtiesinfplemented circuit.

The importance of the model for system design is the same as for digital logjgndédue to
the complexity of the system, which integrates multiple hardware componentsigads/software
processes together, a formal model is needed to clearly describe thel dgtitures and ignore
unnecessary details.

Note that commercial computer aided design (CAD) tools cannot synthdbkihe & HDL /
Verilog statements into a real hardware netlist. Special design guidelinpsoaided together with
the CAD tools to restrict the designer from using specific syntax elemertts poevent generation
of improper logics, e.g. latches. For system-level design, guidelinedssarex@eded for building
systems by use of those SLDLs for efficient execution of the followinigdesasks by the tools.

Table 1 compares the situation in system-level design against the mature mesigriology at
the register-transfer level (RTL). RTL design is supported by the gthdoiCs of FSM and FSMD,
and well-accepted "coding guidelines” exist for the HDLs VHDL and Vayjleo that established
commercial tool chains can implement the described hardware. It is imptotaotice that here
the MoC was defined first, and the coding style in the respective HDLs fetlave needs of the
MoC.

At the system level, on the other hand, we have the popular C-basedsSkytemC and SpecC
which are more or less supported by early academic and commercial to@sRAg, the languages
are restricted to a (small) subset of supported features, but theseliingogi@idelines” are not very
clear. Moreover, the MoC behind these SLDLs is unclear. SpecC isedeafincontext of the PSM
MoC [10], but so is SpecCharts [9] whose syntax is entirely differemtt $ystemC, one could
claim TLM as its MoC [12], but a wide variety of interpretations of TLM exists.

We conclude that in contrast to the popularity of the C-based SLDLs &iesylevel model-
ing and validation, and the presence of early design flows supportegidting tools, the use of
a well-defined and consistent system-level MoC is neglected or even delyptgored. As a re-
sult, serious restrictions are imposed on the usable (i.e. synthesizablerifiable) subset of the
supported SLDL. Without a clear MoC behind these syntactical "modelingiadines, such restric-
tions appear almost arbitrary. Clearly, a well-defined and formal modedddad for the modern

system description languages to improve and simplify the system design deallen

4 ConcurrenC MoC

In the following, we discuss the close relationship and tight dependenetasén SLDLs (i.e.
syntax), their expressive abilities (i.e. semantics), and the abstract niloglelsan represent. At the
same time, we will point out that, in contrast to the large set of models the SLDHe&scribe, the
available tools usually support only a small subset of these models. Intoraoid this discrepancy
that clearly hinders the effectiveness of the system design methodalegy,opose a novel MoC,
called ConcurrenC, that aptly fits both the system modeling requirementseandghbilities of the
supporting tool chain.

Generally speaking, we propose ConcurrenC as a system-level R8Ns@n with support for
concurrency and hierarchy. As such, it falls into the program-state imedfhoC category. The
ConcurrenC model has clear separation of concerns on computati@ormmalunication.

In the realm of computation abstraction, the ConcurrenC model considtsttbchannels, and
interfaces, and fully supports structural and behavioral hieralwgks can be flexibly composed
in space and time to execute sequentially, in parallel/pipelined fashion, orebgfistate transi-
tions. The blocks themselves are internally based on C, the most popuipamming language
for embedded system design.

In the realm of communication abstraction, ConcurrenC is intentionally restriota set of
predefined channels that follow a typed message passing paradigm,tnaheising user-defined
freely programmable channels.

ConcurrenC is also platform-agnostic. It will not contain any details abimuplatform and
hardware components used. Void of any implementation details other thaiohaiity will make
it possible for a ConcurrenC model to freely map to any platform in later desteps.

4.1 Relationship to C-based SLDLs

More specifically, ConcurrenC fits into the SpecC and SystemC SLDLs. Aanadormal model,
ConcurrenC abstracts the embedded system features and providegualiedines for the designer
to efficiently use the SLDLSs to build a system. On the other hand, the Con€limedel is captured
and described by using the SLDLs. In other words, ConcurrenC issepted in C-based SLDLs.
Figure 3 shows the relationship between the C-based SLDLs, SystemCpaon@,Sand the
MoC, ConcurrenC. ConcurrenC is a true subset of the MoCs thateae$cribed by SpecC and
SystemC. This implies that ConcurrenC contains only those model featuteaithiae described by
both SpecC and SystemC. For example, exception handling, i.e. interdugbartion, is supported
in SpecC by using thiey-trap syntax, but SystemC does not have the capability to handle exceptions
explicitly. On the other hand, SystemC supports the feature of waiting fortaircéime and for
some events at the same time, but SpecC does not have such ability. Asishéiguare 3, such
features which can only be supported by one SLDL, will not be includélderConcurrenC model.
Moreover, ConcurrenC excludes some features that both SpecCyatahf& can support (the
shadow overlap part in Figure 3). We exclude these to make the Con€umedel more concise

10

and convenient for modeling and design space exploration. For exaagplaentioned before,
ConcurrenC will restrict its communication channels to a predefined libeaher than allowing
the user to define the channels freely by themselves. This allows tools gmieeohe channels and
implement them in optimal fashion.

MoCs

Exception Handling .
(i.e. interrupt, abortion), Des tive

Capability

Abstraction

User-defined Channels

*Try-trap

SLDLs SLDLs

Figure 3: Relationship between C-based SLDLs: SystemC and Spec®laidConcurrenC

4.2 ConcurrenC Features

A ConcurrenC Model can be visualized in four dimensions, as shown iwéfigg There are three
dimensions in space, and one in time. The spatial dimensions consist of twostbmefor struc-
tural composition of blocks and channels and their connectivity througts pad signals (X, Y
coordinates in Figurel4), and one for hierarchical composition (Z-axigare 4). The temporal
dimension specifies the execution order of blocks in time, which can be rsgjuer FSM-like
(thick arrows in Figure 4), parallel (dashed lines in Figure 4), or pipdl{dashed lines with arrows
in Figure 4).

More detailed features of the proposed ConcurrenC MoC are distusee following subsec-
tions.

4.2.1 Communication & Computation Separation

Separating communication from computation allows “plug-n-play” featureaeeobmbedded sys-
tem. In ConcurrenC, the communication contained in channels (shown ageliipEigure 4) is
separated from the computation part contained in blocks (shown asgatztablocks with rounded
corners in Figure 4). The purpose of each statement in the model caeanly adentified whether

11

| Temporal Dimension
—)

Spatial Dimension

Execution Order

Hierarchy ~

Figure 4: Visualization of a ConcurrenC Model in three spatial and onedexhgimensions

it is for communication or computation. This also helps for architecture refinearel hardware
software partitioning.

4.2.2 Hierarchy

Hierarchy eliminates the potential explosion of the model size. It helps fopoehensible model-
ing of complex systems. This can be easily seen in Figure 4 where a singt@plafmuch easier
to understand than the entire system across all levels.

4.2.3 Concurrency

The need for concurrency is apparent. A common embedded system valhmaltiple hardware
units work in parallel and cooperate through certain communication mechanisniSigure 4,
parallel execution is shown by dashed border lines across a platform.

Pipelining is a special kind of parallelism. It is a common technique to improve ficeeaty
for both hardware and software. ConcurrenC explicitly supports thaipipg feature in order to
provide simple and clear description of the intended system concurrémdyigurel 4, we show

12

pipelining as dashed border lines combined with thick arrows indicating thénagw.

4.2.4 Abstract Communications (Channels)

A predefined set of communication channels is available in Concurren@eaimplicity of system
modeling and further synthesis work. We believe that the restriction to finedechannels not only
avoids coding errors by the designer, but also simplifies the later refinasitegs, since the channels
can be easily recognized by the tools. More details will be discussed beldection 4.3.

4.2.5 Timing

The execution time of the model should be evaluated to observe the efficiEtheysystem. System
function calls written in C represent and maintain timing information since CoeicGrmodels are
internally pure C-based.

4.2.6 Execution

A model should be able to be executed in order to validate its correctnessbtaid performance
estimation. Since our ConcurrenC model can easily converted to Spe@&ysiainC, the execution
of the model is definitely possible.

4.3 Communication Channel Library

There are two kinds of communication channels: data transfer chanhslyachronization chan-
nel. Channel properties, like blocking mode, data type support, datderapport, flow direc-
tion, buffer size, and communication parties, should be considered to baddthprehensive but
minimum set channel library. Moreover, in SpecC SLDL, we have threeetaaaf communica-
tion: shared memory, message passing (via function calls to channel metiodigrotocol stack
(via hierarchy channels). Since protocol stack is just a hierarchizairel, we could reduce the
communication library to shared variables (for shared memory) and some@kgainmunication
channels (for data transfer, message passing and protocol stadkdpyiidcluding channels for
synchronization and data transfer.

As for data transfer channels, we limit the ConcurrenC channels to éradsfa in FIFO fash-
ion. FIFO channels are adopted in many MoCs, including KPN, SDF, antflSiH many cases,
such channels make the model deterministic and allow static scheduling. Fqrtkéblffer size
is infinite (Q.), however, this is not practical for real-world applications despite of dGsgrful
deterministic and deadlock-free property. For SDF, the buffer sizedd fi@,) which is more prac-
tical for real-world systems. Double handshake communication mechanisich Wbhaves in a
rendezvous fashion, should also be supported. This can be sediF® with buffer size of zero
(Qo). Signals could be used to design a 1-N (broadcasting) channel. Fadiegrshared variables
are regarded as a special kind of communication channel without anyirbsiltichronization that
is often convenient (especially in software).

As for pure synchronization channels, mutex, semaphore, critical setdken, and barrier are
often used. Mutex is a special semaphore with binary variable. The kegritical section is to use

13

a semaphore. Therefore, we can reduce both mutex and critical seciem#phores. Moreover,
FIFO channel can be used to implement a semaphore.

We conclude that ConcurrenC shodldupport the following predefined communication chan-
nel library. There are five types of channel3y, Qn, Q«, signal, and shared variable. Hefg,
stand for queue which behaves in FIFO fashion, and the indices. stands for zero, a certain
finite number, and an infinite buffer size in the queue, respectively. Taleows the proposed
parameterized channel library.

Channel Type | Receiver| Sender | Buffer Size
Qo Blocking | Blocking 0
Qn Blocking | Blocking n
Qoo Blocking - 00
Signal Blocking - 1
Shared Variable — — 1

Table 2: Parameterized Communication Channels

4.4 Relationship to KPN and SDF

With the features discussed above, it is quite straightforward to constirtkiPN and SDF MoCs
into ConcurrenC .
The conversion rules from KPN to ConcurrenC are listed as the pssadiin Algorithm 1.
Input: A general KPN model
Output: A ConcurrenC model with the same function

for all processes& KPN do
make ConcurrenC blocks
end for
for all channels E KPN do
make ConcurrenC channels of tyQe
end for
keep the same connectivity in ConcurrenC as in KPN
If desired, group processes in hierarchy and size the channeksafeworld implementatia
Algorithm 1 : Algorithm to convert KPN model into ConcurrenC

The conversion rules from SDF to ConcurrenC are listed as the psmatgon Algorithm 2.

1At this time, this decision is subject to further refinement in the future.

14

Input: A general SDF model
Output: A ConcurrenC model with the same function

for all actorse SDFdo

make ConcurrenC blocks
end for
for all arcse SDFdo

make ConcurrenC channels of tyRg (nis the size of the buffer)
end for
keep the same connectivity in ConcurrenC as in SDF.
If desired, group actor in hierarchy.

Algorithm 2 : Algorithm to convert SDF model into ConcurrenC

As such, ConcurrenC is essentially a superset MoC of KPN and Si3Fa lersatile and con-
venient vehicle to implement KPN and SDF into SpecC or SystemC, i.e. by usimgu@enC as
the intermediate MoC since ConcurrenC is straightforward to implement via testablished
SLDLs. Moreover, the strong formal properties of KPN and SDF, sisotieadlock-free guarantees
(KPN) and static schedulability (SDF), are still inherited when modeled in QoecC.

4.5 ConcurrenC-based Design Flow

The envisioned ConcurrenC is a MoC at system abstraction level. Systtords can be captured
and execution is possible for validation and simulation by modeling a system icu@enC and
converting the model to SpecC and/or SystemC SLDL in order to perfortrafesaccurate de-
sign space exploration. Furthermore, based on this flexible model, a sgatetre mapped to a
suitable target platform and implemented. Finally, the system can be syntheslzea prototype
implementation on an FPGA platform or a real MPSoC chip.

Figure 5 shows our envisioned design flow of ConcurrenC basedsystel design.

5 Experiment

The Advanced Video Coding (AVC) standard H.264, also known as MBEG a real-world ap-
plication for advanced video compression [19], [22]. Its high complefige availability, and
industry-size make it an ideal, realistic and challenging example for systeshdiesign. The H.264
standard includes both encoding and decoding for video streams witrediffesolution. We focus
on the decoding part in this section. Figure 6 shows the basic block diarfrdma H.264 decoder
algorithm.

The input of the decoder is an H.264 stream file, while the output is an uressgal YUV file.
The compressed input video stream, from the network or other media apph&d as the network
abstraction layer (NAL) unit, is first entropy decoded and reorderBoen the decoded data is
sent to inverse quantization and transformation, which means the outpudrdatatime domain
then. A picture frame is then rendered based on frame predictions. @feteo types of frame
prediction: intra-frame prediction (with motion compensation) and inter-framadigtion. How to
predict depends on the frame types in the input video streams. At any tinegtagncnumber of

15

Reference
Code

Recoding

3

Validation,
Estimation

ConcurrenC

Platform

Mapping
ROM Validation,
TLM-COMP Exploration
HW /SW /IF

Implementation

Validation,
Testing

Figure 5: Envisioned ConcurrenC System Design Flow

decoded frames will be stored for inter-frame prediction since thesequéed by their following
frames as references. In the final stage, the reconstructed videaragter the deblocking filter.

ConcurrenC modeling features can be easily applied to the H.264 degmiems Figure 7
shows our ConcurrenC model of the H.264 decoder.

e Hierarchy: At the top level of the ConcurrenC model, there are three behaviorekdlo
stimulus, decoder, and monitor The stimulus reads the input yuv file, while the monitor
receives and displays the decoded information, including signal-to-retise(SNR), frame
information, and system time, and writes those reconstructed frames intotfhg file.

Decodercontains multiple blocks for concurrent slice decoding. A stream progebsock
prepares the settingsdecode units decodeslices in parallel, and the decoding synchronizer
combines the decoded slices for output by the monitor. The number of thelstioglers is
scalable depending on the number of slices contained in one frame of thestrgam file.
Inside the slice decode blocks, sub functional blocks are modeled falethéded decoding
tasks, e.g. entropy decoding & reordering, inverse quantization &ftianation, motion
compensation & Inter-frame prediction, deblock filtering, and buffeitrodimg. Blocks are

in different colors for different levels in Figure 7. Hierarchical modelaipws convenient

16

Network Abstract

Layer wrapped Unit | Entropy Decode Inv. Quantization
& Reordering & Transformation

> 1 Deblock Filter }

A

Motion |
Compensation

A 4

<~ Buffer Control I
! Output
Intra- Buffer

Prediction

i — T

Figure 6: H.264 Decoder Algorithm Block Diagram

Reference
Frames

filename boat.264 coastguard.264
macroblocks/frame 396 396
frames 73 (2.43 secs) 299 (9.97 secs)
slices/frame 4 8 4 8
max # macroblocks/slice 150 60 150 60
model type seq | par | seq | par seq par seq par
host sim time (s) 4.223| 4.258| 4.557| 4.550| 12.191| 12.197| 12.860| 12.846
estimated exec time (s) 11.13| 4.43 | 11.49| 1.80 | 18.78 | 7.20 | 20.31 | 3.33
speedup 1 251 1 6.38 1 2.61 1 6.10

Table 3:; Simulation Results, H.264 Decoder modeled in ConcurrenC

and clear system description.

e Concurrency. [26] confirms that it is possible to have multiple slices in one frame being
decoded at the same time. Parallelism is also usable for rendering (intéctjore and intra-
prediction) and filtering (deblock filter) stages inside the slice decoding [8]

Consequently, our H.264 decoder model consists of multiple blocks faucant slice de-
coding for each picture frame. Additional parallelism is exploited inside thdenéng and
filtering stages, considering the properties of the filtering and transformaljorithms.

e Communication Abstraction: FIFO channels and shared variables are used for communica-
tion in our H.264 decoder model. FIFO gueues are used for data excbahgeen different
blocks. For example, the decoder synchronizer sends the decoaleel ¥ia a FIFO channel
to the monitor for output. Shared variables, i.e. reference frames, adetosimplify the
coordination for decoding multiple slices in parallel.

e Timing The decoding time can be observed by using timing function calls written in G(sinc

17

llllll D eL'ode
One Slice

Decode
One Slice

Decode
One Slice

QD Signal
D FIFO channel @D Shared Data Structure

Figure 7: ConcurrenC H.264 Decoder Diagram

the ConcurrenC model is internally C-based). We have obtained the estimatedtion
time for different hardware architectures by using simulation and profilialg tof the SpecC
SLDL.

e Execution We have successfully converted and executed our model using the I8@GrE=
ment [2].

Table 3 shows the simulation results of our H.264 decoder modeling in Cem€lirThe model
has been converted to SpecC and is simulated on a host machine with IntetRinRR) 4 CPU
at 3.00GHz. We have tested the decoder with two stream files, one withimadrand the other
with 299 frames. For each test stream, we have created two types of strealiees and 8 slices
per frame. We run the model by decoding the input streams in two ways: glgleeb (seq model),
and slices in one frame concurrently (par model). The estimated execution timeaisured by
annotating the timing information manually into the model according to the profilingstitation
results generated by the SCE tool with ARM7TDMI 400 MHz processor imagpf he simulation
results show that the application modeled by ConcurrenC is scalable. Higllgp is gained by
decoding the slices in the parallel fashion. We can expect that it is possideode the test streams

18

in three platform configurations in real-time when using the system runniag®®M7TDMI CPU
with 400 MHz (bold times).

6 Conclusion

In this report, we propose a hew model of computation, ConcurrenCghatited to C-based
SLDLs. ConcurrenC is a concurrent, hierarchical system modelmpatation with abstractions
of both communication and computation. The features of the new MoC and itienskaip with C-
based SLDLs have been discussed in detail. A real-world driver apiplic&l.264 decoder, which
is a suitable application with great complexity and industrial size, is used to dgratmhow the
proposed ConcurrenC features match the system design requirements.

We conclude that the proposed ConcurrenC will be a new MoC that apthditsystem-level
abstraction and can be captured by modern C-based SLDLs. As seexpact ConcurrenC to be
a practical solution to improving embedded system modeling and design.

Conceptually, ConcurrenC fills the gap between the theoretical MoCs KIENSBF, and the
practical SLDLs SpecC and SystemC.

6.1 Future Work

This report is only the beginning of a challenging research project. Whdeb#tsic ideas and
foundations have been laid, there are several milestones ahead. Watkii@cludes the definition
of a formal execution semantics of ConcurrenC, the design and implementétiorobust data
structure and software framework, and the integration with existing ordutesign flows and tool
suites. We look forward to solving these exciting challenges.

Acknowledgment

This work has been supported in part by funding from the Mati&cience Foundation under research grant
NSF Award #0747523. The authors thank the NSF for the vadusigbport.

References

[1] B.Bhattacharya and S.S.Bhattacharyya. Parametebataflow Modeling of DSP Systems. Inter-
national Conference on Acoustics, Speech, and Signal Bsaug Istanbul, Turkey, June 2000.

[2] R. Domer, A. Gerstlauer, J. Peng, D. Shin, L. Cai, H. Yu, S. Abdd &. D. Gajski. System-on-chip
environment: a specc-based framework for heterogeneossajesignEURASIP J. Embedded Syst.
2008(3):1-13, 2008.

[3] E.A.Lee and D. Messerschmitt. Synchronous Data Flow9)/5235-1245, September 1987.

[4] S. A. Edwards. Design Languages for Embedded Systeneini@al report, Columbia University, New
York, 2003.

19

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

S. A. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanmeéntelli. Design of Embedded Systems:
Formal Models, Validation, and Synthesiroc. of the IEEE85(3), Mar. 1997.

S. A. Edwards and O. Tardieu. SHIM: A Deterministic Modiet Heterogeneous Embedded Systems.
IEEE Transactions on VLSI Systerd(8):854—867, 2006.

M. Engels, G. Bilsen, R. Lauwereins, and J. Peperstragyelo-static data flow: Model and implemen-
tation. Proc. 28th Asilomar Conf. on Signals, Systems, and Computtages 503-507, 1994.

K. Fleming, C.-C. Lin, N. Dave, Arvind, G. Raghavan, andHicks. H.264 decoder: A case study in
multiple design points. liFormal Methods and Models for Co-Design, 2008. MEMOCODES2®th
ACM/IEEE International Conference pdune 2008.

D. D. Gajski, F. Vahid, S. Narayan, and J. Gon§pecification and Design of Embedded Systems
Prentice Hall, 1994.

D. D. Gajski, J. Zhu, R. Bmer, A. Gerstlauer, and S. Zhd@®pecC: Specification Language and Design
Methodology Kluwer Academic Publishers, 2000.

A. Girault, B. Lee, and E. A. Lee. Hierarchical FiniteaB Machines with Multiple Concurrency
Models. IEEE Transactions on Computer-Aided Design of Intergrai@duits and Systems (TCAD)
18(6), June 1999.

T. Grotker, S. Liao, G. Martin, and S. Swa8ystem Design with SystemQuwer Academic Publishers,
2002.

International Semiconductor Industry Associatiomternational Technology Roadmap for Semicon-
ductors (ITRS)http://www.itrs.net, 2007.

J.T.Buck.Scheduling Dynamic Dataflow Graphs with Bounded Memory ¢Jgie Token Flow Model
PhD thesis, Department of EECS, University of Californiarigley, CA 94720, 1993.

G. Kahn. The semantics of a simple language for paraiterammingInformation Processingpages
471-475, 1974.

E. A. Lee and A. Sangiovanni-Vincentelli. A Framewodt Comparing Models of ComputatiotEEE
Transactions on Computer-Aided Design of Intergrated @irccand Systems (TCAD}7(12), Dec.
1998.

MoC wikipedia. http://en.wikipedia.org/wiki/Model_of_computation.
T. Murata. Petri nets: Properties, analysis and appbos. 77(4):541-580, April 1989.

J. V. T. of ITU-T and I. J. 1. Draft ITU-T Recommendation and Final Draft Internationab8dard
of Joint Video Specification (ITU-T Rec. H.264 — ISO/IEC 1440 AVC) Document JVT-G050r1,
2003.

T. M. Parks.Bounded Scheduling of Process NetworR&D thesis, Electrical Engineering and Com-
puter Science, University of California, Berkeley, Decemb995.

J. L. Peterson. Petri NetACM Computing Survey8(3):223-252, September 1977.
I. E. G. Richardson. H.264/MPEG-4 Part 10 White Pajb¢tp://www.vcodex.com/, 2002.

[23] A. Sangiovanni-Vincentelli. Quo Vadis SLD: Reasonatgput Trends and Challenges of System-Level

Design.Proceedings of the IEEB5(3):467-506, March 2007.

20

http://www.itrs.net
http://en.wikipedia.org/wiki/Model_of_computation
http://www.vcodex.com/

[24] G. Schirner and R. bmer. Result Oriented Modeling - A Novel Technique for Fasd @ccurate
TLM. |EEE Transactions on Computer-Aided Design of Intergraatuits and Systems (TCAD)
26(9):1688-1699, 2007.

[25] F. Vahid, S. Narayan, and D. D. Gajski. SpecCharts: A {HBntend for embedded systemi&EE
Transactions on Computer-Aided Design of Intergrated @iscand Systems (TCAD)4(6):694—-706,
June 1995.

[26] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Lath©verview of the H.264/AVC video coding
standardIEEE Transactions on Circuits and Systems for Video Tedyyl3(7):560-576, 2003.

[27] G. Zhou. Dynamic Dataflow Modeling in Ptolemy ITechnical Memorandum No. UCB/ERL M05/2,
University of California, Berkeley, CA, 94720, US2ecember 2004.

21

	1 Introduction
	1.1 System-level Design
	1.2 Abstract Modeling

	2 Related Work
	2.1 Model of Computation
	2.1.1 Kahn Process Network
	2.1.2 Petri Net
	2.1.3 Dataflow Graph and Finite State Machine
	2.1.4 Program State Machine
	2.1.5 Transaction Level Modeling (TLM)

	2.2 Modern C-based SLDLs

	3 Problem Definition
	4 ConcurrenC MoC
	4.1 Relationship to C-based SLDLs
	4.2 ConcurrenC Features
	4.2.1 Communication & Computation Separation
	4.2.2 Hierarchy
	4.2.3 Concurrency
	4.2.4 Abstract Communications (Channels)
	4.2.5 Timing
	4.2.6 Execution

	4.3 Communication Channel Library
	4.4 Relationship to KPN and SDF
	4.5 ConcurrenC-based Design Flow

	5 Experiment
	6 Conclusion
	6.1 Future Work

	References

