
 Center for Embedded Computer Systems
 University of California, Irvine

Efficient Debugging and Tracing of System Level Designs

Eric James Johnson, Andreas Gerstlauer, Rainer Doemer

Technical Report CECS-06-08
May 8, 2006

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

ejjohnso@uci.edu, gerstl@ics.uci.edu, doemer@uci.edu

http://www.cecs.uci.edu

mailto:ejjohnso@uci.edu
mailto:doemer@uci.edu
mailto:gerstl@ics.uci.edu

Efficient Debugging and Tracing of System Level Designs

Eric James Johnson, Andreas Gerstlauer, Rainer Doemer

Technical Report CECS-06-08
May 8, 2006

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

ejjohnso@uci.edu, gerstl@ics.uci.edu, doemer@uci.edu
http://www.cecs.uci.edu

Abstract

System Level Design Languages (SLDL) have been created to address the unique needs
of system-on-a-chip (SOC) design. Among these needs are the ability to work from a
specification model, perform architectural explorations, and refine the models to come up with a
final model that may be synthesized into hardware and custom software components. The SpecC
language in particular was designed with these goals in mind.

Prior to the work described here, the SpecC design environment consisted of a compiler,
simulator, and EDA tools for exploring architectures and refining of models. Tools for debug
and analysis of simulations were not widely available. We describe the design and
implementation of new software APIs for debugging and new capabilities within the simulator
for producing simulation logs, which can be used as debugging tools and for performing system
architecture analysis. This work paves the way for more sophisticated analysis tools that hold
the promise of providing designers with better feedback for performing system architecture
explorations.

We also demonstrate that these new capabilities have been applied to real system
designs including ARM Processor models, AMBA and CAN bus models, and an industrial-
strength MP3 Audio Decoder design. Our results show that through the use of these
capabilities, debugging time has decreased dramatically, thus allowing designers to finish their
implementations in a more timely fashion.

mailto:doemer@uci.edu
mailto:gerstl@ics.uci.edu
mailto:ejjohnso@uci.edu

Table of Contents

List of Figures...v

List of Acronyms.. vii

Chapter 1: Introduction...1

1.1 System Level Design Languages and Simulation... 1

1.1.1 Background..1

1.1.2 Brief Introduction to the SpecC language... 3

1.2 Motivation..7

1.2.1 Basic Debug Functions..7

1.2.2 Simulator States...10

1.2.3 Tracing capabilities... 12

1.2.3.1 Production of Simulation Logs... 15

1.2.3.2 Goals for Tracing Implementation.. 16

1.3 Related Works... 16

1.3.1 Software Debuggers.. 17

1.3.2 Hardware Debuggers... 18

1.3.3 System Analysis Tools.. 19

Chapter 2: Debug Functions... 20

2.1 Possible Approaches for Software Debugging Capabilities..20

2.1.1 Symbol Table-Based Approach...20

2.1.2 Introspection-Based Approach.. 21

2.1.3 Comparison of Debug Techniques.. 22

2.2 Description of the Implementation.. 22

ii

2.3 The API..26

2.4 Short Examples..27

2.4.1 Example 1:...27

2.4.2 Example 2:...30

Chapter 3: Simulator State Functions...32

3.1 Behavior States.. 32

3.2 Implementation of Simulator State Functions...33

3.3 The API..34

3.4 Short Examples..36

3.4.1 Example 1:...36

3.4.2 Example 2:...38

Chapter 4: Tracing.. 41

4.1 Tracing Flow..42

4.1.1 “Do” Files..42

4.1.2 Code Generation..43

4.1.3 Value Change Dump (VCD) Files.. 46

4.1.4 System Value Change (SVC) Files... 49

4.2 Design and Implementation of Tracing Features.. 54

4.2.1 Code generator changes...54

4.2.2 Simulator changes... 55

4.2.3 Log File Writers.. 55

4.2.3.1 VCD file writer..55

4.2.3.2 SVC file writer.. 55

Chapter 5: Experiments and Results...57

5.1 Experiences of debug feature users... 57

iii

5.1.1 Case Study 1.. 57

5.1.2 Case Study 2 ... 58

5.2 Tracing experiences...60

5.2.1 Student Project.. 60

5.2.2 Mp3Decoder.. 61

Chapter 6: Summary and Future Directions... 65

6.1 Summary.. 65

6.1.1 Instance Identification at Runtime.. 65

6.1.2 Simulator State Observations at Run-time.. 66

6.1.3 Event Logging .. 66

6.2 Future Work...66

Bibliography... 68

Appendix A: API for Debug Functions.. 71

Appendix B: API for Simulator State Functions.. 72

Appendix C: SVC Event Commands..74

Appendix D: SVC EBNF..77

Appendix E: .Do File EBNF...79

Appendix F: Tracing API... 80

iv

List of Figures

Figure 1.1: The SpecC Methodology [22]...2

Figure 1.2: Basic Structure in a SpecC program [22]... 5

Figure 1.3: Examples of SpecC Behavioral Hierarchies [22]... 7

Figure 1.4: Screen Shot of the Microsoft Visual Studio Debugger in Action............................ 8

Figure 1.5: SpecC Design Compilation Flow..9

Figure 1.6: General Life Cycle of Behavior..12

Figure 1.7: An Example of a Trace of an RTL Model.. 13

Figure 1.8: Parallel Execution Visualization...15

Figure 2.1: Naming of Behaviors in a Simple Hierarchy..24

Figure 2.2: UML Class Diagram for Channels and Behaviors... 25

Figure 2.3: Debugging Functions.. 26

Figure 2.4: Parallel Behaviors Example..28

Figure 2.5: Channel Method With Debug Calls..29

Figure 2.6: Debug Output..30

Figure 2.7: Screen Shot of ddd Debugger Updating Debug Functions.....................................31

Figure 3.1: State Diagram for Behaviors in a System Design...33

Figure 3.2: Simulator State Functions...34

Figure 3.3: Length Functions.. 34

Figure 3.4: Queue and List Functions... 35

Figure 3.5: Print Queue List Functions... 36

Figure 3.6: Example Code Using print_simulator_state... 37

Figure 3.7: Output of print_simulator_state..38

Figure 3.8: Excerpt from Adder2.sc.. 39

v

Figure 3.9: Output Showing Ready Threads... 40

Figure 4.1: SpecC Tracing Flow... 42

Figure 4.2: Sample Do File..43

Figure 4.3: Generated Tracing Code... 45

Figure 4.4: VCD Header..46

Figure 4.5: VCD Variable Definitions.. 46

Figure 4.6: VCD Value Changes...47

Figure 4.7: Waveform Corresponding to Events in VCD File..48

Figure 4.8: State Diagram for Behaviors in a System Design...51

Figure 4.9: Sample SVC File...53

Figure 5.1: Screen Shot of DDD with Time and Active Instance Automatically Updating..... 59

Figure 5.2: Waveform of Student Example...61

Figure 5.3: Waveform from MP3 Decoder Example.. 62

Figure 5.4: Screen Shot of MP3 Decoder Signals as Seen in a Waveform Viewer..................62

Figure 5.5: Simulation Times.. 63

vi

List of Acronyms

API Application Program Interface. A set of routines and protocols for building software

applications.

BNF Backus-Naur Form. A metasyntax used to describe formal languages, especially

programming languages. Named after John Backus and Peter Naur.

DDD Data Display Debugger. A graphical front end that works with inferior debuggers such as

gdb.

EBNF Extended BNF. An extension of the Backus-Naur Form created by Niklaus Wirth in

order to promote readability and succinctness.

GCC Gnu Compiler Collection. A set of programming language compilers. Also common way

of referring to the GCC 'C' language compiler.

GDB Gnu Project Debugger. A command-line, source-level debugger for compiled languages

such as C, C++, Pascal, and Objective-C.

GUI Graphical User Interface. An interface to a software program that makes use of visual

elements such as icons, windows, and other gadgets.

vii

HDL Hardware Description Language. A programming language specifically designed for the

formal description of electronic circuits.

IDE Integrated Development Environment. A set of related tools designed to assist computer

programmers in developing software. Typical tools include a text editor, compiler or interpreter,

debugger, and build automation tools.

OOP Object-Oriented Programming. A computer programming paradigm that emphasizes the

use of objects – encapsulations of data and methods. Object-Oriented languages generally

feature encapsulation, inheritance, polymorphism, and composition.

OS Operating System. A set of programs that forms the interface between the user of a

computer, the hardware, and the other programs that run on the system.

RTL Register Transfer Level. A level of abstraction at which computation is described as

transfers of data between storage units (registers) at clock-cycle level, where each transfer

involves processing and manipulations of data.

SCC SpecC Compiler. The compiler for the SpecC SLDL.

SLDL System Level Design Language. A programming language designed specifically to be

used as a tool for creating computer system specifications. Such a language provides support for

executable specifications, well-defined architecture and implementation models, and a

methodology for converting specifications into implementations.

viii

SVC System Value Change. File format created to address the needs of trace logs for

simulations of SLDLs.

VCD Value Change Dump. File format specified in the Verilog standard for logging value

changes of variables during a simulation.

VHDL Very High Speed Integrated Circuit Hardware Description Language. An HDL

commonly used for hardware design at RTL and logic levels.

ix

Chapter 1: Introduction

1.1 System Level Design Languages and Simulation

In recent years, designers of embedded systems and Systems-on-Chips (SOCs) have

come to study a new design paradigm that relies on a class of design languages called System

Level Design Languages (SLDLs).

1.1.1 Background

 This new paradigm has come directly as a result of the fact that the number of

transistors available to computer system designers has increased dramatically over the years,

while the ease of design has not increased as steadily [19].

As described in [19], the top-down methodology to System Design is a “set of models

and transformations that refine an initial, functional system specification into a detailed

implementation description ready for manufacturing.” The top-level specification model is the

most abstract model and does not contain detailed timing information, while the implementation

model represents a clock-cycle accurate description of the system [19].

Figure 1.1 shows the SpecC design flow. The flow consists of three parts, System

Design, Validation Flow, and Backend. At the top of the system design flow, the user captures

the design in a specification model based on algorithms of his choice. The design is then refined

through architectural exploration and communication synthesis, progressing through architecture

and communication models. At each step of the refinement process, the designer must ensure

that the design is correct. In order to do this, the validation flow is connected to the design flow.

1

Once the system design flow has completed , the design may be synthesized into hardware and

platform software. Our work fits into the validation flow, with both the debugging support and

the tracing support being useful at all stages.

SLDLs combine aspects of traditional high-level programming languages along with

aspects of Hardware Description Languages (HDLs). In particular, the SpecC language

is a formal notation intended for the specification and design of digital

embedded systems, including hardware and software portions. Built on top of

the ANSI-C programming language, the SpecC language supports concepts

essential for embedded systems design, including behavioral and structural

2

Figure 1.1: The SpecC Methodology [22]

System design Validation flow

Specification model

Algor.
IP

Proto.
IP

Architecture model

Communication synthesis

Communication model

Comp.
IP

Estimation

Validation
Analysis

Compilation Simulation model

Estimation

Validation
Analysis

Compilation Simulation model

Estimation

Validation
Analysis

Compilation Simulation model

Implementation model

Software
compilation

Interface
synthesis

Hardware
synthesis

Backend Estimation

Validation
Analysis

Compilation Simulation model

RTOS
IP

RTL
IP

Architecture exploration

Capture

hierarchy, concurrency, communication, synchronization, state transitions,

exception handling, and timing [1].

It is natural that users of SLDLs should expect similar tools for helping them debug their

designs as those tools that software developers and hardware designers are accustomed to using.

For software developers the primary tools are debuggers, and for hardware designers, log files

and waveform viewers are the main tools for debugging design simulations.

An additional aspect of system design using SLDLs is that of architectural explorations

[19]. An SLDL such as SpecC is designed to allows system implementers to try different

architectures in order to achieve cost and performance goals. In addition to traditional software

debuggers and hardware simulation traces, system designers desire new tools to aid them in the

analysis of system architectures. For example, such analysis tools may help a system architect to

understand which parts of the design are performance bottlenecks and which system components

are underutilized, in order to provide direction in their architectural explorations.

Our work centers around providing users of SLDLs -- SpecC in particular -- new tools

for debugging software aspects of designs, capabilities for creating simulation traces, and

capabilities for performing system analysis.1 Prior to this work, tools were available for

compilation and simulation of SpecC designs, but debugging tools were limited and simulation

trace tools were not freely available. The data provided by the simulation traces will allow us to

develop further tools to provide designers with better feedback for design explorations and to

remove some of the guess work that is required using today's tools.

1.1.2 Brief Introduction to the SpecC language

In this section we provide a very brief introduction to the SpecC language. Much more

1 Note that the techniques we describe could also be applied to other C-language-based SLDLs such as

SystemC [27].

3

detailed descriptions of the language are provided in other sources [1][19][22], but it is necessary

for the reader to understand a few of the basic concepts in order to understand the later chapters.

We encourage the reader to examine to the more detailed references for a better understanding of

the SpecC language.

As mentioned earlier, SpecC is built on top of ANSI-C and provides the necessary

features for embedded systems design. At the heart of every SpecC program are behaviors,

channels, and interfaces [22]. Behavior classes are responsible for handling all computation and

channel classes are used as a means for handling communication between behaviors. An

important concept that comes from Object-Oriented Programming (OOP) is that of separating

interfaces from implementations [5][10]. Interfaces provide a link between behaviors and

channels and support reuse of IP and “plug-and-play” [19]. Both behaviors and channels may

inherit from interfaces. Behaviors are considered active in the sense that they are responsible

for handling computation, while channels are considered passive because calls to their methods

must originate from behaviors.

Figure 1.2 shows an example of a channel, an interface, and two behaviors interacting in

a design. Channel C1 implements the interface I1. The channel is used inside of behavior B to

handle the communication between its two child behaviors b1 and b2.

4

Inside of behaviors, the code may look much like ANSI C code, or it may take advantage

of the more advanced features of SpecC. SpecC has special types such as bools, bit vectors, and

events. Bools are boolean variables similar to those provided in other high-level languages such

as C++ and Java. Bit vectors are vectors of bits of arbitrary length that support both standard

operations such as logical, arithmetic, and comparisons; and special operations such as

concatenation and slicing. Events in SpecC are used as signals for synchronization.

Similar to what are provided in HDLs, SpecC also provides a signal data type. Signals

are provided as a means of representing wires and buses in hardware designs [1]. A signal data

type represents two values – one old and one new – and an event. As such, a signal may be used

to to transfer data through assignment or mathematical operations or may be used in place of an

5

Figure 1.2: Basic Structure in a SpecC Program [22]

interface I1
{
 bit[63:0] Read(void);
 void Write(bit[63:0]);
};

channel C1 implements I1;

behavior B1(in int, I1, out int);

behavior B(in int p1, out int p2)
{
 int v1;
 C1 c1;
 B1 b1(p1, c1, v1),
 b2(v1, c1, p2);

 void main(void)
 { par { b1.main();
 b2.main();
 }
 }
};

b1 b2

v1
c1

B
p1 p2

event. A clock signal is an excellent example: it has values associated with it – 0 or 1-- and a

change in the clock signal will often act as an event to trigger other actions in the system.

SpecC also supports several forms of sequential and concurrent operation by use of the

keywords fsm, pipe, and par. Fsm blocks represent finite state machines. Pipe blocks represent

pipelined execution and par blocks represent pure parallel operation.

The fact that SpecC provides a means for specifying concurrency is the primary

difference between SpecC and traditional programming languages like ANSI C. This difference

is also the main reason that debugging of SpecC programs is more difficult than that of

sequential programs and why different methods of debugging are required. HDLs have

traditionally used waveforms for debugging, as they are an elegant method of visually expressing

concurrency.

Figure 1.3 shows some of the ways of creating sequential and concurrent behavioral

hierarchies. The leftmost example shows sequential execution, similar to what one sees in an

ANSI C program. The next example shows finite state machine (FSM) execution. FSM

execution is also sequential and can be modeled using gotos or function calls. The last two

examples demonstrate concurrent execution. In parallel execution, all child behaviors start at the

same simulation time and run concurrently. Pipelined execution models the type of execution

that is often present in hardware. It is another form of concurrency where a pipeline stage may

only start after the previous stage has already started. Support for interrupts and exceptions (not

shown) is provided by means of try, interrupt, trap blocks.

6

1.2 Motivation

1.2.1 Basic Debug Functions

When following a top-down approach to system design, as described in [1], [19], one

starts with a specification model that does not provide any detailed timing information. Even at

this early stage, a designer must be able to validate that the design is correct. In order to do this,

she tests the design against a “golden” model to see that the results match. If the results are

correct, she may move on to the next stage of model refinement or architectural exploration. If

the model does not produce the correct results however, the designer needs a way to track down

the bug(s) in the model. Normally, a software debugger provides the user with a way to trace the

execution of the program and to examine the values present in variables at various points in time.

7

Figure 1.3: Examples of SpecC Behavior Hierarchies [22]

behavior B_pipe
{
 B b1, b2, b3;

 void main(void)
 {pipe{b1.main();
 b2.main();
 b3.main();
 } }
};

B_par

b1

b3

b2

B_seq

b1

b3

b2

B_fsm

b1

b3

b2

b5 b6

b4

B_pipe

b1

b3

b2

behavior B_seq
{
 B b1, b2, b3;

 void main(void)
 { b1.main();
 b2.main();
 b3.main();
 }
};

behavior B_fsm
{
 B b1, b2, b3,
 b4, b5, b6;
 void main(void)
 { fsm { b1:{...}
 b2:{...}
 ...}
 }
};

behavior B_par
{
 B b1, b2, b3;

 void main(void)
 { par{b1.main();
 b2.main();
 b3.main();
 } }
};

S e q u e n t i a l
e x e c u t i o n

F S M
e x e c u t i o n

C o n c u r r e n t
e x e c u t i o n

P i p e l i n e d
e x e c u t i o n

In this situation, a software engineer would typically fire up his favorite debugger and

start to work tracking down the problem. Figure 1.4 below shows an example of Microsoft's

Visual Studio [14] debugger in action debugging a C++ program. In the upper right corner, we

the call stack, and “automatic” variables are displayed at the bottom of the window. The source

code is seen in the main window.

While it is possible to use a standard debugger, on a SpecC design, there are several

problems associated with this approach. We will begin by explaining what happens when a

SpecC program is compiled to form an executable design simulation.

Like writing a 'C' program, a system designer writes SpecC code and then compiles it to

form an executable program. As an intermediate step, the reference compiler (scc) generates C++

code from the SpecC source code and links the C++ code to a pre-compiled simulation library in

8

Figure 1.4: Screen Shot of the Microsoft Visual Studio Debugger in Action

order to allow “Design.exe” to run as a stand-alone executable. Figure 1.5 illustrates the

compilation process.

The simulator acts as a kind of “virtual platform” to simulate the effects of having

multiple behaviors working simultaneously in pipelined or parallel execution. In contrast to a

traditional 'C' program where one is able to step through code executing on the target hardware, a

SpecC program must 'run' on hardware that does not exist in reality. Because of this key

difference, traditional methods of debugging executables are not sufficient for SpecC programs.

One method of debugging is to use C's printf function in order to create a limited

trace of the program's execution. This approach is less than ideal however in that it requires

modifying the code that is being examined, is time-consuming, and often produces misleading

results if the function calls are not carefully placed.

 A second approach to debugging software problems is to compile the simulator and the

generated C++ code with debugging flags enabled and step through the code using a traditional

debugger such as gdb. There are severals problems associated with this method of debugging.

First, it requires the user to have a good understanding of the internal workings of the simulator

9

Figure 1.5: SpecC Design Compilation Flow

as well as understand code written in C++. The general SpecC writer should not need to be an

expert in SpecC simulator internals. For that matter, he should not even be required to understand

C++. Ideally, the SpecC writer does not even need to be aware of the fact that C++ code is

generated for him. And since this is an implementation detail of the reference compiler, other

SpecC implementations may choose a different method of generating an executable. It is also

quite possible that a SpecC designer will not have access to the source code for the simulator and

therefore will not be able to step through the simulator itself. Chapter 2 explains our approach to

improve the tools available for debugging software issues in SpecC designs.

1.2.2 Simulator States

Because SpecC supports concurrency, the various behaviors in a design may take on

complex combinations of states – running, sleeping, waiting, etc – at any moment in time during

simulation. As a SpecC developer, there may be situations where one would like to have an

understanding of the current states of a design's behaviors in the simulator. For example, if one's

SpecC design is experiencing deadlock issues, being able to “peek inside” the simulator in order

to determine the sequence of events leading up to the deadlock may be invaluable.

Both the SpecC Reference Simulator and the UCI CECS SpecC simulator

implementations use threads to simulate concurrent behaviors [3]. Internally, they keep track of

several queues of threads corresponding to the various states of a SpecC behavior's life cycle:

Ready, Running, Waiting For, Waiting, Notified, Trying, and Suspended. The simulator is also

responsible for updating the simulation time. The SpecC LRM [1], describes an “abstract

simulation algorithm” that is close to what the reference simulator implements. Another paper,

[4], has a detailed description of the execution semantics in terms of Abstract State Machines.

At the beginning of the simulation, only one Main thread exists. New threads are

created as the simulation progresses whenever par or pipe statements occur. As these new

threads are created, the simulator adds them to the ready list. When it is time for the simulator

10

to pick a thread to run, it may choose from among the ready threads in any order it chooses.

Whenever a wait statement occurs in the design, the simulator moves the thread to the waiting

list until an event occurs to move the thread into the notified list. In the case of waitfor
statements, the simulator moves the running thread into the waiting for queue. A thread that has

been interrupted moves into the suspended list and returns to its previous state at the return of the

interrupt handler. If the interrupted thread is instead aborted, it is removed from all simulator

queues.

The simulator is also responsible for maintaining the timing for the simulation.

Simulation time cycles only advance due to waitfor statements. At the time that the

simulator moves a thread into the waitfor queue, it calculates a wakeup time for the thread.

When the simulator's thread scheduler has reached a point at which no threads should be notified

or resumed, the simulator advances the simulation time. It picks the thread that has the earliest

wakeup time (at the head of the waitfor queue) and advances the simulation time to this thread's

wakeup time.

The fact that the simulator uses threads to keep track of the states of SpecC behaviors

and to simulate concurrency is really just an implementation detail. Ideally, a SpecC writer

should not be concerned with understanding thread execution. However, he would like to see

“snapshots” of the states of a design's behaviors. Mueller et al [4] describe a high-level view of

the thread life cycle as having four states: running, waiting, completed, and interrupted (see

figure 1.6, below). In chapter 3, we present new debug functions to show the five states which

roughly correspond to the aforementioned four states, but with some important differences.

11

First, we added an additional ready state. The ready state is an acknowledgment that the

simulator may not be able to run all available behaviors in parallel. In fact, the current reference

simulator only runs one thread, and therefore one behavior, at a given time [3]. The sleeping

state corresponds to behaviors that have encountered a SpecC waitfor statement. This is an

extension of the waiting state described in [4]. Our waiting state corresponds only to

behaviors that are waiting on SpecC events. We feel that splitting the general waiting state into

sleeping and waiting states provides the user with additional useful information. Our suspended

state is equivalent to the general “interrupted” state. We do not provide a means for obtaining a

list of completed behaviors. Once a behavior has completed, the simulator know longer “knows”

about it. In many situations, the user will be able to infer which behaviors have completed based

on the knowledge of the other queues.

1.2.3 Tracing capabilities

As the design process continues through refinements and explorations of different

architectures, the need for hardware-specific debugging tools become more important. Hardware

designs nearly always contain a great deal of concurrency. For this reason, when designing

hardware, it is often extremely valuable to be able to view the output of simulations in a

12

Figure 1.6: General Life Cycle of Behavior [4]

graphical form. The viewer displays a list of variables along one axis and time on the opposite

axis. In this way, the designer sees signals changing as a function of time. Figure 1.7, below

shows an example of a waveform produced from an RTL simulation.

The information provided can be extremely useful for debugging, as well as for analysis.

Simulators for languages such as VHDL and Verilog have supported this type of graphical

waveform creation for many years. Popular examples of simulators with waveform viewing

capabilities include Modelsim [24], NCVerilog [25], and BlueHDL [26]. A waveform viewer

should have a least a few basic capabilities:

• the ability to zoom in and out in the time domain

• the ability to remove signals from view

• the ability to display variables in different numerical formats – binary, hex, etc

13

Figure 1.7: An example of a trace of an RTL model.

Prior to the work presented herein, the CECS group did not have any method of producing

waveforms from SpecC simulations.

SLDLs, such as SpecC, also present new challenges for creating traces as compared to

traditional HDLs, such as Verilog or VHDL. In a trace of an SLDL simulation, the designer

would like to be able to understand the hierarchy of behaviors in a design as well as be able to

understand how a behavior's state changes as a function of simulation time. In contrast, HDLs

traditionally only support tracing hardware-specific signals such as wires, and not architectural

entities such as behaviors.

In addition to being useful for debugging hardware design problems, graphical

waveforms can also be extremely useful as system analysis tools. In particular, systems featuring

a great deal of concurrency can benefit greatly by having tools that help the designer to detect

bottlenecks and underutilized resources. Figure 1.8, below shows an example graph of a system

with four behaviors: a parent and three child behaviors running in parallel. In this very simple

example, a parent behavior B_par has three child behaviors running in parallel. Behavior b3

takes longer than its siblings, so one could conclude that it is the “bottleneck”. Of course, real

systems are much more complex, but this example illustrates the usefulness of the analytical

properties that an event graph provides.

14

1.2.3.1 Production of Simulation Logs

Waveforms such as the one seen in figure 1.7, are created by waveform viewing

programs from simulation trace files. HDL and SLDL simulators produce these trace files by

creating a log of all significant simulation events (behavior state changes, method calls, event

notifications, etc) and value changes along with time stamps to indicate when these events

occurred during the simulation. These logs may then be read by waveform viewing programs in

order to produce the graphical representations of simulation events and value changes as a

function of time.

15

Figure 1.8: An example of how a simple design with 3 behaviors running in parallel might be

visualized.

1.2.3.2 Goals for Tracing Implementation

After considering what features we would like to have for tracing system designs, we

decided upon several important goals related to implementing tracing features for SpecC.

• Produce .vcd files (or something similar) when running a simulation in order to view

waveforms

• Come up with a way to produce an event graph when running a simulation in order to

view thread forking, parallel execution, pipelined execution, thread joining, etc. Also

show states of behaviors -- waiting, running, etc.

• Allow for tracing to be enabled on per-signal, global, or at a module level. Ideally, this

could be done after compilation.

• Allow for tracing to be enabled for certain time periods only. Ideally, this should be

done post-compilation. It would be nice to allow for tracing to start, stop, and resume:

i.e., "start 200, stop 250, start 3000, stop 5000”

• Tracing of “built-in” types (int, float, etc) should be considered a “nice-to-have”

feature.

• Impact on non-traced signals should be minimized as much as possible. In particular,

efficiency and memory use should be considered.

• Keep code generation simple.

• Keep the simulator code simple.

• Demonstrate implementation and benefits by use of realistic examples.

In chapter 4, we describe our approach to adding tracing abilities to the SpecC design toolkit.

1.3 Related Works

Within the computing industry and academia, several sets of debug, trace, and analysis

tools have been developed. Here, we discuss some of these related works.

16

1.3.1 Software Debuggers

Software designers are accustomed to using programs called debuggers to assist them in

finding errors in their programs. Debuggers may take several forms. On Linux platforms, the Gnu

debugger, gdb, and a graphical front-end, called Data Display Debugger (ddd) are quite popular

[12][13]. On the Microsoft Windows platform, Microsoft's Visual Studio is a very popular

IDE[14]. Other debuggers, such as Metrowerks' CodeWarrior and Eclipse from eclipse.org,

work on several platforms including Windows and Linux [15] [16]. Some debuggers are

implemented as separate programs from text editors while other debuggers are part of an

Integrated Development Environment (IDE). Sometimes debugger users refer to inferior

debuggers and front-ends to them. Gdb is considered an inferior debugger, since it does not have

a graphical front-end and only responds to command line inputs. Ddd acts as a graphical front-

end to inferior debuggers such as gdb.

A high quality debugger is rich in features and includes many of the following:

• the ability to break on a line of code and examine the state of the program

• the ability to view the values of variables during program execution,

• the ability to view the “call stack” or “back trace”,

• the ability to view the contents of memory, and

• the ability to step through code one line at-a-time during program execution

17

Some debuggers also support advanced features:

• the ability to modify program variables and then resume execution of the program

• advanced graphical ways of viewing data, especially complex data structures

• “edit and continue” features that allow the programmer to actually modify the program

during execution and then resume the program with the changes now in place

• remote debugging which allows the programmer to execute the program that is being

debugged on one machine while executing the debugger on a different computer

• multi-thread support

1.3.2 Hardware Debuggers

There are a number of commercial simulators available for Verilog and VHDL that

create log files that may be examined using a graphical viewer. The simulators make records of

simulation time changes as well as changes to values of variables in the system. The waveform

viewers know how to parse these simulation logs in order to create a graph of the variables

values as a function of time.

Verilog simulators produce files in a format called “VCD”, or “Value Change Dump”.

The IEEE 1364-2001 standard for Verilog [8] describes the details of the VCD format. Various

companies and academic institutions have created GUI viewers for .vcd files. We have used one

particular free viewer, called GTKWave in our experiments. GTKWave was written and is

maintained by the Advanced Processor Technologies Group at the University of Manchester [9].

18

1.3.3 System Analysis Tools

In recent years, operating systems designers and users have come to make use of tools

such as Linux Trace Toolkit (LTT) [6] in order to view the state of processes in the system

plotted against time. LTT actually works in a way that is similar to HDL simulators to log events

that happen in an operating system over a certain period of time. Another company, Wind River,

has created an application called, System Viewer that serves similar purposes for their real-time

OS, VxWorks [7].

The format of the logs are different from VCD files and the application of the

information is somewhat different, but from a high-level point of view, the system of logging

events and providing a graphical visualization tool are very similar.

One key difference between these operating systems traces and the types of tracing

required for HDLs and SLDLs is that in an operating system for a single-processor computer, no

two tasks actually run in parallel. Instead a multi-tasking OS runs a scheduling algorithm to

switch between the processes running on the system. Even the majority of modern day systems

using multiple processors use a small number, perhaps 2 or 4 processors, so the level of true

parallelism is actually quite low. In viewing traces created for an SLDL, one must be able to

visualize multiple behaviors running concurrently.

19

Chapter 2: Debug Functions

The first part of our efforts to improve the capabilities for debug, trace, and analysis of

SpecC systems, was to provide some basic software debugging facilities.

2.1 Possible Approaches for Software Debugging Capabilities

One can roughly divide the techniques for creating providing debugging capabilities into

two categories, a symbol table-based approach and introspection-based approach. Here, we

briefly describe each of the techniques as well as pros and cons to each approach.

2.1.1 Symbol Table-Based Approach

The symbol table-based approach to creating a debugger is commonly used for popular

programming languages on popular platforms. Examples of this would be gdb on Linux/Unix for

a number of languages such as C, C++, Fortran, and Objective-C; and Microsoft's Visual Studio

debugger on Windows which also supports a number of languages such as C, C++, and Basic.

Generally speaking, a particular compiler and debugger pair will work together to support this

approach. For example, gcc and gdb work as a pair and Microsoft's compiler and debugger work

together as a set. The debugger expects symbol table(s) to be provided along with the machine

code for the program. Often times the symbol table will be included in the same file as the

“executable” [17]. Symbol tables provide the debugger with information including line numbers,

names, types, and scopes of variables; and names, parameters, and scopes for functions[18]. The

20

debugger is then able to correlate the source code and the executable in order to implement the

features previously mentioned in section 1.3.1.

One point of confusion for many people is the notion of compiler optimizations and

debug mode. Optimizations may be enabled in conjunction with generating debug information.

The issue is that it may be difficult for a human being to understand the relationship between

source code and an optimized executable. For this reason, programmers generally disable

optimizations when compiling for debug mode.

2.1.2 Introspection-Based Approach

Several object-oriented languages such as Java, Objective C, and Python support a

feature called introspection. This feature allows an object to know extra information about its

own type and/or name. The introspection-based approach to debugging works on this same

principal, such that instances of channels and behaviors know both their instance names and

class types. Because of this, the introspection-based approach provides the important ability to

distinguish between different instances of a class. This approach involves compiling extra

information into the source code so that functions may be called during runtime to provide the

user with debug information.

The primary advantages of this method are that no separate “debugger” program is

actually required and the implementation is simpler. The major disadvantage is that this

approach does not provide many of the features listed in section 1.3.1, such as the ability to step

through code on a line-by-line basis or the ability to examine the values of variables.

When debug mode is enabled at compile time, the compiler inserts extra information and

function calls in order to make debug information available at runtime. The user may also insert

extra debug function calls into her program. In addition, the user may take advantage of both

approaches by enabling the introspection-based debugging and the symbol table-based features

and using a debugger such as gdb or Visual Studio.

21

2.1.3 Comparison of Debug Techniques

The primary difference between the introspection technique and the symbol table-based

approach is that in the former the debug information actually becomes a part of the executable

program, whereas in the symbol table-based approach, the debug information is separate from the

executable and is only used by the debugger. The symbol table-based approach requires two

programs – the executable under debug and the debugger – along with support from the

operating system to allow them to work together. The symbol table-based approach provides a

very efficient implementation of debugging features.

The major advantage of the introspection-based debug approach is the relative simplicity

of the implementation. For us, the time required to implement the introspection-based approach

was measured in weeks, while we estimate the time to implement the symbol table-based

approach would take months or years. A second advantage of the runtime approach is that it is

completely platform independent. The implications of attempting to create a platform

independent debugger should not be underestimated. Ideally one would like to work within the

framework of an open source compiler/debugger platform such as gcc/gdb, but gcc/gdb is not

platform independent. Mingw [20] exists for the Windows platform and is based on gcc, but

integrating a new language such as SpecC into both gcc and mingw would likely require a great

deal of duplicated work. For the reasons listed, we decided to pursue the introspection-based

info approach.

2.2 Description of the Implementation

In the current implementation of the SpecC compiler, we convert SpecC into C++, and

then compile the C++ code to form an executable, as shown earlier in figure 1.5. This executable

may then be debugged using a C++ debugger such as gdb. If the SpecC source is compiled with

the new debug option (-G) enabled, the SpecC compiler (scc) adds extra debug information.

22

The new debug features depend on the ability for instances of behaviors and channels to

know their instance names as well as the ability for the simulator to know which behavior or

channel is currently running in a simulator thread.

When converting from SpecC to C++, the code generator turns behaviors and channels

into C++ classes. All behavior classes inherit from a behavior base class, and all channels inherit

from a channel base class. The primary difference between behavior and channel classes is that

behavior classes must define a virtual function, void main(void). Prior to adding the debug

features, there was no common base class between channels and behaviors.

We accomplish the task of allowing behavior and channel instances to know their own

names by storing a copy of the instance name within the channel or behavior class as well as a

pointer to the parent instance. Each instance only stores its own local name and derives its fully-

qualified name by walking parent pointers to build the full name. Figure 2.1 shows an example

of a simple hierarchy of behaviors. Main has one child behavior, s1. The behavior, s1, has three

sequential child behaviors: b1, b2, and b3. Main.s1.b1, stores its local name, “b1” and a pointer

to its parent, s1. The behavior named Main.s1 will store its local name, “s1” and a pointer to its

parent, Main. The full name for Main.s1.b1 can be found by building up the string by walking

the ancestor pointers. This method of building the name saves memory required to store the

entire names of instances. Since a channel may have a behavior as its parent, we introduced a

new class called class_type from which channels and behaviors inherit.

23

Figure 2.2 shows the class diagram for class_type, behaviors, channels, and user-

defined behaviors and channels. Each class_type object contains two strings: the class name and

the instance name, as well as a pointer to its parent instance. In addition, the class_type class has

three member functions for obtaining the class name, instance name, and fully-qualified instance

name. The channel and behavior classes now have two constructors: one with name and parent

arguments, and one default constructor that may be used in release mode, where instance and

class names are not required.

24

Figure 2.1: Naming of Behaviors

in a Simple Hierarchy

In order for the simulator to keep track of which behavior or channel instance is

currently running at any given time, the code generator automatically inserts method calls into

behavior and channel methods in order to maintain the current and active instance and class

context information. Four methods, _SetActiveInst, _RestoreActiveInst,
_SetCurrentInst, and _RestoreCurrentInst have been defined for setting and

restoring the active and current instance pointers in the SpecC simulator. At the beginning of any

behavior “main” method, _SetActiveInst is called and before every return statement,

_RestoreActiveInst is called. At the beginning of any other channel or behavior method,

_SetCurrentInst is called and _RestoreCurrentInst is called before every return. As

an optimization, any behavior methods other than “main” do not need to make these calls, since

they are essentially “private” methods with respect to any other behavior or channel. The

difference between active and current instances is that the active instance will always be a

behavior, while the current instance may be a channel or a behavior. Recall from section 1.1.2

that behaviors are active and represent computational components, while channels are passive

and represent communication components.

25

Figure 2.2: UML class diagram for channels and behaviors

Once the SpecC design has been compiled with the new debug option, SpecC users may

use a combination of runtime-supplied debug information and symbol table-supplied debug

information to interpret the behavior of their programs.

2.3 The API

Our runtime-based debugging capabilities consist of an API providing 12 user-callable

functions that give the SpecC user access to new debugging information. As a first step in

providing a SpecC designer with debugging capabilities, we came up with an API consisting of 6

debug functions that a user may call to obtain copies of the instance and class names along with 6

more functions to print the names to the stderr stream. They are as follows:

const char * active_class(void);
const char * active_instance(void);
char * active_path(char * Dest, const unsigned int Length);
const char * current_class(void);
const char * current_instance(void);
char * current_path(char * Dest,
 const unsigned int Length);
void print_active_class(void);
void print_active_instance(void);
void print_active_path(const unsigned int Length);
void print_current_class(void);
void print_current_instance(void);
void print_current_path(const unsigned int Length);

Figure 2.3: The debugging functions provided with scc -G option

The reader may refer to appendix A for a more thorough explanation of these functions.

Note that although the distinction between “active” and “current” may be confusing at

first, if one remembers that behaviors are representations of active objects while channels are

representations of passive objects, the names become clear [1]. Active class or instance always

refers to a behavior, while current class or instance may refer to a channel or a behavior. In the

26

case where the debug functions are called within a behavior method, current and active will refer

to the same instance – that of the behavior.

The first six functions provide the most flexibility to the user, but may require more

effort to use compared to their “print” counterparts. The print functions are very easy to use, but

always print to stderr and always print new lines following the text, which may not be what the

user desires.

A SpecC writer may use these functions to help him determine which particular instance

of a certain behavior or channel is currently executing. For example, there may be a behavior

representing an OR gate that is instantiated several thousand times in a design. At a given point

in time, it may be very useful to know which particular instance of the OR gate is executing. By

making use of these new debug features, the SpecC writer can determine precisely which

instance of the class is operating at any time.

There may be times where the specific instance name is not as important as knowing

which class has called a certain function. For example, in the case of global functions that may

be called by any behavior or channel, the current class name may also be a useful debugging tool.

2.4 Short Examples

2.4.1 Example 1:

The following example shows how a designer can make use of the

print_active_path debug function to help trace the path of a design's execution. This

examples is made up of two behaviors, a sender and a receiver, running in parallel and

communicating through the use of a channel. By inserting a few lines of debug code in the

channel's send_word and receive_word functions, the designer can see which behavior is

calling the channel methods and at what time.

27

Figure 2.4 shows the main method for the example design. As we can see, the Main

behavior contains two child behaviors, r and s, and a single channel, c, that is used for

communication. Main starts r and s running in parallel.

Figure 2.5 shows how the designer could insert debug calls into the channel's

send_word method. All of the debug code is wrapped in the conditional compile section that

begins with #ifdef DEBUG. Here, we make use of a combination of the print_now,

print_active_path, and print_current_path debug functions. Similar debug code

is also added to the receive_word channel method.

behavior Main
{

C c; /* using channel c */
R r(c); /* connect a receiver r */
S s(c); /* with a sender s */

int main(void)
{
sim_time_string buf;
printf("Time =%5sns: Main::main(): Starting S and R in

 parallel...\n", time2str(buf, now()));

par {
 s.main(); /* sender and receiver run in parallel */

r.main();
}

printf("Time =%5sns: Main::main(): Exiting...\n",
time2str(buf, now()));

return(0);
}

};
Figure 2.4: This example shows the Main behavior starting its child behaviors “r” and “s” running in

parallel. The behaviors communicate by way of a channel.

28

void send_word(int Word) /* internal sender routine */
{
#ifdef DEBUG
 // find out which instance of the C channel is being called
 const int MAX_LEN = 128;
 fprintf(stderr, "Time: ");
 print_now();
 fprintf(stderr, " ");
 fprintf(stderr, "in C::send_word\n");
 fprintf(stderr, "The active behavior is: ");
 print_active_path(MAX_LEN);
 fprintf(stderr, "The current channel is: ");
 print_current_path(MAX_LEN);
#endif

 while(ValidWire)
 {
 wait SyncWire;
 }
 DataWire = Word;
 ValidWire = true;

 waitfor SEND_CYCLE;
 notify(SyncWire);
}

Figure 2.5: A channel method with debug calls inserted. Similar debug code is also inserted into the

channel's “receive_word” method.

With this debug code added, the designer can rapidly verify that the basic operations are

working correctly. That is, that behavior s is acting as the sender and that behavior r is acting as

the receiver, with channel c serving as the communication channel. Figure 2.6 shows an excerpt

of the output of the design running with debugging enabled. As we can see, Main.s calls

Main.c.send_word on a regular basis -- every 10 ps -- and Main.r calls

Main.c.receive_word also on a regular basis. The design appears to be functioning

correctly.

29

. . .
Time: 2270 in C::send_word
The active behavior is: Main.s
The current channel is: Main.c
Time: 2270 in C::receive_word
The active behavior is: Main.r
The current channel is: Main.c
Time: 2280 in C::send_word
The active behavior is: Main.s
The current channel is: Main.c
Time: 2280 in C::receive_word
The active behavior is: Main.r
The current channel is: Main.c
Time: 2290 in C::send_word
The active behavior is: Main.s
The current channel is: Main.c
Time: 2290 in C::receive_word
The active behavior is: Main.r
The current channel is: Main.c
Time: 2300 in C::send_word
The active behavior is: Main.s
The current channel is: Main.c
Time: 2300 in C::receive_word
The active behavior is: Main.r
The current channel is: Main.c
Time: 2310 in C::send_word
The active behavior is: Main.s
The current channel is: Main.c
Time: 2310 in C::receive_word
The active behavior is: Main.r
The current channel is: Main.c
. . .

Figure 2.6: Excerpt from the output of the parallel execution design with debug functions inserted into the

channel's send_word and receive_word methods

2.4.2 Example 2:

In this example, we show how the debug functions may be used from within a debugger

such as ddd, that supports run-time evaluation of functions from the debugger itself. The

advantage of this approach is that the user does not need to modify her source code, to use the

debug functions. This example also demonstrates the technique of using a symbol-table based

debugger along with the introspection-based debug functions.

30

Figure 2.7 shows a screen shot of the par3 example, from the SpecC distribution

examples. In this screen shot, the debugger is stopped at a breakpoint with the main method of

behavior A2. Near the top of the debugger, we see the now, delta, and active_instance
function outputs. From the information that these functions provide, we can tell that the

simulation is in delta cycle 0 of simulation cycle 0, and the instance of behavior A2 is named a2.

31

Figure 2.7: Screen Shot of ddd Debugger Updating Debug Functions

Chapter 3: Simulator State Functions

The next part of our efforts to provide debug capabilities for SpecC designs was

to provide support for obtaining snapshots of the simulator's internal states. These functions

differ from the ones mentioned in the previous section in that they require the user to know

something about the working of the SpecC simulator. These functions are an improvement over

earlier means of investigating the simulator states in several ways. Because they do not require a

version of the simulator that has been compiled in debug mode, the user can run a “release”

version of the simulator, which is much faster and it does not require that the source code for the

simulator be available to the user. They also provide a more abstract view of the internal

simulator states. The user does not require in-depth knowledge of the exact implementation of

the simulator, rather general understanding of behavior states.

3.1 Behavior States

In chapter 1, we briefly discussed the different states that a behavior goes through during

its lifetime. Here we extend figure 1.6 to show the additional parent and sleeping states. Figure

3.1, shows the six states that a behavior may assume during its lifetime. When a behavior is first

created, it begins in the inactive state. When the behavior starts to execute its main method, it

moves into the running state. If the behavior encounters a waitfor statement, it moves into

the sleeping state. If instead, it encounters a wait statement, it enters the waiting state.

A behavior that contains a par or pipe statement, enters the parent state until all of its

32

children join. A behavior within a try-interrupt-trap block, will enter the interrupted

state if it becomes interrupted by an event. After the interrupt has been handled by the interrupt

handler, the behavior returns to its previous state. Finally, whenever a behavior is aborted from a

try-interrupt-trap block or simply finishes its main method, it returns to the inactive

state.

3.2 Implementation of Simulator State Functions

In addition to the functions inserted by the compiler for setting and restoring active and

current instance pointers described in chapter 2, function calls are also added to keep track of the

method names. Whenever a behavior or channel method is called, _SetCurrentMethod is

called with the name of the current method and _RestoreCurrentMethod is called before

every return. Some of the simulator state debug functions use the method names when

presenting the current state of the simulator as additional information regarding a behavior or

33

Figure 3.1: State Diagram for Behaviors in a System Design

channel's progress.

3.3 The API

The first two functions provide the user with a quick snapshot of the current simulator

state in an easy-to-use form. These functions are very powerful in that they condense a great deal

of information into an easy-to-read format. The only difference between the two functions is that

print_simulator_state prints the simulator time on a separate line before it prints the

behavior states.

// print out a nicely-formatted list of states of behaviors
void print_process_states();
// same as above, but also prints the simulation and delta
// times
void print_simulator_state();

Figure 3.2: User-Callable functions for printing the simulator states

The following sets of functions provide the user with more flexible ways to see the state

of the simulator.

Five functions provide a way to get the number of threads in each of the five simulator

lists/queues. These counts can be used as inputs to the next set of functions.

//get the length of the current queue of ready threads in
//the simulator
unsigned int ready_queue_length();
unsigned int running_queue_length();
unsigned int waiting_list_length();
unsigned int sleeping_queue_length();
unsigned int suspended_list_length();

Figure 3.3: These five functions return the length of the various simulator thread queues and lists

The next five functions copy the names of the behaviors from each list or queue. The

34

user must provide a 2-dimensional array of characters for the names to be copied into and must

provide the maximum number of names to copy as well as the maximum number of characters in

each name string. The reason that the user must provide buffers for the strings is that these

debug functions need to be reentrant to support concurrent execution.

unsigned int ready_queue(char * Names,
 unsigned int QueueLength,
 unsigned int StringLength);
unsigned int running_queue(char * Names,
 unsigned int QueueLength,
 unsigned int StringLength);
unsigned int waiting_list(char * Names,
 unsigned int ListLength,
 unsigned int StringLength);
unsigned int sleeping_queue(char * Names,
 unsigned int QueueLength,
 unsigned int StringLength);
unsigned int suspended_list(char * Names,
 unsigned int ListLength,
 unsigned int StringLength);

Figure 3.4: User-callable functions for copying the names of behaviors from the simulator's states lists and

queues

The final set of 5 functions are more convenient, but less flexible counterparts to the

previous 10 functions. Instead of returning a value or copying strings, they print lists or queues to

the stderr stream.

35

void print_ready_queue(const char * Separator,
unsigned int QueueLength, unsigned int StringLength);

void print_running_queue(const char * Separator,
unsigned int QueueLength, unsigned int StringLength);

void print_sleeping_queue(const char * Separator,
unsigned int QueueLength, unsigned int StringLength);

void print_suspended_list(const char * Separator,
unsigned int ListLength, unsigned int StringLength);

void print_waiting_list(const char * Separator,
unsigned int ListLength, unsigned int StringLength);

Figure 3.5: User-callable convenience functions for printing the simulator's behavior state lists and queues

3.4 Short Examples

3.4.1 Example 1:

This example demonstrates the easiest, but least flexible way of viewing the current state

of the simulator. The call to print_simulator_state causes a table to be printed to the

stderr stream. The table lists the active behavior instance, current behavior/channel instance,

state, and the current behavior/channel method for each thread in the five simulator queues.

In this example, we have two behaviors, b1 and b2 running in parallel. As seen in figure

3.6, each behavior has a waitfor statement surrounded by calls to

print_simulator_state. The simulator only runs one thread at a time, so if one examines

the output in figure 3.7, one sees that in this case, the simulator picks b2 to run first, then in the

same delta cycle, 0:0, picks b1 to run next and puts b2 to sleep for 3 time units. At time 1:0, b1

resumes and then at time 2:0, b2 resumes.

36

behavior B1 ()
{

void main(void)
{

print_simulator_state();
waitfor 1;
print_simulator_state();

}
};

behavior B2 ()
{

void main(void)
{

print_simulator_state();
 waitfor 3;

print_simulator_state();
}

};

behavior Main(void)
{

B1 b1;
B2 b2;

int main(int argc, char **argv)
{

 par
{

b1.main();
b2.main();

}
return(0);

}
};

Figure 3.6: Example code using print_simulator_state function

37

time: 0:0

Active Behavior Instance Current Instance State Method

Main.b2 Main.b2 Run main

Main.b1 Main.b1 Ready unknown

time: 0:0

Active Behavior Instance Current Instance State Method

Main.b1 Main.b1 Run main

Main.b2 Main.b2 Sleep main

time: 1:0

Active Behavior Instance Current Instance State Method

Main.b1 Main.b1 Run main

Main.b2 Main.b2 Sleep main

time: 3:0

Active Behavior Instance Current Instance State Method

Main.b2 Main.b2 Run main

Main.b1 Main.b1 Ready main

Figure 3.7: Output of print_simulator_state

3.4.2 Example 2:

The following example shows how a designer can view which behaviors are currently in

the ready queue during runtime. In figure 3.8, we see that the code makes use of several

variables, constants, and two function calls in order to print out the list of threads that are ready

in the simulator. Figure 3.9 shows the output of these functions. Compared to the previous

example, this debug code is much more intrusive, but it allows the user maximum control over

the output.

38

. . .

// two-port exclusive-OR gate
behavior XOR2(in signal bit[1] a, in signal bit[1] b,

out signal bit[1] c)
{

void main(void)
{

#ifdef DEBUG
unsigned int len;
const bool Active = true;
const unsigned int MAX_LEN = 80;
const unsigned int MAX_Q = 16;
char readyQueue[MAX_Q][MAX_LEN];
unsigned int count;
len = ready_queue_length();
printf("Ready queue length: %d\n", len);

len = ready_queue(&readyQueue[0][0], MAX_Q,
MAX_LEN, Active);

printf("ready threads: \n");
for (count = 0; count < len; count++)
{

printf("%s\n", readyQueue[count]);
}
#endif // DEBUG
while(true)
{
wait a rising, a falling, b rising, b falling;
c = a ^ b;
}

}
};
. . .

Figure 3.8: Excerpt from Adder2.sc. This code makes use of the ready_queue_length and ready_queue

debug functions.

39

. . .

Ready queue length: 6

ready threads:

Main.Add08.fa2.ha2.xor1

Main.Add08.fa0.ha1.xor1

Main.Add08.fa1.ha1.and1

Main.Add08.fa7.ha2.and1

Main.Add08.fa2.ha2.and1

Main.Add08.fa7.ha1

. . .

Figure 3.9: Output Showing Ready Threads

40

Chapter 4: Tracing

The third goal of our work was to create trace logs during simulation. As described in the

introduction, trace files are useful both for debugging hardware-specific parts of the design as

well as providing inputs for system analysis tools. One form of these trace files is very similar to

trace logs created by VHDL and Verilog simulators, which when examined with an appropriate

viewer, show values of signals changing on a graph plotted against time. We also added the

ability for a design simulation to produce a new type of custom-format log file with the “.svc”

file extension. We created the custom format to fulfill specific needs of system designs that the

VCD format does not provide for. The tracing capabilities make use of the debugging

information described in the previous sections, with additional support having been added to the

code generator (part of the SpecC compiler) and the SpecC simulator as well.

In the introductory chapter (section 1.2.3.2) we listed a number of goals that we hoped to

achieve in our implementation of tracing features for SpecC designs, including the production of

log files, enabling/disabling of tracing on a per-signal basis, and tracing start/end times.

Additionally we wanted to implement these features in an efficient manner that would not

complicate the simulator or code generator implementations any more than was necessary. In

order to meet these goals, we devised a system that modifies the SpecC compiler (scc), and adds

a new Design.do file as an input during simulation to produce “.vcd” or “.svc” simulation logs.

These log files may then be viewed in a GUI waveform or event viewer program.

41

4.1 Tracing Flow

Figure 4.1 below shows the new flow of the design compilation and simulation. The

SpecC source (Design.sc) is compiled and linked with the simulation library by the SpecC

compiler (scc). Design.do acts as an input to the simulation to produce a log file (either

Design.vcd or Design.svc). The log can then be examined using a graphical waveform viewer.

4.1.1 “Do” Files

We have introduced “.do” files as part of the design flow for tracing. “Do” files provide

the design simulator with instructions that are required to produce a log of the simulation events.

The required commands tell the simulator when to start and stop tracing, and what time scale

(e.g., nano, pico, or fempto seconds) should be represented in log files. Optional commands tell

42

Figure 4.1: SpecC Tracing Flow

the simulator how to treat delta time and allow the user to selectively choose to trace particular

variables (e.g., signals, behaviors, channels) or selectively disable tracing of these symbols.

Figure 4.2 shows an example of a .do file. The simulation start and end times, and time

scale are all specified. Selected variables are enabled, then disabled, and ultimately enabled

again. The .do file parser ensures that the correct variables will be enabled or disabled in the

simulation.

the start time for creating logs of the simulation
$start = 0;
the end time for the simulation logs
Note: the actually simulation may end before or after
this time. Any activity after this time will not be
logged
$end = 1000000;

indicate that we want to use pico seconds as our
time unit
$timescale = ps;
show changes to the delta time
$show_delta = true;

enable the tracing of certain variables (signals,
behaviors, channels, etc)
$enable = Main,

Main.c,
Main.c.SyncWire,
Main.r,
Main.s;

now disable all variables that start with Main.c
$disable = Main.c*;

now enable all variables
$enable = *;

Figure 4.2 – Sample contents of a “.do” file.

4.1.2 Code Generation

When a user wants to enable tracing, he must compile the SpecC code with one of the

tracing flags (SVC or VCD) set. When tracing is enabled, the code generator inserts additional

43

code into the design executable. Tracing builds upon the debugging features described chapters

2 and 3 and also adds additional trace-specific code to the design. The code generated by the

compiler does two things: it creates traceable symbols for system variables and it indicates

whether or not the variable should be traced during simulation. The code generator also ensures

that only one traceable symbol is created for each instance of a variable. For variables that have

aliases, such as a signal that is connected into a child behavior through a port, the compiler

creates a single traceable symbol and possibly multiple references to the traceable symbol.

In order to support tracing, we added a base class, traced_object, from which all

channel, behavior, event, signal, buffered, and piped classes derive. The traced_object class

holds an ID number, and a boolean flag to indicate whether or not the object is to be traced. In

our implementation, each of the aforementioned classes inherits from traced_object, even when

tracing is not enabled. It would be possible to provide separate libraries for tracing and non-

tracing simulation if concerns about memory usage and execution overhead arise.

The trace symbols and trace references that the code generator creates, supply extra

information about each object that is to be traced during simulation and is required for creating

the simulation log files. These trace symbols supply information to the log file writer classes

such as the types of variables, name of the instance, number of bits (if a signal type), and

whether or not the variable should be traced. Trace references are used when more than one

instance name refers to the same object. After all annotations and enable/disable commands

from the .do file have been considered, the simulator can decide which objects will be traced

during simulation. Most of the extra information held in the trace symbols and references can be

deleted once the headers for the vcd or svc files have been written.

44

Figure 4.3 shows an excerpt from the C++ code that is generated by scc when tracing

features are enabled. In this example, a traceable symbol is being created for the signal “In08_1”

The call to _DupFullInstanceName copies the name of the parent behavior and appends the

name of the signal, “In08_1” to create a unique name for the signal instance. The numbers 7
and 0 indicate that the most significant bit is bit 7 and the least significant bit is bit 0. The call

to _AddSymbol creates a traced symbol object and the call to ToggleTracing acts on the

newly-created symbol.

In08_1._AddSymbol(_DupFullInstanceName("In08_1"), 7, 0,
_Trace::SYM_SIGNAL))->ToggleTracing(_Trace::_TRACE_TRUE);

Figure 4.3: Excerpt from the C++ code that is generated during compilation when tracing features are

enabled.

It may seem odd that we have to explicitly enable tracing on a symbol once it has been

created. The reason for this is that the SpecC compiler must also take annotations into account

when generating the code. Persistent annotations are a feature of SpecC that are similar to

comments, but are not removed by the preprocessor and are visible to the compiler and other

design tools. They allow the user to specify additional information about a variable that is not

explicitly part of the language [1]. The designer may decide to use the _SCE_TRACE annotation

in the SpecC source to indicate that a variable is to be traced or that tracing should be disabled

for a particular variable. Later, at runtime, the designer may then override the annotations by

enabling or disabling tracing through commands in a “.do” file.

There are cases where an IP vendor would like to be able to supply IP code and want to

explicitly disallow tracing for this code. The SpecC compiler provides an IP protection

mechanism that secures SpecC designs against being copied, modified, or reverse-engineered

45

[19]. In accordance with this, the exception to the rule of using annotations and allowing tracing

to be enabled through commands in “.do” files is that SpecC code compiled with the IP option

set, is not a candidate for tracing.

4.1.3 Value Change Dump (VCD) Files

Before describing the functionality of the VCD file, it will be useful to describe the VCD

file format itself. The VCD format was developed specifically for producing simulation traces of

Verilog designs [8]. The VCD files consists of a few sections: the header, variable declarations,

initial states of variables, and time/value changes. The header section provides the date,

simulator version, and time scale of the simulation and looks something like the following:

$date
Fri Oct 7 15:00:48 2005
$end
$version
UCI SpecC VCD Writer v0.001
$end
$timescale
1ps
$end

Figure 4.4: Header Information in a .vcd File

The next section, the variable declarations, lists all of the variables that will be traced

during the simulation as well as any aliases for the variables. An example may look like this:

$var wire 1 3 Main.Add01.fa0.ha1.and1.a $end
$var wire 1 4 Main.Add01.fa0.ha1.and1.b $end
$var wire 1 * Main.Add01.fa0.ha1.and1.c $end
$var wire 1 , Main.Add01.fa0.ha2.and1.c $end
$var wire 32 (Main.b.z $end
$var event 1 . Main.e1 $end
$var event 1 / Main.e2 $end
$var wire 1 7 Main.Add01.c_out $end
$var wire 1 7 Main._scc_open_port_0 $end
$enddefinitions $end

Figure 4.5: Variable Definitions in a .vcd File

46

Each variable starts with the keyword, $var and ends with $end. The type field is

specified next. In this example we see only 2 types: wire and event. For a complete list of types

see [8]. Next comes the number of bits. In this example, the variable “Main.b.z” has 32 bits. The

next field is an identifier code for the variable. Since VCD files quickly become quite large, the

identifier is encoded using visible ASCII characters in the range '!' to '~' (decimal 33 to 126) [8].

As compared to encoding the names as decimal or even hexadecimal numbers, a great deal of

compression can be achieved using this base-94 (33 through 126) encoding scheme. Next is the

name of the variable to be traced. Names may be “fully qualified” as shown or may make use of

$scope commands to declare variable names in a hierarchical fashion. Note in this example that

the variables “Main.Add01.c_out” and “Main._scc_open_port_0” have the same identifier code

-- “7”. The actual signal is “Main._scc_open_port_0”, while “Main.Add01.c_out” is a reference

to this same signal. This way the value change only needs to be logged once, but both variables

will appear to change in the waveform viewer.

The last section, contains changes in simulation times and changes in values of the

variables. It looks something like this:

#0
0*
0+
srunning #
swaiting &
#1
swaiting #
srunning &
0*
1+
#2
1*
0+
#3

Figure 4.6: Value changes in a .vcd File

Simulation time changes are marked by the '#' character, followed by a value. Value

47

changes are listed on separate lines with the new value followed by the identifier code. In this

example, we also make use of the fact that the GTKWave viewer supports strings. “srunning”

means a string with the value “running”.

Figure 4.7 shows the wave form corresponding to the value changes listed in figure 4.6.

The behavior xor1 (ID string = '#') changes from running at time = 0, to waiting at time = 1,

while the behavior and1 (ID string = '&')changes from waiting at time = 0, to running at time =

1. The signal y (ID string = '*') changes from a value of 0 at time = 0, to a value of 1 at time = 2.

Another signal, z (ID string = '+'), changes from 0 at time = 0 to a value of 1 at time = 1 and then

changes again to 0 at time = 2.

Initial values for variables are dumped in the same format as shown above, but are

wrapped with the keywords, $dumpvars and $end. Again, for more details on the VCD

format, please consult [8].

48

Figure 4.7: Waveform Corresponding to Events in VCD File

4.1.4 System Value Change (SVC) Files

SVC files are very similar in format to VCD files, but incorporate a few new features

specific to system design and the SpecC language in particular. Most of the changes come

directly from the fact that the VCD format was designed for HDLs and therefore lacks system

design tracing features.

The new features supported by the SVC format are the following:

• strings

• delta time

• additional SpecC data types – behaviors, channels, signals, etc

• simulation events in addition to simple value changes

• support for signal slicing and concatenation.

Support for strings is a feature that some VCD viewing programs have. The viewer that

we have used for our experiments, GtkWave, supports strings overloaded on the real variable

type, but the VCD specification does not include strings. We add strings as a variable type for

SVC files. String values are represented by the letter 's' followed by a normal character string

sequence.

Delta time is another feature missing from the VCD specification. One can workaround

delta time by multiplying “real” simulation time by some constant (e.g., 10, 100, 1000) and add

delta cycles on top, but this workaround has several problems associated with it. First, the times

units are incorrect because the real cycles have to be multiplied by some number. For example,

if the real time scale is in pico seconds and one multiplies by 1000 in order to allow for delta

cycles, the time scale becomes nano seconds for real simulation time. As long as the designer

can keep track of the fact that the units are incorrect, the workaround suffices, but it is somewhat

confusing.

49

The second problem is that the number of delta cycles within real cycles will normally

vary throughout the simulation. In some real cycles there may be no delta cycles or only a few,

while in other cycles there may be thousands of delta cycles. This makes choosing an

appropriate multiplier difficult and may lead to a great deal of wasted space in the viewer which

has to make room for these delta cycles that may not occur.

SVC files support delta cycles by separating them from real cycles with a ':'. For

example, “1000:2” would indicate delta cycle 2 of real cycle 1000. Ideally, an SVC viewer

should support the notion of “elastic” time. In elastic time, the viewer will expand the time axis

during regions of heavy delta cycle activity and contract the time axis during areas of little or no

delta cycle activity. This allows for all delta cycles to be seen without unnecessarily wasting

screen space and while using the correct time units.

We added several new variable types to support system level designs: behaviors,

channels, signals, buffered, and piped types. Explicitly supporting these data types allows the

SVC viewer to handle these types of variables in more intelligent ways. For example, a signal in

SpecC acts like both an event and also has a value. The VCD format only supports value

changes, so supporting signals requires some workarounds. In the SVC format we can

differentiate between a signals acting as an event and a signal acting as a variable with a value

attached to it.

Rather than simply showing states for behaviors, the approach we take with the SVC

format is to show simulation events. The SVC viewer can easily derive the state of behaviors

from these events. Along with these simulation events, we support parameters for the events. As

an example, for a trap event, there are parameters for the event or signal that caused the trap, the

exception handler, and the behavior that is being aborted. Other examples of simulation events

would be fork, join, start, wait, exit, and interrupt. (See Appendix C for a complete list of the

supported simulation events.)

50

Figure 4.8 illustrates how an SVC viewer can interpret these system events to derive the

state of a behavior at any time during a simulation. With the exception of interrupt returns, all

simulation events map to exactly one behavior state. As an example, a waitfor always causes

a transition to the sleeping state. The return from interrupt event uses a parameter that the

simulation engine must supply to indicate which state the behavior returns to following an

interrupt. Note that in order to keep the diagram from becoming too cluttered, not all of the

interrupt/ return from interrupt arcs are shown.

The SpecC language allows for slices of signals to be used in port mappings [1]. If a

signal in a port map is a slice of another signal, it effectively creates an alias to certain bits in the

second signal. Likewise, if a signal in a port map is a concatenation of slices from two or more

other signals, it creates an alias to bits from both of the source signals. The VCD format does

not support this notion, so supporting tracing of these port mapped signals would require

considerable extra effort within the simulation engine to log value changes during simulation.

51

Figure 4.8: State Diagrams for Behaviors in a System Design

The SVC format provides syntax to express slicing and concatenation when declaring a variable,

so an intelligent viewer can infer changes to the port mapped signals based on changes to any of

the source signals.

Figure 4.9 shows an example of an SVC file. As one can see, the header and variable

declaration sections look very similar to those in a VCD file. We see two of the new variable

types in this example: piped and behavior. This example also shows delta time values and

several simulation events -- start, func_call, sleep, fork, join_all, and exit – along with ordinary

value changes.

52

$timescale
1ps

$end

$var behavior 0 ! anonymous $end
$var piped 32 " Main.b.a_internal $end
$var behavior 1 # Main.b.b1 $end
$var behavior 1 $ Main.b.b2 $end
$var behavior 1 % Main.b.b3 $end
$var piped 32 & Main.b.x $end
$var piped 32 ' Main.b.y $end
$var piped 32 (Main.b.z $end
$var behavior 1) Main.b $end
$var behavior 1 * Main $end
$enddefinitions $end

#0:0
$dumpvars
b0 "
b0 &
b0 '
b0 (
$end
$start *
$func_call *) main
$start)
$fork) #
$fork) $
$fork) %
$start #
$sleep # 1
#1:0
$awakened #
$exit #
$join_all)
b11111111 '
b111 (
$fork) #
$fork) $
$fork) %
$start #
$sleep # 1
$start $
$sleep $ 1
#1:1

Figure 4.9: Example Contents of an .svc File

53

4.2 Design and Implementation of Tracing Features

The code changes required to implement the new tracing features can be roughly broken

up into three areas: code generator changes, simulation engine changes, and the creation of SVC

and VCD log file writers.

4.2.1 Code generator changes

The changes to the code generator (part of the SpecC compiler) were relatively minor. In

addition to the code that gets added for the new debug features, the code generator must now

create traceable symbols for variables that are to be traced and examine annotations to decide

whether or not to enable tracing for each variable instance.

The compiler must detect all declarations for variables – signals, piped,

behavior, channels, etc – as well as behavior port declarations. At the point where the the

variable would be initialized – usually in a behavior's constructor – the compiler must insert code

to created a traceable object. The compiler must examine the variable's type in order to

determine the traced object type – signal, behavior, channel, etc -- , the most and least

significant bits (if applicable), and the instance name. Then the compiler must examine the

annotations, to see if an annotation has been attached to the variable that explicitly enables or

disables tracing. The compiler then uses this information to set the appropriate flag to

enable/disable tracing on the object.

54

4.2.2 Simulator changes

Creating logs of the events and value changes that occur during simulation requires the

active participation of the simulation engine. Every time a value changes in an object of type

signal, piped, or buffered, the simulator must create a log of this value change. Likewise

every time a SpecC event occurs, the simulator must log this occurrence. Any time that a

simulation event such as a behavior starting, exiting, or fork occurs, the simulator must log these

events as well.

We created a tracing API, which has been included in Appendix F, to handle all of the

logging calls that the simulator must manage. The API calls are then mapped to either a VCD

file writer or an SVC file writer, depending on which type of writer has been activated at compile

time.

4.2.3 Log File Writers

4.2.3.1 VCD file writer

The VCD file writer portion is used for creating value change dump files during a SpecC

simulation. The basic function of the VCD file writer is to accept calls to log value changes and

print these value changes in the correct format required for VCD files. Our implementation uses

ideas from Anthony Bybell's implementation of a VCD file writing utility [11].

Our version of the VCD writer does differ from Anthony Bybell's implementation in

several important ways. We implemented a different system for keeping track of symbol tables,

our version uses an object-oriented design, and supports an event logging API that is specific to

the SpecC language.

4.2.3.2 SVC file writer

The SVC file writer uses the same tracing API as the VCD writer, but handles the API

calls in somewhat different ways than the VCD writer. As an example, the log_trap call has

55

3 arguments – running ID, handler ID, and event ID. The VCD writer is not able to write out all

the information required to show the relationship between an event that caused a trap to occur,

the behavior that was aborted due to the trap, and the trap handler. Instead the VCD writer only

writes out the ID of the behavior that was aborted. Since the SVC file format allows for multiple

arguments when logging simulation events, the SVC writer is able to show the chain of events

leading to the abortion of the affected behavior.

56

Chapter 5: Experiments and Results

In this chapter, we discuss how the new debug and trace capabilities have been used by

other researchers in the CECS group and how we were able to demonstrate that the new features

work with an industrial-strength example.

We were able to use the experiences of two graduate students in the CECS group at UCI

to examine the effectiveness of the new debugging features described in chapters 2 and 3. These

graduate students used the debugging features just as any other user would in order to trouble-

shoot their designs.

In order to test the completeness and usefulness of the tracing features described in

chapter 4, we used the tracing option to help debug a student project that contained errors and

also on an industrial-strength design of an MP3Decoder.

5.1 Experiences of debug feature users

5.1.1 Case Study 1

One user of the debugging features, Student A, was able to successfully use the new

debug functions to troubleshoot his ARM core and AMBA models [28]. He made the following

comments about his experiences,

It is always difficult to debug in an environment that supports concurrency like

the SpecC simulator. . . . I could easily find all the behaviors that were waiting

57

and the active behavior. I was able to trace the behavior that never became

active when it was supposed to be active. The conventional way was to add printf

statements in order to get the feel of execution and then make a guess about the

faulty behavior. [The new debugging features] definitely saved lots of time of

mine, say around 2 to 3 hrs of debugging.

5.1.2 Case Study 2

Another researcher, Student B has been making use of the debug features for several

months now and has made them a part of his regular debugging “toolbox”. He has used the

debug features while developing bus functional and TLM models for the AMBA [30] and CAN

[31] buses, as well as for Result-Oriented Modeling of the AMBA bus [29].

He indicates that the debug functions that allow one to determine which instance of a

behavior is currently active, are particularly useful when debugging bus models. Since bus

models contains many instances of bus masters and slaves, being able to determine which

particular instance is active is a critical task in debugging.

He has discovered an advanced technique for using the debug functions inside of ddd,

without needing to modify his SpecC code. He finds that being able to use the functions without

modifying his code is especially useful and time-saving. ddd supports calling functions from

within the debugger. He uses print_active_instance and print_time from within the

debugger to determine the simulation time and the name of the instance that is currently active

while he steps through code in the debugger. These two functions continually update, as he steps

through the code – providing an always up-to-date snapshot of the current state. Figure 5.1

shows an example of a similar method of how a user may display the current simulation time,

delta time, and the active instance in such a way that they update automatically as the user steps

through the code.

58

He uses print_process_states on an as needed basis from the ddd command line.

Using this debug function, he is able to obtain a more complete snapshot of the current state of

behaviors in the simulation. This ability is especially useful for quickly examining the effect of

SpecC event notification on the various behaviors in the system.

Quantifying the time-savings of good debugging tools is difficult, but he was able to

recall a particular instance where he estimates that the debugging functions saved him

59

Figure 5.1: Screen shot of ddd with the Time and Active Instance Automatically Updating.

approximately one day of effort. On this occasion, he was trouble-shooting a problem in his

model and was pursuing a false lead when he noticed that the print_active_inst function

was showing that an unexpected behavior was active. Observing this, he was able to abandon the

false lead and quickly identify the real problem and fix it within a few minutes. Because of this

experience, he has since added several shortcut commands to his ddd setup such that these

functions are immediately available every time he uses ddd and are a standard part of his

debugging process.

5.2 Tracing experiences

5.2.1 Student Project

We were also able to use the tracing features to help debug a student project. The

student's program contained a small mistake that was not readily apparent. The design featured 2

buses and 2 behaviors. One behavior was to act as a slave, while the other was to act as a bus

master.

The symptom was that the clock in the slave behavior did not appear to be toggling, but

the root cause was unknown. After simulating the design with tracing options enabled, we were

able to confirm that the slave behavior's clock was not toggling, but that the master behavior's

clock was toggling as expected. Figure 5.2 shows a screen shot of the waveform produced

during the simulation. Armed with this knowledge, we were able to inspect the model more

closely to determine the root cause of the problem, that the two behaviors were unable to

communicate because they were not properly connected through a channel (bus). The student

had mistakenly attempted to use 2 buses, where only one bus was needed to properly connect the

two behaviors. Using the trace output allowed us to quickly confirm the suspected symptom and

then root cause the problem all in a matter of minutes.

60

5.2.2 Mp3Decoder

One of our goals for creating tracing features was to demonstrate the new features using

an industrial-strength, real world example. We were able to successfully use the tracing features

to produce simulation traces for an MP3 audio decoder as described in [23]. This example

allowed us to test the tracing features using various different types of models including

specification, scheduler, network, transaction level, and communication. Figure 5.3 shows a

screen shot of several behavior states as seen in a waveform viewer and figure 5.4 shows a screen

shot of several signals from the MP3 decoder design changing in time.

61

Figure 5.2: Screen shot from student example.

Figure 5.5 Shows simulation times for the MP3 Decoder TLM Model compiled with no

debugging, debug only, and tracing flags. Three times are shown where tracing was enabled.

The time for the simulation with no debugging is our baseline for speed tests. We calculate the

slowdown as a simple ratio T2/T1, where T2 is the simulation time being measured and T1 is the

62

Figure 5.4: Screen shot of MP3 Decoder signals as seen in a waveform viewer.

Figure 5.3: Screen shot of MP3 Decoder behavior states as seen in a waveform viewer.

simulation time of the baseline. This is simply the inverse of the accepted formula for measuring

speedup.

Test Time (seconds) Slowdown
1) No debugging 111.09 1.00

2) Debug only 113.76 1.02
3) Tracing, but all symbols

disabled in .do file; start / end

times = 0 115.13 1.04

4) Tlm model tracing a subset

of symbols; writing to

/dev/null 250.53 2.26
5) Tlm model using subset of

symbols; writing to real file 298.46 2.69

Figure5.5: Simulation Time Comparison

From the table of results, we see that enabling basic debug features (test 2), has little

effect on the simulation time. Enabling tracing, but not actually tracing any variables and setting

the start and end times for simulation both to 0 (test 3) also has little effect. Both of these

measurements may be thought of as a reflection of the pure overhead due to debug and tracing

features.

The overhead in tests 2 and 3 comes mostly from the extra work created to maintain the

introspection features. As we described in sections 2.2 and 3.2, the code generator inserts extra

function calls (Set/RestoreActiveInst, Set/RestoreCurrentInst, and

Set/RestoreMethod) in each behavior and channel method to maintain the active behavior,

current class instance, and current method name. The code generator ensures that the least

amount of work is performed to set the three pointers required to maintain this information. As

an example, “private” behavior methods, (i.e., methods other than main) do not need to update

63

the active instance pointer, as it will not change as the result of the method call.

Test 4 illustrates that enabling tracing of a set of variables can have a significant effect

on the simulation time. In this case, the effect is to slow the simulation by a factor of 2.26. This

is to be expected, since the simulator has to note when significant simulation events have

occurred, check to see if the relevant variable are enabled for tracing, and then must log the event

to a text file. In this test, we write to a “null” file, to minimize the cost of file I/O on the

measurements.

The final test case (test 5) shows the effect of tracing when writing to a real file. The

cost of file I/O is significant, resulting in a slowdown of 2.69 as compared to 2.26 in the previous

case. This case demonstrates the type of performance a real user might expect to see. Of course,

the actual experience will depend on a number of factors, including the length of the simulation

being traced, the number of variables being traced, the operating system and file I/O routines.

64

Chapter 6: Summary and Future

Directions

6.1 Summary

In this report, we have described three new contributions to the SpecC design

environment that aid the debugging and analysis of system-level designs. The three contributions

are:

• Instance identification at runtime

• Simulator state observations at run-time

• Event logging for waveform displays after simulation

As System-on-a-Chip designs combine aspects of both hardware and software design, the

new capabilities were required to aid both hardware and software development. As the results

demonstrate, the new features have been integrated into the SpecC compiler and simulator in a

such a way as to provide efficient debugging and tracing capabilities.

6.1.1 Instance Identification at Runtime

For the aspects of system design that are most like software design, we added a new API

of 12 user-callable basic debug functions. This functions are mainly used to uniquely identify

65

instances of behaviors and channels in a design where multiple instances of a particular class

may be present.

6.1.2 Simulator State Observations at Run-time

We also provided a second API consisting of 17 user-callable simulator state functions.

These functions provide the user with a “peek” at the current state of the simulator. They allow

the user to see how the states of behaviors in the system change during simulation and are

especially useful for debugging deadlock situations.

6.1.3 Event Logging

For the aspects of the system design that are closer to traditional hardware design, we

added the ability for the SpecC simulator to produce simulation traces. These traces may then be

examined in a waveform viewing program. This fills a gap in the SpecC environment that users

of HDL's expect to find in a design environment. Additionally, system traces may also be useful

as design analysis tools. The logs may be used to by a system architect to determine which

direction of architectural explorations will be most beneficial without as much guess work.

We have also demonstrated that these new capabilities have been applied to real SpecC

designs by users at CECS for projects such as ARM processor models; AMBA and CAN bus

models, and an MP3 Decoder.

6.2 Future Work

We feel that the work presented in here is a major step forward for users of the SpecC

design environment, but alas improvements can always be made. Relatively minor changes can

be made to better support less commonly used features of the SpecC language and to further

improve efficiency during simulation. The next major goal to improve tracing and analysis of

system simulations is to design and implement a custom viewer for the .svc file format.

66

In terms of supporting additional features of the SpecC language, we currently only

support tracing of behaviors, channels, events and signals, piped, and buffered
variables of built-in integral types. The SpecC language also supports more complex data types

such as signal float or signal enum_type. We have not attempted to support tracing of these

types. For lack of time, we also have not implemented tracing of built-in types such as ints,

longs, and floats, which could be supported in the longterm.

Also for lack of time, we did not attempt explore any methods for compressing

simulation log files beyond what was already specified in the VCD file format.

Creating a custom waveform and behavior states analysis viewer is the next major goal

for tracing tools. The SVC format was designed to provide additional information that the VCD

format does not support. A custom viewer should be able to use this additional information to

provide the user with powerful debug and analysis tools. In particular, being able to see the

relationships among behavior states graphically as a function of time will provide the designer or

system architect with meaningful information that will help guide the design process.

67

Bibliography

1. R. Doemer, A. Gerstlauer, D. Gajski. SpecC Language Reference Manual, v 2.0. SpecC

Technology Open Consortium. www.specc.org. 2002.

2. H. M. Deitel, P. J. Deitel. C How to Program. Prentice Hall. Englewood Cliffs, New

Jersey. 1992. p. 426-427.

3. CECS. Source code for the SpecC Reference Compiler and Simulator, version 2.0. June

24, 2004. http:// www.ics.uci.edu /~ specc /reference/ .

4. W. Mueller, R. Doemer, A. Gerstlauer. The Formal Execution Semantics of SpecC.

Proceedings of the International Symposium on System Synthesis, Kyoto, Japan, October

2002.

5. Scott D. Meyers. Effective C++: 50 Specific Ways to Improve Your Programs and

Designs, Second Edition. Addison-Wesley. Boston, Massachusetts. 1997.

6. Linux Trace Toolkit Website. http:// www.opersys.com /LTT .

7. Wind River Website. http:// www.windriver.com /portal/server.pt .

8. IEEE. IEEE Standard Verilog, Std 1364-2001. IEEE. 2001.

9. GTKWave Website. http://www.cs.manchester.ac.uk/apt/projects/tools/ gtkwave .

10. Bjarne Stroustrup. C++ Programming Language, Third Edition. Addison-Wesley.

Boston, Massachusetts. 1997.

11. Anthony J. Bybell. Source code for vcd_write.

http://www.ibiblio.org/pub/Linux/apps/circuits/libvcddump-0.1.2.tgz 2002.

12. Gnu Website. The GNU Project Debugger. http:// www.gnu.org /software/gdb/gdb.html .

13. Gnu Website. Data Display Debugger. http://www.gnu.org/software/ddd/index.html .

68

http://www.gnu.org/software/ddd/index.html
http://www.gnu.org/software/gdb/gdb.html
http://www.gnu.org/software/gdb/gdb.html
http://www.ibiblio.org/pub/Linux/apps/circuits/libvcddump-0.1.2.tgz
http://www.cs.manchester.ac.uk/apt/projects/tools/gtkwave
http://www.cs.manchester.ac.uk/apt/projects/tools/gtkwave
http://www.windriver.com/portal/server.pt
http://www.windriver.com/portal/server.pt
http://www.windriver.com/portal/server.pt
http://www.opersys.com/LTT
http://www.opersys.com/LTT
http://www.opersys.com/LTT
http://www.ics.uci.edu/~specc/reference/
http://www.ics.uci.edu/~specc/reference/
http://www.ics.uci.edu/~specc/reference/
http://www.ics.uci.edu/~specc/reference/
http://www.ics.uci.edu/~specc/reference/
http://www.specc.org/

14. Microsoft Website. Visual Studio Home.

http://msdn.microsoft.com/vstudio .

15. Metrowerks Website. Metrowerks CodeWarrior Home.

http://www.metrowerks.com/mw/default.htm .

16. Eclipse Website. Eclipse.org Main Page.

http://www.eclipse.org .

17. Stan Shebs, John Gilmore. GDB Internals: A Guide to the Internals of the GNU

debugger. http://www.gnu.org/software/gdb/gdb.html . 2004.

18. Julia Menapace, Jim Kingdon, David MacKenzie. The “stabs” Debug Format.

 http://www.gnu.org/software/gdb/gdb.html. 2004..

19. D. Gajski, J. Zhu, R. Doemer, A. Gerstlauer, S. Zhao. SpecC : Specification Language

and Methodology. Kluwer Academic Publishers. Boston. 2000.

20. Minimalist GNU for Windows Website. http://www.mingw.org/.

21. Ines Viskic. Master of Science Thesis: Analysis and Conversion of C-based

Architectural System Models. University of California, Irvine. 2005.

22. A. Gerstlauer, R. Doemer, J. Peng, D. Gajski. System Design: A Practical Guide with

SpecC. Kluwer Academic Publishers, Boston, June 2001.

23. Pramod Chandraiah. Master of Science Thesis: Specification and Design of a MP3

Audio Decoder. University of California, Irvine. 2005.

24. Modelsim Website. ModelSim. http://www.model.com/.

25. Cadence Website. NC-Verilog. http://www.cadence.com/products/functional_ver/nc-

verilog/index.aspx.

26. Blue Pacific Computing Website. BlueHDL. http://www.bluepc.com/bluehdl.html.

27. SystemC Website. Welcome to the SystemC Community. http://www.systemc.org/.

69

http://www.systemc.org/
http://www.bluepc.com/bluehdl.html
http://www.cadence.com/products/functional_ver/nc-verilog/index.aspx
http://www.cadence.com/products/functional_ver/nc-verilog/index.aspx
http://www.model.com/
http://www.mingw.org/
http://www.gnu.org/software/gdb/gdb.html
http://www.gnu.org/software/gdb/gdb.html
http://www.eclipse.org/
http://www.metrowerks.com/mw/default.htm
http://msdn.microsoft.com/vstudio
http://www.gnu.org/software/ddd/index.html

28. Gautam Sachdeva. Master of Science Thesis : Integration of an ARM core in a System

Design Flow. University of California, Irvine. 2006.

29. G. Schirner, R, Doemer. Using Results Oriented Modeling for Fast yet Accurate TLMs.

Center for Embedded Computer Systems, TR 05-05. 2005.

30. G. Schirner, R. Doemer. System Level Modeling of an AMBA Bus. Center for

Embedded Computer Systems, TR 05-03. 2005.

31. G. Schirner, R. Doemer. Abstract Communication Modeling: A Case Study Using the

CAN Automotive Bus. Proceedings of International Embedded Systems Symposium.

Springer, Manaus, Brazil. August 2005.

70

Appendix A: API for Debug Functions

// obtain the class name of the last behavior that has called
//main()
const char * active_class(void);

// obtain the instance name of the last behavior that has called
// main()
const char * active_instance(void);

// obtain a copy of the full name of the active instance
char * active_path(char * Dest, const unsigned int Length);

// obtain the class name of the last behavior or channel to call
any function
const char * current_class(void);

// obtain the instance name of the last behavior or channel to
call any function
const char * current_instance(void);

// obtain a copy of the full name of the current instance
char * current_path(char * Dest, const unsigned int Length);

// print the class name of the last behavior that has called
// main()
void print_active_class(void);

// print the instance name of the last behavior that has
//called main()
void print_active_instance(void);

// print the full name of the active instance
// specify the max number of characters to print
void print_active_path(const unsigned int Length);

// print the class name of the last behavior that has called main
void print_current_class(void);

// print the instance name of the last behavior that has called
main()
void print_current_instance(void);

// print the full name of the current instance
void print_current_path(const unsigned int Length);

71

Appendix B: API for Simulator State

Functions

// print out a nicely-formatted list of states of behaviors
void print_process_states();
// same as above, but also prints the simulation and delta times
void print_simulator_state();
//get the length of the current queue of ready threads in the
simulator
unsigned int ready_queue_length();
unsigned int running_queue_length();
unsigned int waiting_list_length();
unsigned int sleeping_queue_length();
unsigned int suspended_list_length();

// Names is an array of strings that the user supplies to copy
the
// ready queue into.
// StringLength is the max number of chars to copy for each
thread name
// QueueLength is the size of the string array that the user has
// provided
// return the number of items copied (<= QueueLength)
// Active = true means list active behaviors, while Active =
false means
// list current behavior or channel
unsigned int ready_queue(char * Names, unsigned int QueueLength,
unsigned int StringLength);

unsigned int running_queue(char * Names, unsigned int
QueueLength, unsigned int StringLength);

unsigned int waiting_list(char * Names, unsigned int ListLength,
unsigned int StringLength);

unsigned int sleeping_queue(char * Names, unsigned int
QueueLength, unsigned int StringLength);

unsigned int suspended_list(char * Names, unsigned int
ListLength, unsigned int StringLength);

72

void print_ready_queue(const char * Separator,
unsigned int QueueLength, unsigned int StringLength);

void print_running_queue(const char * Separator,
unsigned int QueueLength, unsigned int StringLength);

void print_sleeping_queue(const char * Separator,
unsigned int QueueLength, unsigned int StringLength);

void print_suspended_list(const char * Separator,
unsigned int ListLength, unsigned int StringLength);

void print_waiting_list(const char * Separator,
unsigned int ListLength, unsigned int StringLength);

73

Appendix C: SVC Event Commands

The events logged in the svc files may be value changes for variables (signals, bits, etc), true

SpecC events, actions that would cause a behavior to transition between states, or method

call/returns.

Except for variable value changes, all events start with a '$' symbol, followed by a description of

the event. Variable value changes follow the rules of VCD files.

The following is a description of the individual events and their parameters:

$fork parent_id_code child_id_code
$join_all parent_id_code
$start identifier_code -- a behavior has started its main method
$notified identifier_code event_id – note: a behavior may be
notified, but not actually

awakened if it is using “wait and” semantics

$notified1 identifier_code event_id
$notified_awakened identifier_code – note: this means that a
behavior was notified by an event and was actually awakened. No

event id is necessary because the notify/notify1 log will already

appear in the log

$awakened identifier_code – awakened after a timeout from a
waitfor

$wait identifier_code event_id – waiting on an event

74

75

$sleep identifier_code time_delay – corresponding to a waitfor
statement
$resumed identifier_code – resumed from an interrrupt
$exit identifier_code – a behavior has exited from main
$aborted running_id handler_id event_id – a trap occurred
$interrupted running_id_code handler_id_code event_id_code
$func_call caller_id callee_id function_name -- a behavior or
channel has called a method
$func_return caller_id callee_id function_name – a behavior or
channel has returned from a method call
$event identifier_code -- a specC event
// the following states should only appear at the beginning of

the log as initial states

$waiting_state identifier_code
$running_state identifier_code
$interrupted_state identifier_code
$sleeping_state identifier_code
$parent_state identifier_code

76

Appendix D: SVC EBNF

value_change_dump_definitions ::=
{declaration_command } { simulation_command }

declaration_command ::= declaration_keyword [command_text] $end
simulation_command ::=

simulation_keyword { value_change } $end
| $comment [comment_text] $end
| simulation_time
| value_change

declaration_keyword ::= $comment | $date | $enddefinitions |
$scope | $timescale | $upscope | $var | $version | $slice
simulation_keyword ::=

$dumpall | $dumpoff | $dumpon | $dumpvars
simulation_time ::=

#decimal_number[:delta_time]

delta_time ::= decimal_number

value_change ::= scalar_value_change | vector_value_change |
command_event

scalar_value_change ::= value identifier_code

value ::= 0 | 1 | x | X | z | Z

vector_value_change ::= b binary_number identifier_code
| B binary_number identifier_code
| r real_number identifier_code
| R real_number identifier_code
| s string identifier_code
| S string identifier_code

declaration_vars ::= $var var_type size identifier_code reference
$end

| $slice var_type size num_slices {slice} identifier_code
reference $end

var_type ::= event | integer | string | real | signal | buffered
| piped | behavior | channel

size ::= decimal_number

77

num_slices ::= decimal_number

slice ::= reference

reference ::= identifier
| identifier [bit_select_index]
| identifier [msb_index : lsb_index]

index ::= decimal_number

identifier_code ::= { ASCII character }
[Note: only the printable ASCII characters]
command_event ::= $fork parent_id_code child_id_code | $event
identifier_code

| $join parent_id_code | $start identifier_code | $waiting
identifier_code

| $running identifier_code | $ready identifier_code
| $sleeping identifier_code | $suspended identifier_code
| $resumed identifier_code | $abort identifier_code
| $exit identifier_code caller_id_code | $continue

caller_id_code
| $trap running_id_code handler_id_code event_id_code
| $interrupt running_id_code handler_id_code event_id_code
| $inactive identifier_code

78

Appendix E: .Do File EBNF

Commands:
$start “=” number “;” .

$end “=” number “;”.

$timescale “=” (“s”| “ms”| “us” | “ns” | “ps” | “fs”) “;”.

$show_delta “=” (“true” | “false” | “0” | “1”) “;”.

$delta_granularity “=” (“10” | “100” | “1000” | “10000”) “;”.

$enable “=” extendedSymIdent { “,” extendedSymIdent } “;”.

$disable “=” extendedSymIdent { “,” extendedSymIdent } “;”.

Types:
extendedSymIdent = symbolIdentifier [“.” “*”].

symbolIdentifier = identifier { “.” identifier }.

identifier = letter {letter | digit}.

letter = “a” | “b” | . . . |“z”| “A” | “B” | . . . |”Z”.

digit = “0” | “1” | . . . “9”.

number = digit { digit }.

79

Appendix F: Tracing API

// log the start of a main method call

int log_start(const int ID);
// log the end of main method

int log_exit(const int ID);
// log that a behavior is waiting on an event

int log_wait(const int ID);
// log that a behavior is waiting on a time interval

int log_waitfor(const int ID, const int DelayTime);
// log that a behavior has been notified by an event

int log_notified(const int ID, const int EventID);
int log_notified1(const int ID, const int EventID);
// log that a behavior has been awakened after some time period

int log_awakened(const int ID);
// log when a parent thread has joined all of it's child threads
int log_join(const int ParentID);
// log an interrupt occurrence

// RunningID is the ID of the behavior that was running when the

trap occurred

// HandlerID is the ID of the handler behavior

// EventID is the ID of the event that caused the trap

int log_interrupt(const int RunningID, const int HandlerID, const
int EventID);

80

// log that a behavior has resumed after being interrupted

// ID is for the behavior that is resuming

// PrevState indicates the state that the behavior is returning

to

int log_resumed(const int ID, const int PrevState);
// log a trap occurrence

// RunningID is the ID of the behavior that was running when the

trap occurred

// HandlerID is the ID of the handler behavior

// EventID is the ID of the event that caused the trap

int log_trap(const int RunningID, const int HandlerID, const int
EventID);
// log a parent behavior forking a child thread

int log_fork(const int ParentID, const int ChildID);
// The following 6 should only be used to show initial states
// log that a behavior is sleeping

// only as an initial state!!

int log_sleeping_state(const int ID);
// log that a parent behavior is waiting for its children to join

// only used as an initial state!

int log_parent_state(const int ID);
// log that a behavior is running

// only used as an initial state!

int log_running_state(const int ID);
// log that a behavior is waiting

// only used as an initial state!

81

int log_waiting_state(const int ID);
// log that a behavior is in the inactive state

// only used as an initial state!

int log_inactive_state(const int ID);
// log that a behavior is in the interrupted state

// only used as an initial state!

int log_interrupted_state(const int ID);
// the following 2 are for creating a function call trace
// log a function call

int log_func_call(const int CallerID, const int CalleeID, const
char * FunctionName);
// log a return from a function

int log_func_return(const int CallerID, const int CalleeID,
const char * FunctionName);

// log a change in value for a signal

// return non-zero if operation succeeds

int log_value_change(const int ID, const int NewValue);
// overloaded version that takes a float

int log_value_change(const int ID, const float NewValue);
// etc.

82

	List of Figures
	List of Acronyms
	Chapter 1: Introduction
	1.1 System Level Design Languages and Simulation
	1.1.1 Background
	1.1.2 Brief Introduction to the SpecC language

	1.2 Motivation
	1.2.1 Basic Debug Functions
	1.2.2 Simulator States
	1.2.3 Tracing capabilities
	1.2.3.1 Production of Simulation Logs
	1.2.3.2 Goals for Tracing Implementation

	1.3 Related Works
	1.3.1 Software Debuggers
	1.3.2 Hardware Debuggers
	1.3.3 System Analysis Tools

	Chapter 2: Debug Functions
	2.1 Possible Approaches for Software Debugging Capabilities
	2.1.1 Symbol Table-Based Approach
	2.1.2 Introspection-Based Approach
	2.1.3 Comparison of Debug Techniques

	2.2 Description of the Implementation
	2.3 The API
	2.4 Short Examples
	2.4.1 Example 1:
	2.4.2 Example 2:

	Chapter 3: Simulator State Functions
	3.1 Behavior States
	3.2 Implementation of Simulator State Functions
	3.3 The API
	3.4 Short Examples
	3.4.1 Example 1:
	3.4.2 Example 2:

	Chapter 4: Tracing
	4.1 Tracing Flow
	4.1.1 “Do” Files
	4.1.2 Code Generation
	4.1.3 Value Change Dump (VCD) Files
	4.1.4 System Value Change (SVC) Files

	4.2 Design and Implementation of Tracing Features
	4.2.1 Code generator changes
	4.2.2 Simulator changes
	4.2.3 Log File Writers
	4.2.3.1 VCD file writer
	4.2.3.2 SVC file writer

	Chapter 5: Experiments and Results
	5.1 Experiences of debug feature users
	5.1.1 Case Study 1
	5.1.2 Case Study 2	

	5.2 Tracing experiences
	5.2.1 Student Project
	5.2.2 Mp3Decoder

	Chapter 6: Summary and Future Directions
	6.1 Summary
	6.1.1 Instance Identification at Runtime
	6.1.2 Simulator State Observations at Run-time
	6.1.3 Event Logging

	6.2 Future Work

	Bibliography
	Appendix A: API for Debug Functions
	Appendix B: API for Simulator State Functions
	Appendix C: SVC Event Commands
	Appendix D: SVC EBNF
	Appendix E: .Do File EBNF
	Appendix F: Tracing API

