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Abstract

Much effort in RTL design has been devoted to developing ”push-button” types of tools. However, given the highly com-
plex nature of RTL design, interactive design space exploration with assistance of tools and algorithms can be more effective.
In this report, we propose an interactive RTL design environment, targeting a generic RTL processor architecture includ-
ing pipelining, multicycling and chaining. Tasks in the RTL design process include clock definition, component allocation,
scheduling, binding, and validation. In our interactive design environment, the user can control the design process at every
stage, observe the effects of design decisions, and manually override synthesis decisions at will. We also provide a simul-
taneous scheduling and binding algorithm to automate RTL synthesis process. In the end, we present a set of experimental
results that demonstrates the benefits of the proposed approach.
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Abstract

Much effort in RTL design has been devoted to develop-
ing ”push-button” types of tools. However, given the highly
complex nature of RTL design, interactive design space ex-
ploration with assistance of tools and algorithms can be
more effective. In this report, we propose an interactive RTL
design environment, targeting a generic RTL processor ar-
chitecture including pipelining, multicycling and chaining.
Tasks in the RTL design process include clock definition,
component allocation, scheduling, binding, and validation.
In our interactive design environment, the user can control
the design process at every stage, observe the effects of de-
sign decisions, and manually override synthesis decisions at
will. We also provide simultaneous scheduling and binding
algorithm to automate RTL synthesis process. In the end,
we present a set of experimental results that demonstrates
the benefits of the proposed.

1. Introduction

With ever increasing complexity and time-to-market
pressures in the design of embedded systems, designers
have moved the design to higher levels of abstraction in
order to increase productivity. Ideally, the design process
starts at the system level. However, each design must
be refined through various design processes and imple-
mented, eventually, at the lower levels. The task of RTL
design has been recognized as one of the major design
steps [GDLW92].

Many years of research in RTL synthesis have been ded-
icated to the development of automatic synthesis tools. In
these systems, designs are obtained with minimal user inter-
action. Typically, the only means of controlling the output
of such systems is via cumbersome constraints expressed in
terms of clocking, area, and timing.

Automating RTL synthesis is a very complicated issue.
It is well known that the majority of synthesis tasks are
NP-complete problems. Hence, the design time becomes
large, or the results are suboptimal, resulting designs can-
not satisfy the performance or area demands of real-world

constraints. To develop a feasible approach for RTL syn-
thesis, we have substituted the goal of a completely auto-
mated, ”push-button” synthesis system with one that allows
to maximally utilize the human designer’s insights. This ap-
proach is calledInteractive synthesis methodology. In this
approach, the designer can control the design process at ev-
ery stage, observe the effects of design decisions, and man-
ually override synthesis decisions at will. This is facilitated
through a convenient graphical user interface (GUI).

Hardware description languages (HDLs) such as Verilog
HDL and VHDL are most commonly used as input to RTL
design. However, system designers often write models us-
ing programming languages such as C/C++ to estimate the
system performance and to verify the functional correct-
ness of the design, even to refine the design into imple-
mentation [GZD+00] [GLMS02] [WO00]. C/C++ offers
fast simulation as well as a vast amount of legacy code and
libraries which facilitate the task of system modeling. To
implement parts of the design modeled in C/C++ in hard-
ware using synthesis tools, designers must then manually
translate these parts into a synthesizable subset of a HDL.
This process is well known for being both time consuming
and error prone. Moreover, it can be eliminated completely.
The use of C-based languages to describe both hardware
and software will accelerate the design process and facili-
tate the software/hardware migration. Hardware synthesis
tools from C/C++ can then be used to map the C/C++ mod-
els into logic netlists.

At the output of RTL design, many commercial and aca-
demic tools have been based on multiplexer-based archi-
tectures, where all data transfers among RT components
are achieved through dedicated connections with multiplex-
ers [Syn]. As the size of a design increases, the performance
of the multiplexer-based architecture becomes slower than
that of bus-based architecture. Our interactive RTL design
environment targets a bus-based architecture, also known
as RTL processor [Acc01]. The RTL processor is universal
processor architecture which includes pipelining at different
levels, multicycling and chaining.

The rest of the report is organized as follows: section2
shows related work and section3 introduces our RTL de-
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sign environment and the program flow of the proposed
RTL synthesis tool. In section4, we will go over our de-
sign methodology with a simple example. In section5, we
will introduce a simultaneous scheduling and binding algo-
rithm to accelerate synthesis process. Section6 shows the
experimental results. Section7 concludes the report with a
brief summary.

2. Related Work

In the recent years, a few projects have been look-
ing at means to use C/C++ as an input to current design
flows [GZD+00] [GLMS02] [WO00]. In order to facilitate
the mapping of C/C++ models into hardware, several tools
exist that automatically translate C/C++ based descriptions
into HDL either at the behavioral level or the register trans-
fer level (RTL) [Mic99] [WO00] [S0́1] [Gup03].

Wakabayashi et al. [WO00] has developed C-based high-
level synthesis system,Cyber, that takes behavioral descrip-
tion language (BDL) which is extension of C language for
hardware.Cyberis integrated their C-based SoC design en-
vironment and also provides cycle-accurate C++ model for
validation of the system design.

SpC [S0́1] addressed mapping of C code with pointers
andmalloc/free into hardware. In hardware, a pointer
is not only the address of data in memory, but it may also
reference data mapped to registers, ports or wires. Pointer
analysis is used to find the set of locations each pointer
may reference in a program at compile time. The values of
the pointers are then encoded, and branching statements are
used to dynamically access data referenced by pointers. Dy-
namic memory allocation and deallocation are supported by
instantiating hardware memory allocators tailored to an ap-
plication and a memory architecture. Several optimizations
may also be performed. A heuristic algorithm is presented
to efficiently encode the values of the pointers. Compiler
techniques may also be used to reduce storage before loads
and stores.

Gupta [Gup03] has developed C-based high-level syn-
thesis framework,SPARK, that employs a set of paralleliz-
ing compiler techniques and synthesis transformations to
improve the quality of high-level synthesis results. The
compiler transformations have been re-instrumented for
synthesis by incorporating ideas of mutual exclusivity of
operations, resource sharing and hardware cost model.
SPARKtakes behavioral ANSI-C code as input, schedules
it using speculative code motions and loop transformations,
runs an interconnect-minimizing resource binding pass and
generates a finite state machine for the scheduled design
graph. Finally, a backend code generation pass outputs syn-
thesizable register-transfer level (RTL) VHDL. TheSPARK
methodology is particulary targeted to control-intensive mi-
croprocessor functional blocks and multimedia and image

processing applications.
The methodology adopted in theSPARKsystem is based

on a toolbox approach. Core transformations for code mo-
tion and loop transformations are implemented. Heuristics
can then be designed which use these transformations ei-
ther interactively with the help of the user, or based on some
algorithm, and try to improve the scheduling and resource
sharing results.

Some interactive synthesis approaches [JPO93] [JGC96]
addressed the importance of user-interaction with synthe-
sis system. The AMICAL [JPO93] allows the user to mix
automatic and manual design. The user may start a design
manually and ask the AMICAL to finish it. Alternatively,
the user can execute the synthesis tasks step by step. At
each step, the user has the choice to continue the synthesis
automatically or manually. Yet, AMICAL has fixed design
flow, that is, the user has to perform a sequence of synthesis
tasks in the order of scheduling, chaining, allocation and the
architecture generation.

The ISE [JGC96] has attempted to address physical de-
sign issues by allowing the user to start floorplanning early
in the design process and generating feedbacks from the
physical level to help the user making design decisions at
behavioral and structural levels. It also provides automatic
algorithms to either perform one design task for the user or
to simply finish the design by completing the design tasks.
The user can manually override the design decisions of syn-
thesis algorithms.

3. RTL Design Environment

In this section, we will describe our RTL design environ-
ment integrated in a system-level design flow.

3.1. System Design Flow

Figure1 shows the system level design flow [APY+03],
in which the designer uses C/C++ not only as a specification
or modeling language but also as the final implementation
language, since we would like to avoid double coding for
simulation and synthesis.

The system design process starts with a specification
model written by the designer to specify the desired sys-
tem functionality. During the architecture exploration, the
designer selects a set of processing elements and maps the
computation behavior of the specification onto PEs. Archi-
tecture exploration refines the specification model into the
transaction level model. The transaction level model de-
scribes the PE structure of the system architecture and the
mapping of the computation behaviors onto the PEs. The
communication between PEs still is done by abstract mes-
sage passing channels.
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Figure 1. System design flow

Architecture exploration is followed by communication
synthesis which selects a set of system busses and protocols,
and maps the functionality of communication to the system
busses. Communication synthesis creates the bus functional
model which reflects the bus architecture of the system.

The bus functional model is the starting point for the
three backend tasks: hardware synthesis, interface synthesis
and software synthesis. Depending on the type of PE, soft-
ware is compiled and assembled to instruction-set model,
or hardware is synthesized to a structural RTL model. Ei-
ther way a clock-cycle accurate model of the PE is obtained.
The result of this backend process is the implementation
model which is a cycle-accurate, structural description of
the RTL/IS architecture of the whole system.

3.2. RTL Design Flow

The RTL design environment provides synthesis, refine-
ment and exploration for RTL design as shown in Figure2.
It includes a graphical user interface (GUI) and a set of
tools to facilitate design flow and perform refinement steps.
In our flow, designers or algorithms of automatic tools can
make decisions such as clock period selection, allocation,
scheduling and binding. The GUI allows designers to in-
put and change such design decisions. It also enables the
designer to observe the effects of the decisions and to man-
ually override the decisions at will. Further, the designers
can make partial decisions and then run automatic tools to
take care of the rest of the decisions.

During preprocessing, the behavioral description of cus-
tom hardware in C/C++ will be refined into a super FSMD
model. Also some presynthesis optimization techniques in-
cluding constant propagation, dead code elimination, com-
mon subexpression elimination are integrated. The gener-

Bus Functional Model

Preprocessing

Super FSMD

RTL Refinement

Cycle-accurateFSMD

Netlist Mapper

Structural RTL

Performance
Analysis

GUI Algorithms

Performance
Analysis

Design decisions

RTL
Library

Figure 2. RTL design flow

ated FSMD will be the input model of the RTL synthesis.
A performance analysis tool is used to obtain character-

istics of the initial design such as the number of operations,
variables and data transfers in each state, which serves as
the basis for RTL design exploration. It also produces qual-
ity metrics for RTL design such as the delay and power
of each state and area of the design to help designer to
make decisions on clock selection, allocation, scheduling
and binding.

The refinement tool then automatically transforms the
FSMD model based on relevant design decisions. Finally,
the structural RTL model is produced by a netlist mapper,
ready to feed into traditional design tools for logic synthe-
sis, etc.

As shown in Figure2, we have three inputs to the RTL
design tasks. The first input is the HW components de-
scription in system level design language in bus-functional
model which shows the communication architecture of a
system. The second input is an RTL component library
that consists of a variety of RTL components including
functional units, storage units and busses The final input
is a set of synthesis decisions such clock period, allocation,
scheduling and binding that define the RTL refinement task
which will then be executed by the tool.

3.3. Preprocessing

During preprocessing, the behavioral description of cus-
tom hardware in C/C++ will be refined into a super FSMD
model. The whole description can be considered to be a SF-
SMD with one state. But generally, the description can be
divided into any number of the super state of any size.

The description consists of reading inputs (I ), writing
outputs (O) and executing expressions (EXP), which use
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intermediate storage variables (V). Using these elements,
SFSMD can be described syntactically in the same way as
FSMD. The basic difference between the two models is that
SFSMD does not restrict the size of the algorithm-parts as-
signed to a state, whereas FSMD does. This is, because
SFSMD does not correspond to hardware at all, where as
the states of FSMD correspond to clock cycles.

3.4. Finite State Machine with Data (FSMD)

For an exact description of FSMD,
some sets have to be defined.

S: set ofstates
I : set ofinputs
O: set ofoutputs
V: set ofstorage variables
EXP: set ofexpressions:

functionswhich give results depending on
storage variables Vandoperators OP:
EXP= {V,OP}= { f (x,y,z, . . .)|x,y,z∈V}

OP: set of operators used inEXP
STAT: set ofstatus expressions:

logic relationsbetween two expressions
from the setEXP:
STAT= {Rel(a,b)|a,b∈ EXP}

Referring to the above definitions, the data processing
(first item in above list) is described by functionh:

h : S× (I ∪STAT∪EXP)→ (V ∪O)

There needs to be a set of initializing valuesV0 for the
variablesV when starting the FSMD, because the expres-
sions inEXPread them. There also has to be an initial state
S0. The next state is determined in a similar way:

f : S× (I ∪STAT)→ S;V0,S0

V0 andS0 are needed again, becauseSTATdepends on
EXP, andEXPdepends onV.

With these definitions, an FSMD is described by:

< S,S0,(I ∪STAT∪OP),V,V0,O,h, f >

The above definition of a FSMD can be given in tabular
form with a state and output table as shown in Figure5.

3.5. Input Model

The input model of our RTL design is the bus functional
model of the custom hardware PE as illustrated in Fig-
ure 3, which was generated by system-level design tools.
In this model, a hierarchy of sequential behavioral blocks
inside the hardware PE describes its functionality. The
hardware unit communicates data through system busses

App

App

App

App

App

HW

. . . . . .

ch.recv(codevec);
for (k=0; k < 10; k++) {
  i = codvec[k];
  j = sign[i];
 index = i * 6554;
 tr = i-((index*5) >> 1);
 if (j > 0) {
   code[i] += 4096;
  }
  else {
   code[i] -= 4096;
   index += 8;
  }
}
ch.send(code);

    . . . . . .

A[15:0]

D[31:0]

MCS

nRW

nWAIT

HW_BF

HW

IRQ

System Bus

S
la

ve
 P

ro
tocol

M
A

C

…

Figure 3. Bus functional model for custom hardware

with other PEs. The communication functionality is imple-
mented by layers of the protocol stack including protocol
layer, MAC layer, application layer as shown in Figure3.
These channels define the timing-accurate implementation
of each transaction over the system busses. These channels
are function calls which will essentially be inlined into the
code during preprocessing [GCS+03].

3.6. RTL Component Library

The RTL component library [GCS+03] contains models
of RTL units such as functional units, storage units and lo-
cal busses. RTL units are also described in C/C++. RTL
units will be used for RTL component allocation and the
generation of the final RTL netlist.

Components generally have attributes and parameters.
Component attributes describe characteristics or metrics for
a component such as area, delay, cost, power and so on. At-
tributes of a components are stored as annotation attached
to the component. All components in the RTL library can
be parameterizable in bit width, size, etc. For a parame-
terized component, the designer selects values for each of
the component’s parameters during allocation. The value of
attributes is also adjusted according to the selected parame-
ters.

Generally, functional units can be pipelined, multicycled
and chained. Also, storage units are pipelined or multi-
cycled in our target architecture. The storage units can be
composed of registers, register files and memories with dif-
ferent latency and pipeline schemes.
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3.7. Synthesis Decisions

The refinement engine works on directions called the
RTL synthesis decisions. The synthesis process can either
be automated or interactive as per the designer’s choice.
However, the decisions must be input to the refinement en-
gine using a specific format. For the purpose of our im-
plementation, we annotated the input model with the set of
synthesis decisions [GCS+03]. The refinement tool then
detects and parses these annotations to perform the requi-
site model transformations. Based on these decisions, the
refinement engine imports the required RTL components
from the RTL component library and generates the cycle-
accurate FSMD.

The decisions can be made by designers interactively
through GUIs and/or be made through automatic algo-
rithms. The GUIs for interactive decision-making allows
designers to (a) specify decisions (b) override the decisions
which are already made by the designers or automatic al-
gorithms (c) partially assign decisions and automatic algo-
rithms will fill in the rest of decisions.

The GUI also allows automatic algorithms being
plugged in. Thus it is easily extendable because design-
ers can select an algorithm from a list of plug-in algorithms
such as ASAP, list and force-directed scheduling and graph
coloring for binding and so on.

3.7.1 GUI for Interactive Decision-making

In order to help designers to make synthesis decisions inter-
actively, we provide anallocation windowand aschedul-
ing & binding window. In allocation window as shown
in Figure 4, designer can see all RTL components in the
RTL component library, select them and set the parameters
such as bit width, size of array and so on [GCS+03]. The

Instance Type Width Area Delay Stages Cost

alu0
alu1

mult0
mac0

rf0
mem0
bus0
bus1
bus2
bus3

ALU

MULT
MAC
RF

SRAM

BUS

32 bits
32 bits
32 bits
32 bits
32 bits
32 bits
32 bits
32 bits
32 bits
32 bits

528
528

16803
20142
21452
80242

34
34
34
34

12.3ns
12.3ns
15.2ns
15.3ns
2.4ns

32.8ns
2ns
2ns
2ns
2ns

0
0
2
2
0
0
0
0
0
0

$1
$1

$12
$14
$16
$6
$1
$1
$1
$1

Resource Allocation Table

mac0

...

…
…
…
…
…
…
…
…
…
…

Categories Type Width Area Delay Stages Cost

Register File
Bus

Memory
Register

ALU

ADD/SUB
MULT

ADDER

MAC

32 bits
32 bits
32 bits
32 bits
32 bits

528
211
258

16803
20412

12.3ns
10.2ns
10.8ns
15.2ns
15.3ns

0
0
0
2
2

$1
$1
$1

$12
$14

RTL Unit Selection

Functional Unit

...

…
…
…
…
…
…

Figure 4. Allocation window

scheduling & binding window displays the SFSMD instate-
operations tableformat which contains a series of states,
each state containing a set of operations to be performed
in the state, shown in Figure5. The state-operations table
displays the behavior of a design and all design decisions
made in graphical format. This is, the designer can modify

all design decisions at any time in the design process in the
state-operations table.

S1

O1 + I1

O2 * I1

_status_ < O2 0

S2 O3 = I2 I4

S1

S1

S2

State NS destination oper source1 source2

I2

O1

alu0

alu1
ALU

Instance   Type
operation
binding

rf0

rf1
register

file

Instance    Type

reg0

reg1

mem0

register

SRAM

variable
biding

port
binding

wp

ports

bus0

bus1

buses

bus2

bus3

bus4

bus5

connection
binding

scheduling
port

binding

sum/in1,in2

ports

CS

0

1

2

0

Binding
View

Scheduling
View

delay ...

43.2

13.5

State Operations Table Estimation

...

...rf1[3]/wp

bus2

alu1 rf1[2]/rp0

bus0

reg0/rp

bus1

Figure 5. Scheduling & Binding window for an SF-
SMD

In the table,Stateis the current state andNSis next state.
CSis the control step of the expression which is relative to
the start time of the state.

The table also shows statistics such as the lifetimes of
all variables, occurrences of operations, the number of data
transfers and the critical path in number of operations in
each state. It also shows the ASAP and ALAP control step
for each expression in each state.

All expressions are scheduled at specified control steps
in the scheduling view, which will be assigned toCS in
the state-operations table. All operations are bound to
functional units and their ports, which will be specified in
the oper column. Also all operand variables (destination,
source1, source2) are mapped to storage units, read/write
ports of the storage unit, and busses in the binding view. If
the variables are mapped to memory, then the base address
needs to be specified as well.

Designers can input, modify all decisions and override
decisions which algorithms made through automatic tools
in scheduling & binding window. Furthermore, the design-
ers can partially specify some of the decisions and then al-
gorithms take care of the rest of decisions still meeting the
specified designer’s decisions. Furthermore some of the de-
cisions can be omitted at all if the model is fed into tra-
ditional RTL design tools such as Design Compiler. For
example, scheduling decision is made but binding is not.
Then the traditional RTL tool will make decisions for bind-
ing. In order to do this, we generate a cycle accurate model
in Verilog.
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3.8. Performance Analysis

In our RTL design methodology, some synthesis metrics
are implemented to help the desinger make synthesis deci-
sion. The synthesis metrics should be measured according
to how much synthesis decision is made. Our performance
analysis, therefore, is divided into two modes: pre-synthesis
analysis and post-synthesis estimation.

Pre-synthesis analysis profiles an RTL design and col-
lects statistics information to help the designer decide how
to select allocation and partition a super FSMD description
into control steps. Three important metrics of design cost
are operator occurrences, variable lifetimes, data transfers.
Operator occurrences metric shows the number of opera-
tions of each type used in each state. The maximum number
of occurrences of a certain operator type over all states de-
termines the required minimum number of functional units
to perform that type of operation. Variable lifetimes met-
ric identifies states in which a variable holds a useful value.
The maximum number of variables with overlapped life-
times over all states determines the required minimum num-
ber of storage units. Data transfer metric shows the number
of data transfers to perform opertions. The maximum num-
ber of data transfers of operations over all operations deter-
mines the the required minimum number of buses.

Post-synthesis estimation reflects synthesis decisions to
the RTL design and calculates delay and power consump-
tion of each state and area of the design. After allocation,
we can calculate these metrics through initial mapping of
operations to units using the allocation information. The
scheduling and binding decision will give more accurate es-
timation for the design.

3.9. Target Processor Architecture

Our architecture, RTL Processor, is shown in Figure6.
It consists of a controller, a datapath and an interface con-
troller. The datapth consists of storage units such as reg-
isters, register files, and memories, and combinatorial units
such as ALUs, multipliers, shifters, and comparators. These
units and the input and output ports are connected by busses.
The datapath takes the operand from storage units or input
ports, performs the computation in the combinatorial units,
and returns the results to storage units or output ports during
each state.

The controller has a set of datapath control signals, status
signals and external signals. The datapath control signals
select the operation for each components in the datapath.
The status signals indicate when a particular value in the
datapath is satisfied or when a particular relation between
two data values stored in the datapath is satisfied. The ex-
ternal signals represent that conditions in the external en-
vironment on which the model must respond or identify to
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Figure 6. RTL processor architecture

the environment that the model has reached a certain state
or finished a particular computation.

The selection of operands, operations and the destina-
tion of the result are controlled by the controller by setting
proper values of datapath control signals. The datapath also
indicates through status signals when a particular value is a
particular storage unit or when a particular relation between
two data values stored in the datapath is satisfied. The in-
put ports can be connected directly to register or storage
units or to any other component in the datapath including
the output ports. The output ports could be used for pos-
sible connections to other RTL processors through outside
busses or directly through point-to-point connection.

Similar to the datapath, the controller has a set of input
and a set of output signals. There are two types of input
control signals: external signals and status signals. External
signals represent the conditions in the external environment
on which the model must respond. There are also two types
of output control signals: datapath control signals and ex-
ternal signals. The control signals select the operation for
each components in the datapath, which the external sig-
nals identify to the environment that the model has reached
a certain state or finished a particular computation. A con-
troller consists of state register and next-state and output
logic. Next-state logic generates the value for the state reg-
ister in the next clock cycle while output logic generates the
value of control and external signals.

Each RTL processor follows this general architecture, al-
though two RTL processors may differ in the number and
type of control units and datapaths, the number of compo-
nents and connections in the datapath, the number of states
in the control unit, and the number and type of I/O ports.

A RTL processor may also be pipelined in several differ-
ent ways:

1. Control pipelining: By inserting the latches or regis-
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ters on control signals and/or status signals. Control
registers are usually inserted in the last implementa-
tion stage, while status register is frequently used from
the beginning. However the status register introduces
at least one state delay. In other words, the condi-
tion evaluation must be performed one state before it
is used, since it is loaded into the status register in one
state and used in the next. Similarly, the control regis-
ter introduces one state delay in conditional evaluation.

2. Datapath pipelining: Datapath can be pipelined by
inserting latches or registers on selected connections,
such as before or after functional units. With datapath
pipelining, the result of register transfers can be used
only n states later wheren is the number of datapath
stages.

3. Function unit pipelining: Each functional unit can be
pipelined by dividing it into several stages and insert-
ing latches between the stages. In the case of pipelined
units, the result of the operation can be used only
n states later, wheren is the number of the pipeline
stages in the functional unit.

4. Interactive RTL Synthesis Example

To illustrate the application of our methodology, we will
walk through a simple design which computes the square-
root approximation (SRA) [Gaj97] of two signed integers,
a andb by the following formula:√

a2 +b2 ≈ max((0.875x+0.5y),x)

wherex = max(|a|, |b|), andy = min(|a|, |b|). According
to Figure7 (a), this design has two input portsin1 andin2,
which are used to read integersa andb, and one output port
result The design reads the input ports and starts the com-
putation whenever the input control signalstart becomes
equal to 1. After the computation is done, it makes the re-
sult available through theresultport for one clock cycle. At
the same time, it sets the control signaldoneto 1 in order
to signal the environment that the data at theresult port is
valid.

4.1. Synthesis Decisions

The maximum execution time of a design can be defined
as product of the maximum length of clock period used in
the design and maximum number of clock cycles. Hence
to optimize the performance of a design, it is important to
select the clock period wisely, as well as to minimize the
number of clock cycles [JGC96].

Table1 shows the component library that will be used
in implementing our design. From the operator occurrences

behavior sra(
  in   int in1,
  in   int in2,
  out int result,
  in   bool start,
  out bool done) {

  while (true) {
    do {
       a = in1;
       b = in2;
    } while (start != true);

    t1 = abs(a);
    t2 = abs(b);
    x = max(t1, t2);
    y = min(t1, t2);
    t3 = x >> 3;
    t4 = y >> 1;
    t5 = x - t3;
    t6 = t4 + t5;
    t7 = max(t6, x);

    done = true;
    result = t7;
  }
}

(a) (b)

S0

_status_ != start

S0

S1

State NS Target operand oper operand1 operand2CS

0

# op delay

!=  1

abs  2
max 2
min  1
>>    2
+      1
-       1

State Operations Table Estimation

1.6 ns

66.5 ns

true

S1

abs

S2

0 t1 a

abs0 t2 b

max1 x t1 t2

min1 y t1 t2

>>2 t3 x 3

>>2 t4 y 1

-3 t5 x t3

+4 t6 t4 t5

max5 t7 t6 x

=0 done false

=0 result t7

=0 a in1

=0 b in2

S2 S0 2.5 ns

Figure 7. Square root approximation example (a) be-
havioral C/C++ code (b) SFSMD

Table 1. The RTL component library
component functions delay (ns) area (# gates)

abs abs 10.0 233
min min 11.4 357
max max 11.4 357
shift << / >> 9.0 673
add + 10.5 330
sub − 11.1 591

addsub +/− 12.6 1056
reg register 1.6 (write) 324

1 rp/1 wp 2.5 (read)
mux multiplexer 1.8 151
tbuf tri-state buf 1.2 96

metric shown in Figure7 (b), it is obvious that the current
schedule requires at least two components for the compu-
tation of an absolute value, two components for the com-
putation of the maxima, and so on. Therefore unit area is
estimated to be 4776 gates, which is the sum of the areas of
all the required components including 3 registers for vari-
ables,a, b, t7. At the same time, the state delay metric
shows that the longest state delay is 66.5ns. The maximum
execution time would be 66.5×3 = 199.5 ns. If we apply
the ASAP scheduling, the design needs 8 cycles to execute
as shown in Figure8. The longest state delay is 15.5 nsand
the maximum execution time will be 15.5×8 = 124.0 ns.
According to this result, we can reduce the total execution
time significantly. But we have to introduce 8 registers for
all variables in different states, which results in increase of
the area of the design by 324×8 = 2592.

In order to reduce the area of the design, we may use
a max unit to perform two max operations in state X0 and
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state X4. We have to introduce multiplexers in the input
ports of the max unit and the additional delay of the mul-
tiplexers (1.8ns). The the longest state delay would be
15.5+ 1.8 = 17.3 ns. The area of the design reduces by
357−151= 206.

S0

_status_ != start

S0

S1

State NS Target operand oper operand1 operand2CS

0

# op delay

!=  1

abs  2

State Operations Table Estimation

1.6 ns
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true

S1
abs

X0
0 t1 a

abs0 t2 b

max0 x t1 t2

min0 y t1 t2

>>0 t3 x 3

>>0 t4 y 1

-0 t5 x t3

+0 t6 t4 t5

max0 t7 t6 x

=0 done false

=0 result t7

=0 a in1

=0 b in2

S2 S0 2.5 ns

X0 X1

X1 X2

X2 X3

X3 X4

X4 S2
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15.2 ns

14.6 ns

15.5 ns

Figure 8. SRA design after ASAP scheduling

Figure 9 shows a screenshot of our RTL design envi-
ronment for the above simple example. We uses 4 regis-
ters for variables and 4 buses for data transfers between
functional units and storage units. The binding is done
by the designer. The maximum state delay of the design
would be 17.3+1.8+1.2×2 = 21.5 nsbecause multiplex-
ers are inserted at the write ports of the registers and tri-
state buffers are introduced between the output ports of reg-
isters/functional units and the buses. The synthesis result
for the example is shown in Table4. The area of the de-
sign is 8874 because the area of the FSM of the design is
included.

5. Synthesis Algorithms

It is tedious and error-prone job for the designers to make
all decisions. In order to help the designers to make deci-
sions, we provide automatic algorithms to complete design
tasks. Also, we provide APIs for algorithm developers to
implement algorithms in our design environment.

5.1. Internal Data Structure

In our RTL design methodology, input description is
FSMD representation, in which each state has computation
with assignments and control constructs and information on
next states. Therefore, a state in FSMD can be represented
by a control/data flow graph for computation.

The CDFG has been used for the internal representation
of RTL synthesis tool since mid-1980s and has many vari-

ations. Basically, a CDFG has data flow information to de-
scribe the operations and their dependencies and has control
flow information which is related to branching and iteration
constructs. It can be hierarchical or non-hierarchical, polar
or non-polar, and cyclic or acyclic.

Our CDFG structure for RTL design methodology is hi-
erarchical and acyclic polar graph, which is shown in Fig-
ure 11. The acyclic graph makes it easy to implement
the graph algorithm, because it has no loop. The polar
graph has the single-entry and single exit property using no-
operation (source node/sink node in our graph) and makes
it easy to build hierarchical graph. The nodeS in Figure11
represents the no-operation node. The topS is the source
node and the bottomS is the sink node. In the CDFG, the

temp = data >> mask;
data = data & mask;
if (data == 0)
    temp = temp + 1;
else
    temp = temp - 1;

>>

data

temp

&

data

mask

: operation node

: bus node

: storage node

S

S

temp

+

temp

S

S

1

IF

temp

-

temp

S

S

1data

==

status

S

S

0

cond true false

Figure 11. CDFG for unmapped (style 1) RTL de-
scription)

edge has the dependency information between nodes such
as control dependency and data dependency. The node has
all information except the flow information. The node is
divided into the non-hierarchical node and the hierarchical
node. The non-hierarchical node has the datapath opera-
tion information such as operation node to perform arith-
metic/logic operation, storage node to store the data, bus
node to transfer the data between functional unit and stor-
age unit, control node to generate the status information of
datapath, and state transition node to store state transition
information in finite state machine. In Figure11 shows the
operation node which is the white circle node, storage node
which is the shaded rectangular node, bus node which is
the small shaded circle node between operation node and
storage node. The hierarchical node is divided to the mod-
ule node to represent the structural hierarchy in the RTL
description, branch node to represent branching informa-
tion and loop node to represent the iteration information.
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Figure 9. A scheduling and binding result of SRA

The branch node (if node) and loop node (for node) are
shown in Figure11.

5.2. Clock Selection and resource allocation

The maximum execution time of a design can be de-
fined as product of the clock period used in design and the
maximum number of clock period used in the design and
maximum number of clock cycles. Hence to optimize the
performance of a design, it is important to select the clock
period wisely, as well as to minimize the number of clock
cycles [JGC96]. Moreover, the number of clock cycles re-
quired to finish all operations in a design depends on the
clock period. Therefore a bad choice of the clock period
could severely affect the performance of the design. In our
methodology, the clock selection is done by user.

Resource allocation is also important step in RTL syn-
thesis. The number of resources can be determined by auto-
matic tool or user [GDLW92]. In our RTL design method-
ology, resource allocation is performed by user.

5.3. Scheduling and binding algorithm

we describe simultaneous scheduling and binding algo-
rithm which solves scheduling and binding problems to-
gether. This algorithm is greedy but simple and easy to
implement. However, our methodology are independent of

scheduling and binding algorithms and can use any other
algorithms such as force-directed heuristic as well.

5.3.1 Problem Definition

Given:

1. A behavior represented by state transition graph,
STG(S, T), whereS is state in FSMD andT is state
transition among states.

2. Each stateS contains hierarchical control/data flow
graph,CDFG(V, E), whereV is a set of vertices rep-
resenting operations, storages, buses, and hierarchical
nodes such as branch and loop, andE is dependency
between nodes.

3. A component library containing functional units, stor-
age units and buses characterized by type, area, delay,
pipeline states and so on. In addition, storage units
have the number of read/write ports.

4. clock period and resource allocation, such as number
of functional units, storage units, buses and read/write
ports of storage units.

Determine:

1. control step of each node in a behavior
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Figure 10. A datapath for SRA

2. resource selection for each node but hierarchical node

Such that:

1. the number of control steps is minimized.

2. the resource allocation constraint is satisfied.

In the proposed RTL design methodology, the schedul-
ing plays a major role in refining from behavioral RTL to
exposed-control RTL by re-scheduling each state in FSMD
in the behavioral RTL description. The scheduling algo-
rithm is divided into two layers: one is scheduling of states
in FSMD and the other is scheduling and binding in CDFG.

5.3.2 State Scheduling

The scheduling of states determines the order of each state
in FSMD and reflects resource reservation tables of the al-
ready scheduled states to next states which are affected by
scheduling result of predecessor states. For example, if
the states have multicyle operations and pipeline operations
with more than 1 cycles delay, the next states will be af-
fected by these previous states.

The state scheduling algorithm is shown in Algo-
rithm 12. The state scheduling algorithm performs breadth-
first search to find next state to be scheduled in FSMD.
During RTL synthesis, we maintain the resource reserva-
tion table, which contains all resources such as number of
RTL units, number of ports of each unit, number of buses
and address space for storage units available for schedul-
ing and binding. During state scheduling, resource reser-
vation table for each state is updated by considering the
resource reservation table of scheduled predecessor states.

Figure 12. State scheduling(STG, Ro): state schedul-
ing algorithm

1: // get reset state from STG
2: Get reset states0 ∈ STG;
3: Sr = Sr +s0;
4:

5: while (Sr is not empty)do
6: Get front states in Sr ;
7: Sr = Sr −s;
8: sold = s;
9: Rs = GetResourceTable(Ro, predecessors ofs));

10: snew = SchedBind(CDFGs, Rs);
11:

12: // scheduling or binding of the state is changed
13: if (snew != sold) then
14: Append successors ofs to Sr ;
15: end if
16: end while
17:

Each state calls the scheduling algorithm (SchedBind(Gs,
Rs) to schedule nodes in CDFG. In state scheduling algo-
rithm, we use candidate list and resource reservation table
as follows.

• resource reservation tableRo, Rs: are original resource
utilization table based on resource allocation and re-
source reservation table for states, respectively.

• candidate statesSr : are those states which need to be
re-scheduled because scheduling result of their prede-
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cessors is changed.

In this scheduling algorithm,S0 is reset node which is first
executed after reset is deasserted.

5.4. Simultaneous scheduling and binding algo-
rithm

The simultaneous scheduling and binding is to schedule
and bind operations in each state. Because resource allo-
cation like number of FUs, the ports of storage units and
buses, is given by the designer, the resource-constrained
scheduling and binding should be done. The aim of this task
is reduce the number of states at minimal hardware cost.
Our algorithm allows for resources to be shared amongst
multiple operations, while component selection allows a
mixture of fast and slow components to be used in the de-
sign. The components are selected such that the fast and
expensive components are used for critical operations, and
the slower ones are used for non-critical operations.

The algorithm traverses all states in FSMD and also the
control-data flow graph of each state. It schedules one 3-
address expression(operands and an operation) at a time.
The states are ordered and scheduled by breadth-first search.

The heuristic for simultaneous scheduling and binding
a basic blockSched Bind ( CDFG(V,E), Rs) is listed
in Figure13.

This heuristic takes as input CDFG (G(V,E)) and re-
source reservation tableRs. The control stepcs is main-
tained and is relative value to the first control step in each
state.

The heuristic starts by collecting a list of available or
ready expressions,Vr . Available expressions are a set of ex-
pressions whose data dependencies are satisfied and can be
scheduled in the current cycle. Our heuristic has to maintain
the unfinished expressionsUcs, which contains expressions
started at earlier cycles and whose execution is not finished
at control stepcs. If the execution delay of an operation is
1 or less, the operation should not be included in the set of
unfinished operations.

Method FindAvailableResource ( v, cs, Rs)
gets a resource which expressionv can be bound to in re-
source reservation table (Rs) at control stepcs still meet-
ing resource constraint. It has to look ahead control step to
check available resources for the expression because func-
tional unit and storage unit can be multicycled or pipelined.
When the functional unit of an operation is selected, the
storage unit of the target operand variable which is output
of the expression to write value, is also determined.

In the proposed algorithm, the number of ports of stor-
age units and buses which are used in the specified control
step, will be determined when the expression is scheduled,
because the functional unit will use the ports and the buses
in order to read data at the start time and to write data at the

Figure 13. SchedBind (CDFG(V,E), Rs): simultane-
ous scheduling and binding algorithm

1: Vr ← all available expressions in CDFG
2: while (Vr is not empty)do
3: Vold = Vr ;
4: for (each nodev∈Vr in highest priority)do
5: // find available resource for node in resource table
6: rv = FindAvailableResource (v, cs, Rs);
7: if (rv exists)then
8: Schedulev atcsand bind it withrv.
9: Update resource reservation tableRs at cswith

rv;
10: Update ready listVr and unfinished listUcs with

v;
11: Vr = Vr −v;
12: end if
13: end for
14: // no nodes are bound or
15: // resource table incs is exhausted
16: if (Vold == Vr or Rs in cshas no available resource)

then
17: cs= cs+1;
18: Update resource reservation tableRs atcs;
19: Update ready listVr and unfinished listUcs;
20: end if
21: end while

end time of the operation. In other word, the data transfer
will occur at the start and the end of execution of the opera-
tion. The read time of the operand variable will be changed
according to the start time of execution of the operation,
which will read data from the storage unit. The write time
of the storage unit is the same as the end of the execution of
the operation, which will write data to the storage unit.

5.4.1 Priority function

The list scheduling algorithms are classified according to
the selection step. A priority list of the operations is used
in choosing among the operations, based on some heuristic
measure. Our proposed algorithm has two priority func-
tions. One is for node selection among ready node list. The
other is for resource selection from library.

1. node selection: the ready node list is sorted by the pri-
ority: urgency, mobility, number of successors in de-
creasing order, to select the node among the ready node
list.

2. resource selection: to select resource of opera-
tion/operands, cost function in library is utilized. The
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designer selects cost function according to the latency
of unit, size of unit, whether or not it’s pipelined.

The ready node list is sorted by the priority list for node
selection and the resource reservation table is sorted by the
priority list for resource selection.

5.4.2 Scheduling and binding Process by an Example

S0

S1

done = 1;

S2

S3

temp = data & mask;
ocount = ocount + temp;
data = data >> mask;

data = inport;
ocount = 0;
mask = 1;

outport = ocount;
done = 1;

data == 0

start == 1

while (1) {
    wait(clk);
    if (rst) {
        state = S0;
    }
    switch (state) {
        case S0 :
            done = 0;
            if (start == 1)
                state = S1;
            else
                state = S0;
            break;
        case S1 :
            data = inport;
            ocount = 0;
            mask = 1;
            state = S2;
            break;
        case S2 :
            temp = data & mask;
            ocount = ocount + temp;
            data = data >> mask;
            if (data == 0)
                state = S3;
            else
                state = S2;
            break;
       case S3 :
          outport = ocount;
          done = 1;
          state = S0;
          break;
    }
}

Figure 14. FSMD for one’s counter

To explain the proposed algorithm, we will use one’s
counter as an example, shown in Figure14, which calcu-
lates the number of ones in given number. It takes one in-
put variables and generates one output result. The left side
of this figure shows SpecC code for one’s counter exam-
ple and the corresponding FSMD is shown in the left side
of this figure. Before scheduling, this FSMD consists of 4
states. StateS0 is reset state, and if reset is asserted, FSMD
will enter this state first. State S2 has self loop to calculate
number of one’s indata variable untildata is equal to
0. The Figure15shows the target datapath organization for
the one’s counter, which consists of two 2-stage pipelined
ALUs (ALU0 and ALU1) and one register file and 3 buses.
The functional unit ALU0 can perform bitwise and opera-
tion and addition operation in 2 cycles, and ALU1 can per-
form left/right shift and comparison operation in 2 cycles.
The regiser file with two read ports and one write port is
neither pipelined nor latched. Figure16shows the CDFG of

Datapath

RF

ALU1

���
���

ALU2

���
���

inport

outport

Figure 15. Target datapath organization for ones’s
counter

stateS2 which is generated from FSMD in Figure14. The
CDFG has 4 ALU operations and 8 storage nodes and 12
bus nodes. Figure2 shows the control step according to the
proposed algorithm. The 1st column represents the control
steps. The next 2 columns represent the ready operations
for each type of functional unit. The next 4 columns rep-
resent the resource reservation table, which has the number
of resources used in each control step. In BUS column, the
left value shows the number of buses which is used to trans-
fer the result of functional units to storage units, the right
value shows the number of buses which is used to transfer
the input data for functional units from storage units. In
RF column, the 1st value represents the number of the used
write ports, and the other value shows the number of the
used read ports in register file. The last two columns repre-
sents the scheduled operations and unfinished operation in
current control step. According to the proposed algorithm,
all nodes in CDFG are scheduled using this table. The la-
tency of the scheduled CDFG is 5 control steps. The sched-
uled CDFG is shown in Figure17. If we change 2-stage
pipelined ALU0 to 3-stage pipelined ALU0, the scheduling
result will be changed as shown in Figure18 and in Fig-
ure 3. In Figure18, operation+ should be executed in 3
cycles but the control step of the stateS2 should be finished
in cs4 . TheS2 has self loop, then the remaining two cy-
cles of the operation+ will be performed incs1 andcs2
in the stateS2.

6. Experimental Results

Based on the described methodology and algorithms, we
have developed a RTL design environment and refinement
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Table 2. Scheduling process for one’s counter
ready resource reservation table scheduled unfinished

ALU0 ALU1 ALU0 (1) ALU1 (1) RF (1/2) bus (1/2)
cs1 && >> 0 0 0/0 0/0

>> 1 0 0/2 0/2 &&
cs2 >> 0 0 1/0 1/0 &&

0 1 1/2 1/2 >>
cs3 + 0 0 1/0 1/0 >>

1 0 1/2 1/2 +
cs4 == 0 0 1/0 1/0 +

0 1 1/2 1/2 ==
cs5 0 0 0/0 0/0 ==

0 0 0/0 0/0

Table 3. Scheduling process for one’s counter (II)
ready resource reservation table scheduled unfinished

ALU0 ALU1 ALU0 (1) ALU1 (1) RF (1/2) bus (1/2)
cs1 && >> 0 0 0/0 0/0

1 1 0/2 0/2 && >>
cs2 0 0 1/0 1/0 && >>

0 0 1/0 1/0
cs3 == 0 0 1/0 1/0 &&

0 1 1/2 1/2 ==
cs4 + 1 0 0/0 0/0 ==

0 1 0/2 0/2 +
cs5 0 0 0/0 0/0 +

0 0 0/0 0/0
cs6 0 0 1/0 1/0 +

0 0 1/0 1/0
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S2
temp = data & mask;
ocount = ocount + temp;
data = data >> mask;

data == 0

&

data

temp

>>

data

ocount

+

ocount

==

status

0mask

: operation node

: bus node

: storage node

S

S

Figure 16. CDFG for stateS2 in one’s counter

tool and decision-making tools in the SoC design environ-
ment [APY+03]. The examples (q p, set sign, buildcode,
search codebook) have been chosen from the GSM Vocoder
which is employed worldwide for cellular phone networks.
The model was based on the bit-exact reference implemen-
tation of the ETSI standard in ANSI C. The examplesra is
the SRA which was explained in the previous section.

Table 4 lists the characteristics of the designs used in
terms of the number of basic blocks and the number of op-
eration in the input description. The number of basic blocks
is indicative of the control complexity of the design. Also,
given in this table are the type and quantity of each resource
allocated to schedule and bind this design for all the ex-
periments. The resources indicated in this table are:alu
performs arithmetic and logic operations,satdoes saturated
arithmetic operations andrf is register file with 3 read ports
and 1 write port andmemhas 1 read port and 1 write port.
Alu executes in 1 cycle andsatunit is a two stage pipelined
unit. The number in parenthesis indicates the size of a reg-
ister file and a memory.

We present the logic synthesis result obtained after syn-
thesizing the RTL Verilog generated by Netlist mapper us-
ing the SynopsysDesign Compilerlogic synthesis tool. The
LSI-10K synthesis library is used for technology mapping
and components are allocated from the Synopsys Design-
Ware Foundation library.

The logic synthesis results are presented in terms of three
metrics: the number of states in FSM controller, the critical
path length (in nanoseconds) and the unit area (in terms of
synthesis library used) through the design. The critical path
length is the length of the longest combinational path in the
netlist as reported by static timing analysis tool and it dic-
tates the clock period of the design.

&

data

temp >>

+

ocount ==

status

0

cs1

cs2

cs3

cs4

ocount

data

mask

cs5

Figure 17. Scheduled CDFG for stateS2 in one’s
counter

7. Conclusion and Future Work

In this paper, we proposed an interactive C-based RTL
design environment targeting a generic RTL processor ar-
chitecture. Our environment takes full advantage of the de-
signer’s insight by allowing to enter, modify, override all
decisions at will. A tool has been developed and experi-
ments were performed to validate this environment. This al-
lows designers to evaluate several design points during fast
exploration. Future work in this direction will involve the
scheduling of bus protocols under timing constraint in clock
cycles. We present the logic synthesis result obtained after
synthesizing the RTL
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