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Abstract

We present a rigorous but transparent semantics definition of the SpecC language that covers the execution of SpecC
behaviors and their interaction with the kernel process. The semantics includewait , waitfor , par , pipe , andtry
statements as they are introduced in SpecC. We present our definition in form of distributed Abstract State Machine (ASM)
rules reflecting the specification given in the SpecC Language Reference Manual [5]. We mainly see our formal semantics in
three application areas. First, it can be taken as a high–level, pseudo code–oriented specification for the implementation of a
SpecC simulator which is outlined in a separate section. Second, it is a concise, unambiguous description for documentation
and standardization. Finally, it is a first step for SpecC synthesis in order to identify similar concepts with other languages
like VHDL and SystemC for the definition of common patterns and language subsets.
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Abstract

We present a rigorous but transparent semantics def-
inition of the SpecC language that covers the execution
of SpecC behaviors and their interaction with the ker-
nel process. The semantics includewait , waitfor ,
par , pipe , and try statements as they are introduced
in SpecC. We present our definition in form of distributed
Abstract State Machine (ASM) rules reflecting the specifi-
cation given in the SpecC Language Reference Manual [5].
We mainly see our formal semantics in three application
areas. First, it can be taken as a high–level, pseudo code–
oriented specification for the implementation of a SpecC
simulator which is outlined in a separate section. Second,
it is a concise, unambiguous description for documentation
and standardization. Finally, it is a first step for SpecC syn-
thesis in order to identify similar concepts with other lan-
guages like VHDL and SystemC for the definition of com-
mon patterns and language subsets.

1. Introduction

The SpecC language [6, 7] has been proposed as a stan-
dard system-level language for adoption in industry and
academia and is promoted for standardization by the SpecC
Technology Open Consortium (STOC). The SpecC lan-
guage was specifically developed to address the issues in-
volved with system design, including both software and
hardware. Built on top of the C language, the de-facto stan-
dard for software development, SpecC supports additional
concepts needed in hardware design and allows IP-centric
modeling. SpecC allows to map modeling concepts onto
language constructs in a one to one fashion. Unlike other
system-level languages, the SpecC language precisely cov-
ers the unique requirements for embedded systems design
in an orthogonal manner.

Although the SpecC language is defined by a Language
Reference Manual (LRM) [5], and a reference implementa-
tion, a compiler and simulator, are freely available as open
source, the precise meaning of the execution semantics has

not been captured so far. However, a precise semantics of
SpecC is mandatory for various applications including sim-
ulation, synthesis, and formal verification. If well written,
it can be taken as a complementary, unambiguous docu-
mentation to significantly help the user understanding the
language.

This article is the first publication of a formal SpecC se-
mantics. Our semantics description is intended to provide
a concise definition of the complete execution semantics of
SpecC V1.0 for potential standardization. This is an impor-
tant step towards future SpecC compliant implementations
and applications in various fields including formal verifi-
cation. In the domain of system synthesis and simulation,
our formal semantics can be used as a sound basis to iden-
tify common behavioral concepts for interoperability with
Verilog, VHDL, and SystemC. This is a first step for identi-
fying common language patterns and subsets for SystemC
synthesis.

We present a concise and rigorous but yet intuitive se-
mantic definition of SpecC as defined in [5] in terms of
Gurevich’sdistributed Abstract State Machines(ASMs)
[9]. ASMs allow us to produce our specification follow-
ing the terminology and the definitions given in the SpecC
LRM [5] and corresponding to the VHDL’93 semantics in
[2]. We develop a mathematical definition of SpecC in
terms of aSpecC Algebraconsideringwait , waitfor ,
notify , notifyone , par , pipe , andtry statements,
as well as the complete interaction between the user de-
fined behaviors and channels with the kernel process. We
additionally outline how to derive a C++ implementation
for a SpecC simulator from this specification and demon-
strate how ASMs can be applied as a formal framework
for the general specification and implementation of virtual
machines such as simulators.

The remainder of this paper is organized as follows.
Section 2 discusses related works. In Section 3, we briefly
review the formalism of distributed ASMs. Then, Section
4 introduces the SpecC language and defines its execution
semantics in terms of ourSpecC Algebra. Section 5 out-
lines how to transform the given SpecC ASM specification
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into a C++ implementation. Section 6 closes with a con-
clusion and outlook.

2. Related Work

Over previous years, research in formal semantics in
EDA mainly focused on VHDL. There were quite a cou-
ple of approaches based on temporal logic, functional se-
mantics, denotational semantics, and operational seman-
tics applying Boyer-Moore Logic, Process Algebras, Petri-
Nets etc. [4]. Most of the approaches cover subsets dedi-
cated for application in formal verification. Olcoz et al.,
Reetz et al., and Boerger et al. have covered the com-
plete VHDL language. Their definitions were based on
Colored Petri-Nets, Flow Graphs, and Abstract State Ma-
chines [4]. The latter covered VHDL’93 and was extended
for VHDL-AMS in [12]. Other applications investigated
VHDL-Verilog interoperability [11]. Most recently, Sys-
temC simulation semantics have been published in [10]
which is oriented towards the VHDL’93 definitions in [2].

ASMs have been applied for formal specification in var-
ious other domains such as hardware and software archi-
tectures, protocols, and programming languages [1]. Ex-
amples for programming languages are semantics defini-
tions of Java [3] and C++ [13]. Furthermore, the ITU
standard SDL 2000 will be partly underlined by an ASM
definition [8].

All these investigations demonstrate that ASMs, i.e.
distributed ASMs, have excellent capabilities to capture
the behavioral semantics of programming and specification
languages. This is particularly true for the specification
of underlying virtual machines as required for the formal
coverage of the SpecC simulator. In this article, we focus
our investigations on SpecC V1.0 which is the latest offi-
cial version at the time of writing. The model is defined
along the lines of the basic concepts of the VHDL’93 and
SystemC definitions in [2, 10] so that future work on inter-
operability with VHDL and SystemC is simplified.

3. Abstract State Machines

Abstract State Machine (ASM) specifications can be un-
derstood as ‘pseudocode over abstract data’, without any
particular theoretical prerequisites. Here, we list only the
basic definitions and refer to [9] for a formal introduction.

An ASM specification comes in form of guarded
function updates, called rules, of the form

if Conditionthen <U pdates> else <U pdates> endif

Rules are basically nested if–then–else clauses with a
set of function updates in their body. When executing the

rules, the underlying ASM abstract machine performs state
transitions with algebras as states. A state transition is per-
formed by firing a set of rules in one step. Only those rules
are fired whose guards (Condition) evaluate to true.

At each step, the guards evaluate to a set of function up-
dates, each of the formf (t1; :::; tr) := t0 whereti are terms
(including functions). Note that 0-ary functions play the
role ofvariablesin imperative programming languages. A
block is a set of function updates separated by a comma1.
The individual function updates of each block are collected
in a so–called update set. The individual updates of the
update set are simultaneously executed in one step. Each
function update changes a value at a specific location given
by the left–hand–side of the assignment. Functions are
considered to be global. Two or more simultaneous up-
dates of the same location in one update set defines incon-
sistency. In the case of an inconsistency no state transition
is performed and no update in the update set is being exe-
cuted.

We demonstrate a simple guarded update by the
following example:

if true then A := B;B := A endif

That definition gives an simultaneous update of the 0-
ary functionsA and B. Since both updates are simulta-
neously executed, the values are swapped (A becomes the
value ofB, and vice versa). Due to its true condition, the
rule fires at each step.

ASMs are multi–sorted based on the notion of uni-
verses. We assume the standard mathematic universes of
booleans, integers, lists, etc. as well as the standard opera-
tions on them without further mention. A universe can be
dynamically extended with individual objects by

extend Universe with v <Rule> endextend

wherev is a variable which is bound by theextend con-
structor. As the inverse operation, a universe can be dy-
namically reduced with individual objects by

reduce Universe by v <Rule> endreduce

wherev is a variable which is bound by thereduce con-
structor. Thechoose constructor defines an arbitrary se-
lection of one element in a universe

choosev in Universe<Rule> endchoose
1In extension to [9], we use a comma in order to have an explicit sepa-

rator between single updates. We also introduce sequential statements and
enclosing a block in braces and separate them by semicolon, e.g.,fC:=1;
D := Cg. This is a shortcut avoiding the introduction of an additional
state function with additional conditions.
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wherev is non–deterministically selected from the given
universe. Thechoose constructor can be qualified by a
condition (satisfying ). Thevar rule constructor defines
the simultaneous instantiation of a rule:

var v ranges over Universe<Rule> endvar

Executing the constructor means to spawn and execute the
rule for each element inUniversesimultaneously, i.e., the
constructor basically spawnsn rules wheren is the number
of elements inUniverse. This can be outlined by the fol-
lowing example. It defines a rule which specifies that each
non–emptyl from the domainLIST is replaced by the list’s
tail, i.e., deleting the first element of a list.l refers to any
valid instance ofLIST.

var l ranges overLIST
if l 6= hi then l := tail(l)endif endvar

The extension of basic ASMs todistributed ASMspar-
titions rules into modules where each module is given by
its module nameν. A module is instantiated to execute
by settingMod(a) := ν for an agenta. The symbolSel f
refers toa after the instantiation. The execution is defined
by partially ordered state transitions where agents are asyn-
chronously executed.

The SpecC algebra in the next section comes in the form
of two modules: One for the SpecC kernel and one for the
user defined behaviors.

4. SpecC

The SpecC language [6, 7, 5] is based on ANSI-C and
provides a set of additional constructs needed for model-
ing hardware. The added concepts include behavioral and
structural hierarchy, concurrency, synchronization, excep-
tion handling, and timing. Since the execution semantics
of ANSI-C are already well-defined, we focus in the fol-
lowing sections on the formal description of these added
concepts.

We first give a brief introduction to the structural SpecC
aspects. Thereafter, we introduce the behavioral aspects by
the means of a distributed ASM specification.

4.1. Structure

A SpecC program consists of a set ofbehaviors, chan-
nels, and interfaceswith ports. Behaviors are active
blocks containing computation, whereas channels and in-
terfaces are passive blocks encapsulating communication.
For defining execution semantics, only the active behaviors
need to be considered, the passive channels can be ignored

or assumed to be inlined. In other words, in this paper,
we can focus on the behavioral hierarchy of SpecC. Fol-
lowing the style of standard block diagrams, behaviors and
channels are composed in form of a structural hierarchy.
Thus, the basic structure of a SpecC model is a hierarchi-
cal network of behaviors and channels connected by ports.
A simple example is depicted in Figure 1.

b1 b2

c1

p1 p2

v1

B

Figure 1. SpecC Example

The example shows a behaviorB which has two ports,
p1 andp2 , through which it can communicate with its en-
vironment. Internally, these ports are connected to two
child behaviors,b1 andb2 , which execute concurrently.
These child behaviors can communicate in two ways. First,
both are connected to a shared variablev1 which, for ex-
ample, could be written byb1 and then read byb2 .

Second,b1 andb2 can communicate by use of a com-
munication protocol provided by the channelc1 . For ex-
ample, the behaviorb1 could call a functionsend pro-
vided by the left interface of channelc1 . Then, when
behaviorb2 calls thereceive function provided by the
right interface, the communication protocol implemented
in the channel will ensure that the data is transferred cor-
rectly, for example, by use of explicit hand shaking or some
specific synchronization mechanism and timing.

Please note that Figure 1 only shows one level of the
structural hierarchy of the system. The child behaviorsb1
andb2 could again consist of a network of behaviors and
channels. On the other hand, the behaviorB can be part of
a bigger system as well.

4.2. Execution Semantics

The next paragraphs describe the stepwise development
of a formal execution semantics of SpecC V1.0, start-
ing with the basic behavioral constructs, namelywait ,
waitfor , notify , notifyone , par , pipe , andtry
statements. Afterwards, we present a formal definition of
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the kernel process. We presume a basic knowledge of the
ANSI C and SpecC syntax here and refer the reader to
[6, 7, 5] for more details.

4.2.1 Basic Concepts

Derived from hierarchically organized modules, SpecC
establishes a hierarchical network of parallel communi-
cating BEHAVIORs which, under the supervision of the
distinguished SpecC kernel process, concurrently update
new values for givenVARIABLEsand send and receive
EVENTs.

After initialization of variables and program counters
of BEHAVIORs, there is a mutually exclusive execution
of the kernel process and the concurrently running behav-
iors. In other words, the kernel process periodically starts
its execution if all behaviors are suspended, and vice versa.

Each user defined behavior isrunning until it is sus-
pended, for example,waiting at a wait or waitfor
statement. It will resumerunningwhen the kernel delivers
notified events or increases the time due to an expired time-
out. After executing the last statement, a behavior changes
to completed. Furthermore, we use the stateinterrupted
for behaviors that have received an event triggering an ac-
tive interrupt handler. In summary, throughout the life cy-
cle of a behaviorb, we setstatus(b) 2 frunning, waiting,
completed, interruptedg (see Figure 2).

running

waiting

completed

interruptedinterrupt

trap

last stmt

stmtlast

event,
timeoutwait,

waitfor
fork join

Figure 2. Life Cycle of a Behavior

When no user defined behaviors arerunning, i.e., all are
waiting, interruptedorcompleted, the kernel process goes
through a set of phases and resumes behaviors on events
or timeouts, and advances the simulation time whenever
necessary.

The rules in the following paragraphs constitute the pro-
gram of ASM agents, one for the kernel process and one for
each behavior. Agents are instantiations of ASM modules.
We first define rules for theKERNELModule. Thereafter,
we define the semantics of distinguished statements exe-
cuted in instantiations of theBEHAVIORModule. For ini-
tialization, we set

Mod(b):= BEHAVIORModule
8b2 BEHAVIORand

Mod(k):=KERNELModule
for the kernel processk2KERNEL2.

Also, we assumephase = ResumeOnEvents, current
time Tc = 0, status(b) = running and pipe status(b) =
init ;8b2 BEHAVIOR. Unless otherwise noted, all func-
tions are assumed to be setunde fand all sets and lists are
initially empty.

The remainder of this document first defines the execu-
tion semantics of specific SpecC statements. Thereafter,
we define the execution cycle of the kernel.

4.2.2 SpecC Statements

Before we define the semantics for the SpecC statements,
we need to discuss the role of the program pointer when
processing a behavior during the simulation.

In order to focus on the essential behavioral semantics
of SpecC, we basically assume that the continuation of the
control–flow of each (sequential) behavior is determined
by values of the functionprogramCounterwhich is ini-
tially set to the first statement of each behaviorb. After
checking their current watching conditions, allrunningbe-
haviors execute their statements. In order to express that a
user defined behaviorSel f can be executed only when it is
runningand theprogramCounteris assigned to the specific
statement, we use the following abbreviation:

Sel f executesstatement �
programCounter(Sel f) = statement^
phase:= ExecuteBehaviorŝ
status(Sel f) = running

After executing the last statement of a behaviorb, the
behavior completes and we setstatus(b) := completed.
As a special case, when having completed the behavior
of an interrupt handler (explained later), we additionally
set thestatusof all descendent behaviors of the parent,
bi 2 descendant(bi), from interrupted back to waiting.
The parent of a behavior is defined to be the behavior
which has spawned the interrupt handler and its descen-
dents are defined to be all child behaviors (and their chil-
dren) which were also interrupted together withb.
Variable Assignment. Right-hand-side values in signal
assignments are immediately assigned to the current value
of variablev. Parallel write accesses to thevalue of a
variable are allowable. Competing concurrent assignments
to variablesv are non-deterministically resolved and are
individual to each implementation. We denote this by
resolve(competingValues(value(Expr))) which first computes
the value ofExpr and stores it into a virtual data structure

2The universeKERNELis introduced here for technical purpose and
has only one element.
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keeping all concurrent assignments. Finally,resolvese-
lects non-deterministically one of these values.

if Sel f executeshv = Expri
then value(v) := resolve(competingValues(value(Expr)));

programCounter(Sel f) := nextStmt(Sel f)
endif

Wait Statement. On reaching await statement, a behav-
ior simply stops execution by setting itsstatusto waiting.
The behavior also notes itssensitivityto the given list of
events.

if Sel f executeshwait (EventList)i
then status(Sel f) := waiting;

sensitivity(Sel f) := EventList;
programCounter(Sel f) := nextStmt(Sel f)

endif

Waitfor Statement. Similar to thewait statement, a be-
havior stops its execution by setting itsstatusto waiting
upon reaching awaitfor statement. However, instead of
setting itssensitivity, it sets atimeout to the current time
increased by the given delay. After thetimeout, the behav-
ior will then be resumed by the SpecC kernel.

if Sel f executeshwaitfor (Delay)i
then status(Sel f) := waiting;

timeout(Sel f) := Tc+Delay;
programCounter(Sel f) := nextStmt(Sel f)

endif

Notify Statement. At a notify statement, a behavior
simply sets flags for all notified events and immediately
proceeds to the next statement. Note that the notified
events will be delivered later to any waiting behaviors by
the SpecC kernel.

if Sel f executeshnotify (EventList)i
then 8e2 EventList: noti f ied(e) := true;

programCounter(Sel f) := nextStmt(Sel f)
endif

Notifyone Statement.Similar to thenotify statement,
a notifyone statement also records the notified events
and proceeds its execution. Note that, in contrast to
notify , event lists of allnotifyone statements given
in one execution cycle have to be managed by a global
noti f iedonelistwhich is organized as a list of event lists.

if Sel f executeshnotifyone (EventList)i
then noti f iedonelist:= noti f iedonelist+Eventlist;

programCounter(Sel f) := nextStmt(Sel f)
endif

Par Statement. At a par statement, a behavior spawns
a set of children and proceeds only after the children have
terminated.

if Sel f executeshpar fb1; :::;bMgi
then SPAWN(fb1; :::;bMg;Sel f);

programCounter(Sel f) := nextStmt(Sel f)g
endif

The process of spawning children consists of a fork and
a join operation in sequential order. For better readability,
these are defined as macros as follows:

SPAWN(Blist;Sel f)�
fFORK(Blist;Sel f;waiting);
JOIN(Blist;Sel f; running)g

The fork operation extends the domainBEHAVIORby
the behaviorsb which are forked. Each of the behaviors is
set torunning. For later purpose, the spawning behavior is
noted as theirparent. The list of allb is saved aschildren
of the spawning behaviorSel f. The status ofSel f is set
to Statuswhich is waiting in the above case3. When all
children are completed, it is reset torunning.

FORK(Blist;Sel f;Status)�
8b2 Blist :
extendBEHAVIORwith b

status(b) = running; parent(b) := Sel f
endextend;
children(Sel f) := Blist;
status(Sel f) := Status

All children b have joined when theirstatus is
completed. Then the set of children of the parentSel f is
set empty and its newStatusis assigned. In the context of
thepar -statement, theStatusis set torunning in order to
continue execution. Additionally, the domainBEHAVIOR
is reduced by the completed child behaviors. Note how
the domainBEHAVIORdynamically increases and shrinks
within FORK andJOIN at everypar statement.

JOIN(Blist;Sel f;Status)�
if 8b2 Blist : status(b) = completed̂

phase:= ExecuteBehaviors
then 8b2 Blist :

reduce BEHAVIORby b endreduce;
children(Sel f) := /0;
status(Sel f) := Status

endif

3Note that in order to handle also forking of exceptions, we model the
state as a parameter. As we will see later, exception handling requires to
set behaviors tointerruptedor completed.
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Pipe Statement. Similar to the par statement, the
pipe statement4 also spawns a set of children. In
addition, the pipe statement consists of five phases,
init ; f illing ; running; f lushing; f inished, which reflect the
actual behavior of a pipeline.

flushing

finishedinit filling

running

false
Cond =

Cond =

Cond =
true

false

Figure 3. Different States of a Pipe

Comparable to afor loop in C, the SpecCpipe state-
ment can be seen as an iterator with an initial statement
Init before filling the pipe, an incremental statementIncr
which executes after each iteration, and a conditionCond
which determines when the pipeline starts flushing.

As an example, let us consider a pipeline with 4 behav-
iors. Let us further consider that after spawning the sec-
ond behavior in the second loop, the condition becomes
false. Then, in the next 3 loops the pipe flushes spawning
fb2;b3g, fb3;b4g, andfb4g before terminating in status
f inished(see Figure 4).

filling

flushing

Condition = false

1b b 2 b 3 b 4

pipe_status:

behaviors:

Figure 4. Pipeline Example

The following rule implements the main state transi-
tions as given in Figure 3 by settingpipe status.

4Without loss of generality, we only discuss thepipe statement with
termination arguments here. Thepipe statement without arguments is
just a special case that never terminates.

if Sel f executeshpipe (Init ;Cond; Incr) fb1; :::;bMgi
then

if pipe status(Sel f) := init
then

pipe status(Sel f) := f illing ;
EXECUTE(hInit i)

endif
if pipe status(Sel f) := f illing
then f illPipe endif
if pipe status(Sel f) := running
then runPipeendif
if pipe status(Sel f) := f lushing
then f lushPipeendif
if pipe status(Sel f) := f inished
then

pipe status(sel f) := init ;
programCounter(Sel f) := nextStmt(Sel f)

endif
endif

Here, initially theInit statement is executed and the pipe
startsf illing . During f illing , a loop starts to spawn an in-
cremental number of behaviors. As soon as the pipe condi-
tion evaluates to false, the pipe proceeds tof lushing, oth-
erwise torunning5.

f illPipe�
fFILL LOOP(fb1; :::;bMg;Sel f);
if value(hCondi) = f alse
then pipe status(sel f) := f lushing
elsepipe status(Sel f) := running
endif g

After having completely filled, the pipe continuously
spawns all behaviors, after which theIncr-statement is ex-
ecuted, and theCondis checked. If it evaluates to false, the
pipe proceeds tof lushing.

runPipe�
fSPAWN(fb1; :::;bMg;Sel f);
EXECUTE(hIncri);
if value(hCondi) = f alse
then pipe status(sel f) := f lushing
endif g

When pipe statusis f lushing, we simply execute the
FLUSH LOOPmacro defined below.

f lushPipe�
fFLUSH LOOP(fb1; :::;bMg;Sel f);

pipe status(Sel f) := f inishedg

5FILL LOOP defines a for loop over the given behaviors which is
given as a macro after the definitions of the states.
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Loops for filling and flushing are given by the follow-
ing two macros. We use a C-like description since we
found that this execution can be better given in program-
ming language–like constructs. Their transformations to
ASMs should be rather intuitive and left to the reader. The
first definition gives afor -loop incrementing the number
of spawned behaviors fromb1 to bM for filling the pipe. In
each interaction, after all behaviors have joined, theIncr–
statement is executed. The loop immediately exists when
the conditionCondof the pipe evaluates to false.

FILL LOOP(fb1; :::;bMg;Sel f) =
for (last= 1; f irst = 1;(last< M)&& (hCondi);

last++)
fSPAWN(fbf irst ; :::;blastg;Sel f);EXECUTE(hIncri)g

The loop for flushing takes the currently spawned be-
haviors fbf irst ; :::;blastg

6 and repeats untilf irst finally
reacheslast= M.

FLUSH LOOP(fb1; :::;bMg;Sel f) =
while ( f irst < last)f
SPAWN(fbf irst ; :::;blastg;Sel f);
if (last< M)last++;
f irst ++ g

Try Statement. Finally, we define the semantics of the ex-
ception handling given by the combined try-trap-interrupt
statement which basically extends the implementation of a
behaviorb encapsulated bytry with additional exceptions
Excp1; :::;ExcpM where

Excpi � [trap j interrupt](Eventlisti)fHandleri;g.
That means, that after keywordtrap or interrupt a
list of events is specified on which a behavior denoted as a
Handlerstarts executing. The order of enumeration of the
exceptions defines their priorities starting with the highest
when multiple events are detected by the SpecC execution
kernel. For our semantics, we thus define for an excep-
tion Excpi the functionstype(Excpi) 2 ftrap; interruptg,
eventlist(Excpi), and behavior(Excpi), where the latter
two associate the list of events and theHandler to an ex-
ception. The semantics of the try statements defines as
follows by simply ‘linking’ exceptions and their events to
functions.

if Sel f executeshtry fb;gExcp1:::ExcpMi
then status(Sel f) := waiting;

excpSensitivity(Sel f) :=
eventlist(Excp1)[ :::[eventlist(ExcpM);

exceptions(Sel f) := Excp1+ :::+ExcpM ;

programCounter(Sel f) := f irstStmt(b)
endif

6Note here, thatf irst andlast keep their values from filling the pipe.
After completely filling, f irst = 1 andlast =M. When not completely
filled, last<M.

We set the behaviorSel f to waitingand accumulate all
events thatSel f is sensitiveto in excpSensitivity. In ad-
dition, all exceptions are stored inexceptions(Sel f) for
later use by the kernel. Finally, theprogramCounteris
advanced to the first statement of the behavior enclosed by
try .

4.2.3 SpecC Kernel

The SpecC kernel is a separate process which is executed
as soon as all user defined behaviors are not running, i.e.
they are eitherwaiting, interruptedor completed. We ab-
breviate this by:

BehaviorsActive�
9b2 BEHAVIOR: status(b) = running_
8c2 children(b) : status(c) = completed

ProcessTimeouts

AdvanceTime

ResetEvents

ProcessEvents

ExecuteBehaviors
events

no events

KernelBehaviors

Initialization

Exit

Figure 5. Phases of the SpecC Kernel

When no behavior is running, the kernel goes through
different sequential states (see Figure 5) determined by
the functionphase. These phases are expressed by the
following rules where we have used placeholders for the
individual sequential phasesProcessEvents, ResetEvents,
AdvanceTime, andProcessTimeouts,

if :BehaviorsActive
then phase:= ProcessEventsendif

In details, the firstphase= ProcessEventschecks for
events and sets behaviors to running which are sensitive to
events onnotify, notifyone , andexceptions. The
inner body matches behaviorsb with a defined sensitivity
(given by a wait statement) and the corresponding events
which were notified. Therefore, the definition ranges over
all BEHAVIORsandEVENTs.
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The first case defines the condition when the event is
supposed to trigger an exception. Then the exception han-
dling executes which is defined in more details hereafter.

Also, we have to handlewaiting behaviors. When
triggered by anotify , the behavior is simply reset
to running. If any notifyone has been set, i.e.,
noti f iedonelist6= /0, one behavior is arbitrarily chosen for
each of the notifiedone sublistsnl 2 noti f iedonelistand set
to running.

Finally, the lists are reset and the next phase is set to
ResetEvents.

if phase= ProcessEvents
then
var b ranges overBEHAVIOR
var e ranges overEVENT
if noti f ied(e) = true^e2 excpSensitivity(b)
then HandleException
endif
if noti f ied(e) = true^e2 sensitivity(b)
then status(b) := running

sensitivity(b) := /0
endif
if noti f iedonelist6= /0
then 8nl 2 noti f iedonelist:

choosee1 in nl
satisfying (9b1 : e1 2 sensitivity(b1))

status(b1) := running
sensitivity(b1) := /0

endchoose
endif
endvar endvar
phase:= ResetEvents

endif

Exception handling is defined in more detail by the fol-
lowing rule. This rule is applied when an exception is sen-
sitive to an event and that event occurred. Then, the first
matching exception denoted byminExceptionis selected7

We then have to distinguish if that exception is either of
type trap or interrupt. In the first case, if behaviorb is
the topmost ancestor with a received exception event, all
descendants(i.e., forked children and their children) ofb
are set tocompletedand the behavior of the exception is
forked, andb is set tocompleted. In the second case, all
descendantsare correspondingly set tointerrupted, andb
is set tointerruptedwhen the behavior of the exception is
forked. As described in previous sections, the forked be-
havior resets the parent (i.e.,b) and all itsdescendantsto
runningafter executing that last statement.

7This is the first matching exception w.r.t. the order as they are defined
in the trap statement.

HandleExceptions�
if type(minException) = trap
then if status(b) = waiting^ topmost(b) = true

then 8i 2 descendant(b) : status(i) := completed
FORK(behavior(minException);Sel f;completed)

endif
elseiftype(minException) = interrupt

then if status(b) = waiting^ topmost(b) = true
then
8i 2 descendant(b) : status(i) := interrupted
FORK(behavior(minException);Sel f; interrupted)

endif
endif

In phase ResetEvents, we simply reset all events and
proceed to the execution of behaviors if any have been re-
sumed by setting theirstatusto running. Otherwise, we
advance the time in order to resume behaviors which are
waiting on the expiration of atimeout.

if phase= ResetEvents
then var e ranges overEVENT

noti f ied(e) := f alse;
endvar ;
noti f iedonelist:= /0;
if 9b2 BEHAVIOR: status(b) = running
then phase:= ExecuteBehaviors
else phase:= AdvanceTime
endif

endif

For advancing the time, we first have to check if all be-
haviors are completed since we need to exit the execution
then. Otherwise, the current timeTc is advanced to the next
point in time which is computed from the minimum over
all timeouts.

In phase AdvanceTime, we exit the execution when all
behaviors arecompletedand when no further timeouts are
set. We also exit when all behaviors arewaiting or are
interruptedand when no further timeouts are set. This
case is called a deadlock as there are behaviors waiting on
events, but no events can be generated. Otherwise, we set
the current timeTc to the next expiring timeout and proceed
to ProcessTimeouts.

if phase= AdvanceTime
then if 8b2 BEHAVIOR:

timeout(b) = unde f
then EXIT
else

Tc := minftimeout(b) j b2 BEHAVIOR̂
timeout(b) 6= unde fg;

phase:= ProcessTimeouts
endif

endif
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In the final phase, we simply set the staus of all behav-
iors to runningwhen their timeout equals the current exe-
cution time. Then, their timeout is reset and the kernel sets
phaseto ExecuteBehaviorsto resume the computation of
the behavior’s statements.

if phase= ProcessTimeouts
then var b ranges overBEHAVIOR

if timeout(b) = Tc

then status(b) := running;
timeout(b) := unde f;

endif
endvar ;
phase:= ExecuteBehaviors

endif

5. From Specification to Implementation

When starting from an ASM specification, an imple-
mentation seems to be a straightforward refinement as it
is summarized in Table 1. However, it has to be noted
here that coding is still not trivial and still requires a lot
of implementation decisions. As high level specification
for coding languages which are based on virtual machines
(e.g., VHDL and SpecC), ASMs can be an ideal starting
point in order to check and verify language concepts before
implementation. The ‘closeness’ of the ASM specification
and an actual implementation basically guarantees stabil-
ity since it leaves only little room for errors and definitely
eliminates any ambiguities.

In the case to use our specification for implementation
of an SpecC simulator, the translation is obvious for most
of the basic patterns. Agents of behaviors map directly
to threads, domains map to classes, and the kernel agent
may directly map to the scheduler in the implementation.
Note, however, that the kernel does not necessarily need
to be a separate thread, but its basic control can be com-
bined with the control of the individual behaviors. In the
reference implementation, for example, the last thread that
becomeswaiting also executes the scheduler and selects
the next thread to run after delivering all notified events
and increasing the simulation time, etc. We can see it as
an implementation decision here that the management of
the program counter is combined with parts of the control
of the SpecC kernel process. Similar decisions include, for
example, the selection of the order of thread execution or
the selection of waiting behaviors for ’notifyone’ events.

For implementation of ASM rules, each rule set in the
ASM specification generally directly maps into a function
of our simulator. Nevertheless, identifying state functions
and their associated state machine still requires some work

which can be facilitated by a good documentation and ad-
equate structuring of the ASM specification. A really crit-
ical issue in the translation to C++ is the selection of ef-
ficient data structures and most efficient matching and se-
lection algorithms for implementation of quantifiers, var-
constructs, etc. In particular, algorithms for the latter have
to be carefully investigated in order to avoid any inefficien-
cies.

ASM C++

agent thread
domain class
function variable, method
macro method
8 loop/matching algorithm
9 selection/matching algorithm
simultaneous variable assignments & method
function updates calls
if-then-else state machine implementation
construct & algorithm
var & choose matching/selection algorithm
construct & data structures
extend & reduce allocation & garbage
construct collection

Table 1. From ASMs to C++

6. Conclusion and Outlook

This article introduces the execution semantics of com-
plete SpecC V1.0 by the means of ASMs. The specification
has been defined along the notions given in the advanced
SpecC introduction [7], the language reference manual [5]
and the reference implementation. It clearly identifies ba-
sic entities and functions of the SpecC virtual machine. It
can be taken as abstract pseudocode from which an imple-
mentation can be easily derived as it was outlined in Sec-
tion 5. We think that ASMs provide an adequate frame-
work for such applications, i.e., for clearly identifying ex-
ecution concepts of virtual machines such as simulators
and unambiguous description of the interaction of the as-
sociated concurrently communicating objects. Though our
ASM specification is not directly executable, we think that
it really supports and accelerates the development of sim-
ulators by providing the formal framework to reason about
the validity of execution semantics of such systems.

Moreover, when a reference implementation already ex-
ists – such as it was in our case – the specification really
makes already implemented concepts clearer and greatly
helps to relate them to the behaviroal semantics of es-
tablished standard Hardware Description Languages like
VHDL and Verilog. This is a very important point for the
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investigation of SpecC synthesis, i.e., for identification of
subsets and patterns for the source language and different
target languages. Therefore, our future investigations will
focus on interoperability issues and equivalences between
VHDL’93, SystemC and SpecC models.
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