
ESL Design and Multi-Core Validation
using the System-on-Chip Environment

Weiwei Chen, Xu Han, Rainer Dömer
Center for Embedded Computer Systems

University of California, Irvine, USA
weiwei.chen@uci.edu, hanx@uci.edu, doemer@uci.edu

Abstract—Design at the Electronic System-Level (ESL) tackles
the increasing complexity of embedded systems by raising the
level of abstraction in system specification and modeling. Aiming
at an automated top-down synthesis flow, effective ESL design
frameworks are needed in transforming and refining the high-
level design models until a satisfactory multi-processor system-
on-chip (MPSoC) implementation is reached.

In this paper, we provide an overview of the System-on-
Chip Environment (SCE), a SpecC-based ESL framework for
heterogeneous MPSoC design. Our SCE framework has been
shown effective for its designer-controlled top-down refinement-
based design methodology. After reviewing the SCE design
flow, this paper highlights our recent extension of the SCE
simulation engine to support multi-core parallel simulation for
fast validation of large MPSoC designs. We demonstrate the
benefits of the parallel simulation using a case study on a H.264
video decoder application.

I. INTRODUCTION

Modern embedded computer systems often consist of a large
set of heterogeneous processors with a complex interconnect
network. Corresponding to the variety of intended applications,
embedded system platforms integrate various types of pro-
cessing elements into the system, including general-purpose
CPUs, application-specific instruction-set processors (ASIPs),
digital signal processors (DSPs), as well as dedicated hardware
accellerators implemented as application-specific integrated
ciruits (ASICs) and intellectual property (IP) components.
However, the large size and complexity of these systems poses
a great challenge to design and validation using traditional
design flows. System designers are forced to move to higher
levels of abstraction to cope with the many problems, in-
cluding large number of heterogeneous components, complex
interconnect, sophisticated functionality, and slow simulation.

At the so-called Electronic System Level (ESL), system
design and verification aim at a systematic top-down design
methodology which successively transforms a given high-
level specification into a detailed implementation. In this
work, we review the System-on-Chip Environment (SCE), a
refinement-based framework for heterogeneous MPSoC design
[7]. SCE starts with a system specification model described
in the SpecC language [9] and implements a top-down ESL
design flow based on the specify-explore-refine methodology.
SCE supports a heterogeneous target platform consisting of
custom hardware components, embedded software processors,
dedicated IP blocks, and complex communication bus archi-
tectures. Starting from an abstract specification model of the

desired system, models at various levels of abstraction are au-
tomatically generated through successive step-wise refinement,
resulting in a pin- and cycle-accurate system implementation.

After every refinement step, the generated model is validated
through simulation. So far, validation in SCE is based on
traditional discrete event (DE) simulation. The original SpecC
simulator implements the explicit parallelism in the design
model in the form of concurrent user-level threads within a
single process. The multi-threading model used is cooperative
(i.e. non-preemptive), which greatly simplifies communication
through events and variables in shared memory. Unfortunately,
however, this threading model cannot utilize any existing par-
allelism in multiple host CPUs which nowadays are common
and readily available in regular PCs. In Section III, we show
an extension of the SCE simulation engine that overcomes this
shortcoming.

A. Related Work
Early ESL design, which a decade ago was commonly

referred to as hardware/software co-design, includes academic
approaches such as COSYMA [16], COSMOS [19], and PO-
LIS [1]. The supported target architecture typically consisted
of a single microcontroller combined with a custom hardware
co-processor. Later approaches, such as OCAPI [18] and OSSS
[10], aim at more complex multi-processor systems. Here,
the input model is not specified in separate languages any
more (e.g. VHDL for hardware and C for software), but has
evolved to use extended C/C++ or variants of SystemC for the
common description of hardware and software blocks in the
design model. Other SystemC-based frameworks have been
developed focusing on the TLM concept, including [5], [13],
[14], and [20]. Cosimulation of heterogenous processors with
support of different models of computation in the same design
model is provided by Ptolemy [4]. Metropolis [2], on the other
hand, emphasizes a platform-based design methodology.

While many of the above approaches focus more on mod-
eling and validation than on synthesis, the SpecC-based SCE
described in Section II provides a systematic design flow down
to an implementation based on iterative refinement.

Today, several commercial approaches exist that support the
ESL design and verification methodology, in particular in the
form of hardware synthesis from C-like languages. Examples
include Bluespec [3], Catapult C [15], and Forte Design [8].
While these tools start from different specification languages,

978-1-4244-7804-0/10/$26.00 ©2010 IEEE 142

all of them offer a path down to an actual implemenation in
silicon.

For validation, most ESL frameworks rely on regular DE-
based simulators which map the parallelism in the design
model on multiple threads in the simulation process. However,
usually only a single thread is run at any time to avoid
complex synchronization of the concurrent threads. As such,
the simulator kernel becomes an obstacle in improving sim-
ulation performance by using multi-core machines [11]. To
actually allow multi-core parallel simulation, the simulator
kernel needs to be modified to issue and properly synchronize
multiple OS kernel threads in each scheduling step. [6] and
[17] have extended the SystemC simulator kernel accordingly.
Clusters with single-core nodes are targeted in [6] which uses
multiple schedulers on different processing nodes and defines a
master node for time synchronization. A parallelized SystemC
kernel for fast simulation on SMP machines is presented in
[17] which issues multiple runable OS kernel threads in each
simulation cycle. Our approach described in Section III is very
similar. However, instead of synthetic benchmarks, we provide
results for an actual H.264 video decoder.

II. SCE DESIGN FLOW

As mentioned above, the ESL design flow in the SCE
framework starts with an abstract specification model written
in the SpecC [9] system-level description language (SLDL).
In contrast to flat and sequential C/C++ programming code,
this system specification contains key concepts needed for
ESL design explicitly expressed in the design model, including
behavioral and structural hierarchy, potential for parallelism
or pipelining, communication separated into channels, and
any constraints on timing. Having these intrinsic features of
the application explicit in the model enables efficient design
space exploration and automatic refinement by computer-aided
design (CAD) tools.

The initial specification model is subsequently refined by
specific tools integrated in the SCE framework which auto-
matically generate various Transaction Level Models (TLM),
each with an increasing amount of implementation detail, and
a final implementation model that is pin- and cycle-accurate. In
this design process, SCE relies on various component models
in its database and, most importantly, on design decisions
made by the system designer through an intuitive graphical
user interface (GUI) or powerful scripting capabilities.

Fig. 1 shows the entire refinement-based design flow in
the SCE framework in an overview [7]. In the following
sections, we will briefly review the four system refinement
stages which lead into the separated software generation and
hardware synthesis tools.

Architecture Exploration is the first step in the SCE design
flow. Here, the system designer defines the target platform by
allocating processing elements including software processors,
hardware accelerators, and communication and IP units. He
then maps the computation blocks in the specification onto
the selected platform components. After this decision making
by the designer, the architecture refinement tool automatically

Architecture model

Specification model

Architecture Exploration
PE Allocation

Beh/Var/Ch Partitioning

Scheduled model

Scheduling Exploration
Static Scheduling

OS Task Scheduling

Network model

Network Exploration
Bus Network Allocation

Channel Mapping

Communication model

Communication Synth.
Bus Addressing

Bus Synchronization

PE
Database

CE
Database

Bus
Database

OS
Database

G
UI

 /
Sc

rip
tin

g

TLM

RTL Synthesis
Datapath Allocation
Scheduling/Binding

SW Synthesis
Code Generation
Compile and Link

RTL
DB

SW
DB

Implementation model
VerilogVerilogVerilog

BinaryBinaryBinary

Fig. 1. Refinement-based design flow in the SCE framework [7].

partitions the specification and creates an architecture model
which accurately reflects the system platform.

Scheduling Exploration then allows the designer to eval-
uate different static and dynamic scheduling strategies on
the software processors in the platform. SCE scheduling
refinement offers several abstract RTOS models with dif-
ferent scheduling algorithms, including round-robin, priority-
based, or first-come-first-served scheduling. The automatically
inserted RTOS models support task management, real-time
scheduling, preemption, task synchronization, and interrupt
handling.

Network Exploration is the first step towards communi-
cation synthesis in SCE. Here, the system designer specifies
the overall communication topology in the platform and maps
the channels used in the model onto a network of busses and
bridges. Based on these decisions, the network refinement
tool then automatically inserts the required communication
components from the database into the model and establishes
end-to-end communication over point-to-point links.

Communication Synthesis then refines the individual point-
to-point links down to an implementation over the actual
communication protocol and bus media (wires). As a result, a

143

pin- and bit-accurate model of the communication architecture
is obtained. In addition to this pin-accurate model (PAM), SCE
can alternatively generate a corresponding TLM that abstracts
away the pin-level details of individual bus transactions and
simulates significantly faster.

After the four system refinement stages, the hardware and
software components in the system model are implemented
separately by dedicated hardware and software synthesis tools,
respectively.

RTL Synthesis generates, for each hardware component
in the system, a structural RTL model from the behavioral
description (C code) in the design. This behavioral synthesis
step is fully automatic in SCE. However, the system designer
can overwrite all synthesis decisions at will, including schedul-
ing, allocation, and binding. SCE hardware synthesis produces
structural RTL output in both Verilog HDL (for further logic
synthesis) and SpecC SLDL (for simulation within the entire
system context).

Software Synthesis, on the other hand, provides code
generation for all software components in the design. Here,
SCE follows a layer-based structure of the programmable
processors and the software stack executing on them. Code is
automatically generated for the application, the selected RTOS
is configured, required communication stacks are synthesized,
and the final binary image file is cross-compiled and linked.
The generated SW image can be used for both the implemen-
tation on the actual target platform as well as in an instruction-
set simulator (ISS) context within the system model.

In summary, at the end of the SCE ESL design flow, a
complete pin- and cycle-accurate implementation model of the
intended MPSoC has been generated.

III. MULTI-CORE PARALLEL SIMULATION

Design models written in SLDLs contain explicitly specified
parallelism which makes it straightforward and promising to
increase simulation performance by parallel execution on the
available hardware resources of a multi-core host. However,
care must be taken to properly synchronize parallel threads.

In this section, we will first review the scheduling scheme
in the traditional simulation kernel that issues only one thread
at any time. We will then present our improved scheduling
algorithm with true multi-threading capability on symmetric
multiprocessing (multi-core) machines and discuss the neces-
sary synchronization mechanisms for safe parallel execution.
Without loss of generality, we assume the use of SpecC SLDL
here (i.e. our technique is equally applicable to SystemC).

A. Traditional Discrete Event Simulation
In both SystemC and SpecC SLDLS, a traditional DE sim-

ulator is used. Threads are created for the explicit parallelism
described in the models (e.g. par{} and pipe{} statements in
SpecC, and SC METHODS and SC THREADS in SystemC).
These threads communicate via events and increase simulation
time using wait-for-time constructs.

To formally describe the simulation algorithm, we define
the following data structures and operations:

1) Definition of queues of threads th in the simulator:
• QUEUES = {READY, RUN, WAIT, WAITFOR,

COMPLETE}.
• READY = {th | th is ready to run}
• RUN = {th | th is currently running}
• WAIT = {th | th is waiting for some events}
• WAITFOR = {th | th is waiting for time advance}
• COMPLETE = {th | th has completed its execu-

tion}
2) Simulation invariants:

Let THREADS = set of all threads which currently exist.
Then, at any time, the following conditions hold:

• THREADS = READY ∪ RUN ∪ WAIT ∪ WAITFOR
∪ COMPLETE.

• ∀ A, B ∈ QUEUES, A 6= B : A ∩ B = ∅.
3) Operations on threads:

Suppose th is a thread currently running on a CPU.
• Go(th): let thread th acquire a CPU and begin

execution.
• Stop(th): stop execution of thread th and release

the CPU.
• Switch(th1, th2): switch the CPU from the execu-

tion of thread th1 to thread th2.
4) Operations on threads with set manipulations:

Suppose th is a thread in one of the queues, A and B
are queues ∈ QUEUES.

• th = Create(): create a new thread th and put it in
set READY.

• Delete(th): kill thread th and remove it from set
COMPLETE.

• th = Pick(A, B): pick one thread th from set A
(according to certain rules) and put it into set B.

• Move(th, A, B): move thread th from set A to B.
5) Initial state at beginning of simulation:

• THREADS = {throot}.
• RUN = {throot}.
• READY = WAIT = WAITFOR = COMPLETE = ∅.
• time = 0.

DE simulation is driven by events and simulation time
advances. Whenever events are delivered or time increases,
the scheduler is called to move the simulation forward. Fig. 2
shows the control flow of the traditional scheduler. At any
time, the scheduler runs a single thread which is picked from
the READY queue. Within a delta-cycle, the choice of the
next thread to run is non-deterministic (by definition). If the
READY queue is empty, the scheduler will fill the queue again
by waking threads who have received events they were waiting
for. These are taken out of the WAIT queue and a new delta-
cycle begins.

If the READY queue is still empty after event delivery,
the scheduler advances the simulation time, moves all threads
with the earliest timestamp from the WAITFOR queue into the
READY queue, and resumes execution. At any time, there is
only one thread actively executing in the traditional simulation.

144

!"#$"%

!"#$%%&&%!%'%

"!"#!"#$!"#$"!"%&"'(')*"#&")+,-'./"

%&'(0!"!"!"#$!")*"+,1!"23'45")+,$'."'(')*&/""

!""6"-./00)*"+,12)341!"5&0!"1"

!"#$%%&&%!%'%

78.4*'"*9'"&#:;34,+)",:'!""

:+('"*9'"'453#'&*"!"#!"#$67)2*+2)*"+,/""

!"#$%%&&%!%'%

()*%

+,%

-(!%

+,%

+,%

-(!%

-(!%

*(."#/010.(%

"23(*/010.(%

&3''8"

Fig. 2. Traditional SLDL scheduler.

B. Multi-Core Discrete Event Simulation
The scheduler for multi-core parallel simulation works the

same way as the traditional scheduler, with one exception:
in each cycle, it picks multiple OS kernel threads from the
READY queue and runs them in parallel on the available cores.
In particular, it fills the RUN set with multiple threads up to
the number of CPU cores available. In other words, it keeps
as many cores as busy as possible.

!"#$%&'!"#$%&'()*()

!*%+*)

!"#$%!""!!!#!

"!"#&#'($!%&!!"'(!)*)+,!%(!+-./)01!

)*+,2!"$!&#'($!!"#$%3$!45)67!+-./)0!)*)+,(1!!

!"#$%!""!!!#!

8906,)!,:)!(%;<56.-+!.;)$!!

;-*)!,:)!)675%)(,!!"#&#'(-.!/,-/!"#$%1!!

!"#$%!""!!!#!

,$-)

./)

0,!)

./)

./)

0,!)

0,!)

!"!"!01232!"#$%4/!563!

7*2!"3!

!56!""!!!#!8!568!="!>4?8(!!

@@!!"#$%!A"!!!#!

0,!)

./)
1%"*'!"#$%+()*()

9:,,;/

1%"*'!"#$%+()*()

9:,,;/

./)

0,!)

Fig. 3. Multi-core SLDL scheduler.

Fig. 3 shows the extended control flow of the multi-core
scheduler. Note the extra loop at the left which issues OS
kernel threads as long as CPU cores are available and the
READY queue is not empty.

C. Synchronization for Multi-Core Simulation
The benefit of running more than a single thread at the

same time comes at a price. Explicit synchronization becomes

necessary. In particular, shared data structures in the simulation
engine, including the thread queues and event lists in the
scheduler, and shared variables in communication channels
of the application need to be properly protected by locks for
mutual exclusive access by the concurrent threads.

1) Protecting Scheduling Resources: To protect all central
scheduling resources, we run the scheduler in its own thread
and introduce locks and condition variables for proper syn-
chronization. More specifically, we use

• one central lock L to protect the scheduling resources,
• a condition variable Cond s for the scheduler, and
• a condition variable Cond th for each working thread.

When a working thread executes a wait or waitfor instruction,
we switch execution to the scheduling thread by waking the
scheduler (signal(Cond s) and putting the working thread to
sleep (wait(Cond th, L). The scheduler then uses the same
mechanism to resume the next working thread.

2) Protecting Communication: Communication between
threads also needs to be explicitly protected as SLDL channels
are defined to act as monitors. That is, only one thread at a
time may execute code wrapped in a specific channel instance.
To ensure this, we introduce a lock ch→L for each channel
instance which is acquired at entry and released upon leaving
any method of the channel. Fig. 4 shows this for the example
of a simple circular buffer with fixed size.

send (d) r e c e i v e (d)
2 { {

Lock (t h i s−>L) ; Lock (t h i s−>L) ;
4 w h i l e (n >= s i z e){ w h i l e (! n){

ws + + ; wr + + ;
6 w a i t (eSend) ; w a i t (eRecv) ;

ws −−; wr −−;
8 } }

b u f f e r . s t o r e (d) ; b u f f e r . l o a d (d) ;
10 i f (wr){ i f (ws){

n o t i f y (eRecv) ; n o t i f y (eSend) ;
12 } }

unLock (t h i s−>L) ; unLock (t h i s−>L) ;
14 } }

Fig. 4. Queue channel implementation for multi-core simulation.

The combination of a central scheduling lock and individ-
ual locks for channel instances ensures safe synchronization
among many parallel working threads. Fig. 5 summarizes the
detailed use of these locks and the thread switching mechanism
for the life-cycle of a working thread.

IV. CASE STUDY ON A H.264 VIDEO DECODER

To demonstrate the improved simulation time of our multi-
core simulator, we use a H.264 video decoder application.

A. H.264 Advanced Video Coding (AVC) Standard
The H.264 AVC standard [21] is widely used in video appli-

cations, such as internet streaming, disc storage, and television
services. H.264 AVC provides high-quality video at less than
half the bit rate compared to its predecessors H.263 and H.262.
At the same time, it requires more computing resources for
both video encoding and decoding. In order to implement the

145

!"#$%&'!()

!"#!"#$$%&$!"%&''!'$($

$$$$#$%&#(')$*!+,-.#)'*+%,-&.*!')$
$$$$/-!0#)'*+%!"#$/0(')$*"#$%&#(')$

!"#$%&#('$#$%&#('$
,10!"2$ 344$,10!"!54$565,0$.$01$565,0*7$.!*0$"#

*0-80$

5,4$

95*$
:1$

;5<-=>?!85$

$85.5-*54$$
=@-,,5.$.1=A*$

!+,-.#)'+%$'$

!"#$%&#('$

#$%&'!()

1-&.*!2345678#9.)"#8+&.*0&&$B+$

,$-.'1-&.*!/)0123234/)56789(:)

4$'*=@54?.5()

6;<='><?()

4$'*=@54?.5()
>@..A)

C-8$

45678#9.)"#8+&.*)B)C)

D$E)F"G)%H<@IE."/)!#BJE.F=.'(/)
45678#9.)"#8+&.*)KK:)

,$-.'!"#$/)5*3/)0123234(L)

/-!0$,$-.'!"#$/)5*3/)M72N()

DE5=?05$

5,4$ =H<>)BB)E$$=+$,$-.'!"#$/)5*3/)J1,O#6N6(:)

1-&.*!2345678#9.)"#8+&.*0PP:)

/-!0"18$,$-.'!"#$/)5*3/)M72ND15()

95*$

95*$

95*$

95*$ 95*$

95*$

:1$

:1$

:1$

:1$

:1$

:1$

#$%&#('$

!+,-.#)'+%$')$

/-!0#)'*+%!"#$/$F')$
!"#$%&#('$

8.@.=.'!"#$()

4$'*=@54?.5()
>@..A)

#$%&#('$

#$%&#('$

;5.5-*5$-=>?!854$=@-,,5.$.1=A*$

!+,-.#)'+%$')$

/-!0#)'*+%!"#$/$F')$
!"#$%&#('$

Fig. 5. Life-cycle of a thread in the multi-core simulator.

standard on resource-limited embedded systems, it is highly
desirable to exploit parallelism in its algorithm.

The H.264 decoder takes a video stream as input consisting
of a sequence of encoded video frames. A frame can be
further split into one or more slices during H.264 encoding,
as illustrated in Fig. 6. Notably, slices are independent of
each other in the sense that decoding one slice will not
require any data from the other slices (though it may need
data from previously decoded reference frames). For that
reason, parallelism exists at the slice-level and parallel slice
decoders can be used to decode multiple slices in a frame
simultaneously.

Slice 0

Slice 1

Slice 2

Slice 3

Fig. 6. Example of a H.264 AVC frame divided into four slices.

B. H.264 Decoder Model with Parallel Slice Decoding
We have specified a H.264 decoder model based on the

H.264/AVC JM reference software [12]. In the reference
code, a global data structure (img) is used to store the input
stream and all intermediate data during decoding. In order to
parallelize the slice decoding, we have duplicated this data
structure and other global variables so that each slice decoder
has its own copy of the input stream and can decode its own
slice locally. As an exception, the output of each slice decoder
is still written to a global data structure (dec picture). This is

valid because the macro-blocks produced by different slice
decoders do not overlap.

Procedure to decode one frame
Slice reader

Slice
decoder3

Slice
decoder2

Slice
decoder0

Slice
decoder1

Synchronizer
Proceed to next frame

Slice
Slice

decoder

Inv. Quant &
Transformation

Entropy
Decode

Motion
Compensation

Intra-
Prediction

Synchronizer

Fig. 7. Parallelized H.264 decoder model.

Fig. 7 shows a block diagram of our model. The decoding of
a frame begins with reading new slices from the input stream.
These are then dispatched into four parallel slice decoders.
Finally, a synchronizer block completes the decoding by
applying a deblocking filter to the decoded frame. All the
blocks communicate via FIFO channels. Internally, each slice
decoder consists of the regular H.264 decoder functions, such
as entropy decoding, inverse quantization and transformation,
motion compensation, and intra-prediction.

C. Experimental Results
For our experiment, we have prepared a test stream (”Har-

bour”) of 299 video frames, each with 4 slices of equal size.
Profiling the JM reference code with this stream showed that
68.4% of the total computation time is spent in the slice
decoding, which we have parallelized in our decoder model.

As a reference point, we can then calculate the maximum
possible performance gain as follows:

MaxSpeedup =
1

ParallelPart
NumOfCores

+ SerialPart

For 4 parallel cores, the maximum speedup is therefore
MaxSpeedup4 =

1
0.684

4
+ (1 − 0.684)

= 2.05

The maximum speedup for 2 and 3 cores is accordingly
MaxSpeedup2 = 1.52 and MaxSpeedup3 = 1.84.

Table I lists the results of our multi-core simulator on a host
PC with a 4-core CPU (Intel(R) Core(TM)2 Quad) at 3.0 GHz.
First, we compare the elapsed simulation time against the
single-core reference simulator. Clearly, our multi-core parallel
simulation is very effective in reducing the simulation time.

TABLE I
SIMULATION RESULTS (”HARBOUR”, 299 FRAMES, 30 FPS).

Simulator: Reference Multi-Core
Par. issued threads: n/a 1 2 3 4
User time: 32.05s 31.83s 32.35s 32.70s 33.36s
System time: 0.51s 1.49s 1.89s 1.74s 1.81s
Elapsed time: 32.59s 33.65s 25.22s 23.13s 17.76s
CPU load: 99% 99% 136% 148% 197%
Measured speedup: 1.00 0.97 1.29 1.41 1.84
Maximum speedup: 1.00 1.00 1.52 1.84 2.05

146

Fig. 8 shows a bar chart comparing the measured speedup
against the theoretical maximum. For our multi-core simu-
lator, the measured speedups are somewhat lower than the
maximum, which is reasonable given the overhead introduced
due to parallelizing and synchronizing the slice decoders.
The comparatively lower performance gain for the 3-core
simulation can be explained due to under-utilization of 3 cores
when running 4 parallel processes.

1.00

1.52

2.05
1.84

1.001.00

1.29
1.41

0.97

1.84

0

0.5

1

1.5

2

2.5

Sp
ee

du
p

Maximum Speedup
Measured Speedup

Reference 1 2 3 4
Multi-Core Simulator

Fig. 8. Comparison of measured and maximum performance gains.

V. SUMMARY AND CONCLUSION

The System-on-Chip Environment (SCE) addresses the in-
creasing complexity of embedded system design by raising the
level of abstraction to the Electronic System-Level (ESL). SCE
is an example of an effective ESL framework that provides an
automated top-down synthesis flow. Starting from an abstract
specification model described in the SpecC SLDL, SCE allows
the system designer to explore different design alternatives at
various levels of abstraction, and to refine the design model
step-by-step down to a pin- and cycle-accurate implementa-
tion. At each step, the system designer makes the decisions
and SCE tools generate new models automatically, which then
can be validated through simulation. The resulting MPSoC
platform can consist of a set of heterogeneous components,
including general-purpose or application-specific processors
and dedicated hardware accellerators, interconnected via a
complex network of communication busses.

In this paper, we have presented our recent extension of the
SCE simulator kernel in order to support parallel simulation
on multi-core hosts. Issuing multiple simulation threads simul-
taneously while ensuring safe synchronization, our simulator
allows the fast validation of large MPSoC designs. Using
a case study on a H.264 video decoder application, our
experimental results demonstrate a significant reduction in
simulation time close to the theoretical maximum.

ACKNOWLEDGMENT

This work has been supported in part by funding from
the National Science Foundation (NSF) under research grant
NSF Award #0747523. The authors thank the NSF for the
valuable support. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation.

REFERENCES

[1] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,
C. Passerone, A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, and
B. Tabbara. Hardware-Software Co-Design of Embedded Systems: The
POLIS Approach. Kluwer, 1997.

[2] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli. Metropolis: An Integrated Environment for
Electronic System Design. IEEE Computer, 36(4), April 2003.

[3] Bluespec, Inc. Bluespec. http://www.bluespec.com/.
[4] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Ptolemy: A

framework for simulating and prototyping heterogeneous systems. Intl.
Journal of Computer Simulation, 4(2):155–182, April 1994.

[5] W. O. Cesário, D. Lyonnard, G. Nicolescu, Y. Paviot, S. Yoo, A. A.
Jerraya, L. Gauthier, and M. Diaz-Nava. Multiprocessor SoC Platforms:
A Component-Based Design Approach. IEEE Design and Test of
Computers, 19(6), November/December 2002.

[6] B. Chopard, P. Combes, and J. Zory. A Conservative Approach to
SystemC Parallelization. In V. N. Alexandrov, G. D. van Albada,
P. M. A. Sloot, and J. Dongarra, editors, International Conference on
Computational Science (4), volume 3994 of Lecture Notes in Computer
Science, pages 653–660. Springer, 2006.

[7] R. Dömer, A. Gerstlauer, J. Peng, D. Shin, L. Cai, H. Yu, S. Abdi, and
D. Gajski. System-on-Chip Environment: A SpecC-based Framework
for Heterogeneous MPSoC Design. EURASIP Journal on Embedded
Systems, 2008(647953):13 pages, 2008.

[8] Forte Design Systems. Forte. http://www.forteds.com/.
[9] D. D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, and S. Zhao. SpecC:

Specification Language and Design Methodology. Kluwer, 2000.
[10] K. Grüttner, F. Oppenheimer, W. Nebel, A.-M. Fouilliart, and F. Colas-

Bigey. SystemC-based Modelling, Seamless Refinement, and Synthesis
of a JPEG 2000 Decoder. In Proceedings of the Design, Automation and
Test in Europe (DATE) Conference, Munich, Germany, March 2008.

[11] K. Huang, I. Bacivarov, F. Hugelshofer, and L. Thiele. Scalably Dis-
tributed SystemC Simulation for Embedded Applications. In Industrial
Embedded Systems, 2008. SIES 2008. International Symposium on,
pages 271–274, June 2008.

[12] H.264/AVC JM Reference Software. http://iphome.hhi.de/suehring/tml/.
[13] T. Kempf, M. Dörper, R. Leupers, G. Ascheid, H. Meyr, T. Kogel,

and B. Vanthournout. A Modular Simulation Framework for Spatial
and Temporal Task Mapping onto Multi-Processor SoC Platforms. In
Proceedings of the Design, Automation and Test in Europe (DATE)
Conference, Munich, Germany, March 2005.

[14] W. Klingauf, H. Gädke, and R. Günzel. TRAIN: A Virtual Transaction
Layer Architecture for TLM-based HW/SW Codesign of Synthesizable
MPSoC. In Proceedings of the Design, Automation and Test in Europe
(DATE) Conference, March 2006.

[15] Mentor Graphics. Catapult C Synthesis. http://www.mentor.com/
products/esl/high level synthesis/catapult synthe%sis/.

[16] A. Österling, T. Brenner, R. Ernst, D. Herrmann, T. Scholz, and
W. Ye. The COSYMA system. In J. Staunstrup and W. Wolf, editors,
Hardware/Software Co-Design: Principles and Practice. Kluwer, 1997.

[17] E. P, P. Chandran, J. Chandra, B. P. Simon, and D. Ravi. Parallelizing
SystemC Kernel for Fast Hardware Simulation on SMP Machines. In
PADS ’09: Proceedings of the 2009 ACM/IEEE/SCS 23rd Workshop
on Principles of Advanced and Distributed Simulation, pages 80–87,
Washington, DC, USA, 2009. IEEE Computer Society.

[18] P. Schaumont, S. Vernalde, L. Rijnders, M. Engels, and I. Bolsens.
A Programming Environment for the Design of Complex High Speed
ASICs. In Proceedings of the Design Automation Conference (DAC),
San Francisco, CA, June 1998.

[19] C. A. Valderrama, M. Romdhani, J.-M. Daveau, G. F. Marchioro,
A. Changuel, and A. A. Jerraya. COSMOS: A transformational Co-
Design Tool for Multiprocessor Architectures. In J. Staunstrup and
W. Wolf, editors, Hardware/Software Co-Design: Principles and Prac-
tice. Kluwer, 1997.

[20] K. van Rompaey, D. V. I. Bolsens, and H. D. Man. CoWare: A
Design Environment for Heterogeneous Hardware/Software Systems.
In Proceedings of the European Design Automation Conference (Euro-
DAC), Geneva, Switzerland, September 1996.

[21] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra. Overview of
the H.264/AVC video coding standard. Circuits and Systems for Video
Technology, IEEE Transactions on, 13(7):560 –576, july 2003.

147

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Table of Contents

