
Chapter 8

HIGH-LEVEL DEVELOPMENT, MODELING
AND AUTOMATIC GENERATION OF
HARDWARE-DEPENDENT SOFTWARE

Gunar Schirner, Rainer Dömer
Center for Embedded Computer Systems
University of California, Irvine, CA, U.S.A.

Andreas Gerstlauer
University of Texas, Austin, TX, U.S.A.

Abstract With the increasing software content in modern embedded systems, software
development clearly dominates the design cost. The development of Hardware-
dependent Software (HdS) is especially challenging due to its tight coupling
with the underlying hardware. Therefore, automatic generation of all embedded
software including the HdS is highly desirable to meet today’s shortened time-
to-market demands.

In this chapter, we describe a system-level design approach that offers a seam-
less solution for generating embedded software, starting from an abstract speci-
fication and going to an implementation. In our high-level development environ-
ment, the application is developed in a platform-agnostic format that hides most
implementation detail. The target platform and the mapping of the application
to the platform are described separately. A system compiler then automatically
generates a system model at the transaction level for performance analysis and
development. The same system model later serves as an input to a software
generation process, which generates the final binaries for all processors in the
system. These binaries include the application, device drivers, and operating
system code.

Using a design flow with automatic software generation offers significant
productivity gains. At the same time, it allows the designer to focus on the
algorithms without being burdened by implementation-level detail.

Keywords: System-level Design, Development Environment, Firmware, Software Genera-
tion

206 HARDWARE-DEPENDENT SOFTWARE

8.1 Introduction
Software development starts dominating the design cost of modern complex

Multi-Processor System-on-Chip (MPSoC). The software content is increas-
ing since it allows to flexibly implement complex features and to quickly react
to customer demands. In this context, Hardware-dependent Software (HdS)
is especially challenging, due to its tight coupling with the underlying hard-
ware (HW). Traditional approaches of manually implementing HdS become
very time consuming. With a large amount of implementation detail, a manual
implementation is tedious and error prone. Additionally, validating and debug-
ging software executing on real hardware delays this important process until the
availability of the final hardware platform. This hinders a parallel development
of hardware and software and may result in missing the tight time-to-market
constraints. On the other hand, a validation using low-level instruction set sim-
ulation suffers from a slow simulation, especially in a multi-processor context.

To increase productivity, we envision an integrated design flow that elimi-
nates the need for low-level programming. In this chapter, we propose high-
level HdS development that hides HW dependencies from designers and allows
focusing on algorithms without being burdened by driver-level details.

In our high-level environment, as outlined in Figure 8.1, the application is de-
veloped in a platform-agnostic specification written in a System-Level Design
Language (SLDL). The specification model consists of a hierarchical process
graph containing sequential C code in each process. In the hierarchy, processes
are composed in a parallel-sequential fashion. Communication between pro-
cesses is captured in abstract communication channels and shared variables,
independent of their later implementation.

The targeted hardware platform is specified separately, containing proces-
sor and hardware allocation, mapping of processes to processors and hardware
blocks, and the definition of the communication topology and its parameters.

Specification

SW Generation

CPU_3.bin
CPU_3.bin
CPU_3.bin

HW_3.v
HW_2.v
HW_1.v

HW Synth.

ExplorationTLM

Designer’s

Architecture

DecisionsSystem CompilerComp.

DB

Figure 8.1. System design flow overview.

High-Level Development, Modeling and Automatic Generation of HdS 207

While mapping the specification to the platform, the designer also specifies im-
portant software aspects, such as task mapping, the definition of task priorities,
and selection of the scheduling policy for each processor.

Based on application and platform specification, our system compiler auto-
matically maps the application down to a set of processors and busses, creating
a set of tasks for each processor, and generating the communication drivers be-
tween processes depending on their HW/SW mapping. The application-specific
hardware-dependent code is generated by the system compiler. As one output, it
generates a system model at selectable abstraction level (with different amount
of detail).

The abstract system model is valuable for virtual prototyping, early perfor-
mance estimation, and validation of the feasibility of the HW/SW mapping. It
also enables functional validation of the application over the given platform.
Furthermore, it exposes the effects of dynamic scheduling for each processor,
allowing optimization of priority mapping and guiding static load balancing.
Altogether, the system model is a convenient virtual debugging platform that is
usable before HW availability.

Most importantly, the system model serves as an input to the back-end SW
generation, which generates and cross-compiles the C code. In particular, it
generates the firmware, drivers and interrupt handlers, which implement the
external communication of the processor. It also adjusts the application code to
execute on top of the selected Real-Time Operating System (RTOS). Finally, the
linker creates the final software binary for each processor. For early validation
of those binaries, a system model with integrated Instruction Set Simulators
(ISSs) can be used.

We informally distinguish between software synthesis and software genera-
tion. Both produce an implementation out of an abstract input model by adding
implementation level detail. In contrast to generation, synthesis includes in ad-
dition an automatic optimization for a given objective or cost function. In our
work described in this chapter, we describe a pure generation-based approach
that does not include an optimization.

The rest of this chapter is organized as follows. We first discuss the context
of software generation and survey current approaches. Then, Section 8.2 de-
scribes in detail the envisioned HdS development based on a platform-agnostic
input and abstract system models. Section 8.3 provieds an overview on SW
generation and Section 8.4 focuses on the generation of HdS. Section 8.5 dis-
cusses application examples and demonstrates the approach for six real-life
applications. Section 8.6 summarizes and concludes the chapter.

208 HARDWARE-DEPENDENT SOFTWARE

8.1.1 Context and Related Work
Designing a modern complex MPSoC is challenging both in terms of hard-

ware and software. The current manufacturing capabilities offer tremendous
integration capabilities and a high degree of implementation freedom. For opti-
mization, a vast exploration space has to be explored and analyzed in the design
process. At the same time, the market demands a shorter time-to-market to yield
competitive products. Hence, the challenge is to design increasingly complex
embedded systems in a shorter period of time.

System-level design is accepted as the main approach to address the com-
plexity challenges. It uses a unified approach to design hardware and software
concurrently. System-level design uses higher levels of abstraction to describe
a system. Ideally, this allows to describe a system solely as a composition of
algorithms, so that the designer can maintain the system overview, while not
being burdened by the vast amount of implementation details.

To capture systems jointly with hardware and software, System Level Design
Languages (SLDLs) have been developed, such as UML, graphical input,
Esterel and C-based languages. In this chapter, we focus on C-based SLDLs.
Examples of C-based SLDLs are SystemC [GLMS02], which is widely used in
academia and industry, and SpecC [GZD+00]. These languages are based on
C++ and ANSI-C, respectively, and have been extended to also capture system
and hardware aspects, such as parallelism, pipelining, signals, and bit-vectors
to just name a few added concepts.

Abstract models for system-level design are often described as Transaction
Level Models (TLMs) [GLMS02], which abstract away the details of pins and
wires [CG03]. By omitting implementation-level detail, TLMs execute dra-
matically faster than bit-accurate models. Therefore, they are widely used for
design space exploration and early development.

Today, TLMs are typically written manually [HYL+06] and are moreover
rarely used for generation of a complete final implementation. Specialized
partial solutions are already very successful, e.g. for generating the interface
description between RTL hardware and software (see Chapter 5). To increase
productivity, we envision a design flow that spans from an abstract, untimed,
and platform-agnostic specification down to an actual implementation on real
hardware, as we will describe in this chapter.

Traditionally, SW generation has been addressed from very specific input
models and with a limited target architecture support. Some examples are
POLIS [BCG+97], DESCARTES [RPZM93], and Cortadella et al. [CKL+00].
The POLIS [BCG+97] approach uses a Co-design Finite State Machine (CFSM)
model, where each FSM represents a component in the system. Software gen-
eration is performed by transforming the input model into an S-Graph, and sub-
sequent C code generation. This work focuses on reactive systems and is not

High-Level Development, Modeling and Automatic Generation of HdS 209

designed for general applications. DESCARTES [RPZM93] uses a data flow
description (Asynchronous Data Flow (ADF) and an extended Synchronous
Data Flow (SDF)) as an input and supports heterogeneous systems. With the
specific input choice, these solutions favor a particular application type. In con-
trast, a flexible generic C-programming model is desirable over these specific
input models to cater to the needs of a broader programming audience and to
capture a wider range of application domains.

Abstract models, based on SLDLs with a generic C-programming model,
have been used for modeling software (SW) and its execution in abstract form
[KKW+06, GYNJ01]. Additionally, ISSs have been integrated into abstract
system models to create system co-simulation environments [BBB+05, CoWa].
Such, virtual platforms allow for a detailed analysis of the system before avail-
ability of real hardware, often revealing details not available on the target
[HYL+06]. While these approaches focus on simulation and validation, they
do not offer an integrated solution to generate the final implementation.

Some early approaches show solutions to use an abstract model, which con-
tains the common description of HW and SW, as a source for generating the
embedded software. Herrara et al. [HPSV03] describe SW generation from
a SystemC model. With SystemC being a library extension of C++, they pro-
pose to overload SystemC library elements for execution on the target system.
This has the advantage of reusing the same model for specification and target
execution. However, the approach partly replicates the simulation engine.

Krause et al. [KBR05] generate source code from SystemC and adjust the
application to execute on top of an RTOS. To flexibly target different RTOS ven-
dors, they capture the API in an XML format for a customized generation. This
approach, however, does not describe in detail the generation of communication
and synchronization code and the creation of the final target binary.

Gauthier et al. [GYJ01] describe a method for generating application-specific
operating systems and the corresponding application SW. Their work focuses
on the OS portion and does not address external HW. Our solution, on the other
hand, explicitly includes heterogeneous external HW. Yu et al. [YDG04] show
generation of application C code from an SLDL, however without showing the
final target binary. Our approach includes generation of communication drivers,
multi-task adaptation, and the generation of the final binary image.

The Phantom Serializing Compiler [NG05] translates multi-tasking POSIX C
code input into flat C code by grouping blocks to Atomic Execution Blocks and
custom scheduling them. This approach is oriented toward a pure SW solution.
In contrast, we address SW generation in a system context, specifically taking
HdS and external communication into account.

210 HARDWARE-DEPENDENT SOFTWARE

8.2 Software-enabled System Design Flow
Electronic System Level (ESL) design addresses the complexity challenges

of designing a modern embedded system. One such flow is outlined in Fig-
ure 8.1 and uses a two step design approach. This ESL flow, implemented in
[DGP+08], generates first a system TLM for detailed performance estimation
and early MPSoC development. In a second step, the TLM is used as an input
to automatically generate SW binaries for the processors in the target platform.

The input to the system design flow is the specification model. It describes
the algorithms of the system and their dependencies. The specification model is
captured in an untimed and platform-agnostic form using a C-based SLDL. For
the experiments reported in this chapter, we use the SpecC SLDL [GZD+00].
The concepts shown, however, are equally applicable to other C-based SLDLs,
such as SystemC, as well.

Important for a flexible and analyzable input specification is the separation
of computation and communication. This separation enables automatic refine-
ment of communication and mapping of computation to separate processing
elements. The computation is grouped in behaviors (or modules / processes),
and communication is expressed in channels. The upper portion of Figure 8.2
shows a graphical representation of a simple system specification. The boxes
with rounded corners symbolize behaviors. The actual C code inside the be-
haviors (e.g. B2 and B3) is omitted for brevity.

The behaviors communicate via direct point-to-point channels. For an eas-
ier generation, these channels are selected from a feature-rich set of standard-
ized channel types. They allow for a wide range of communication types,
such as synchronous and asynchronous communication, blocking and non-
blocking communication (e.g. FIFO), as well as for synchronization only (e.g.
semaphore, mutex, barrier). Basically, these channels are similar to standard
communication primitives offered by middleware or an operating system.

Cust. HW,
100MHz

Cust. HW,
100MHz

AMBA AHB

ARM7TDMI,
100MHz

B2 B3
C1

C2

B1

B5

C3 B4

C4

S
p
e
c
if
ic
a
ti
o
n

P
la
tf
o
rm

Figure 8.2. Example specification with architecture mapping.

High-Level Development, Modeling and Automatic Generation of HdS 211

Behaviors can be composed hierarchically to allow complex structures. They
can be arranged to execute in any order, such as sequential, parallel, pipelined,
or state machine controlled. In the example, behaviors B2 and B3 execute in
parallel. They communicate through channels C1 and C2. These channels are
of type "double handshake", which implies blocking, synchronous communica-
tion that is not buffered. The channels C3 and C4, for communication between
B3, B4 and B5, are finite depth FIFO channels. Using these standard channels
allows for a very intuitive programming approach, that is independent of any
hardware selection and application distribution.

A second input to our system design flow contains the architecture decisions
which describe the platform, as visualized in the bottom portion of Figure 8.2.
The designer enters these decisions using an interactive Graphical User Interface
(GUI).

Architecture decisions include the allocation of processing elements (PEs)
(e.g. processors, HW components). In the example, an ARM7TMI processor
and two custom hardware components are allocated. PE-specific parameters,
such as clock frequency, are chosen during allocation. Additionally, the user
defines the mapping of behaviors to PEs, deciding which PE will execute the
computation inside each behavior. Behaviors, that are assigned to execute on
a processor, are wrapped into tasks. The user can then define important task
parameters, such as priority and stack size.

Besides dealing with the computation, the designer also controls the alloca-
tion and mapping of communication protocols. The example mapping decisions
are illustrated in the bottom portion of Figure 8.2. Here, a bus system of type
AMBA AHB [AMBA] is allocated. The call-out boxes symbolize mapping
the channels to that bus. For each channel, the user can also define essential
communication parameters. For one, the user can select the synchronization
scheme, such as polling or interrupt-based synchronization. Additionally, a
bus address, that identifies the channel on the communication medium, can be
selected.

Based on this these inputs, our system compiler [DGP+08] automatically
generates a system TLM that reflects the architecture decisions. For this model
refinement, components out of the component data base (compare Figure 8.1)
are instantiated and connected. The communication between processing ele-
ments is refined from the standardized abstract channels down to communi-
cation based on the selected medium (here the AMBA AHB). The TLM, see
example in Figure 8.4, allows for system exploration, performance analysis and
debugging. The TLM simulates significantly faster than a traditional ISS-based
model [SGD07].

Once the designer is satisfied with the performance and quality of the system,
the same TLM serves then as input for the back-end HW synthesis and SW gen-
eration. The SW generation produces the final SW binaries that are executable

212 HARDWARE-DEPENDENT SOFTWARE

on a set of processors composing the platform. It generates the application
code, and all drivers for communication in a heterogeneous system. The SW
application executes on an off-the-shelf RTOS, or by using an interrupt-driven
system for small applications.

8.3 Software Generation Overview
The SW generation, as shown in Figure 8.3, uses the TLM as an input. As

described before, the TLM reflects all architecture decisions. Computation is
mapped to processing elements. Computation within each processor is grouped
to tasks, all essential task parameters are captured, and the tasks are executed
on top of an abstract RTOS (the concepts of RTOS modeling are also described
in Chapter 9). The external communication has been refined according to
an ISO/OSI layered approach. It is mapped to a set of busses and protocols
using bus primitives. External synchronization is implemented (e.g. polling or
interrupt) based on the designer’s choice. Furthermore, the model contains all
structural information to implement the communication decisions. Therefore,
the input TLM contains all functional and structural information needed for the
target implementation. Please see [DGP+08] for a more detailed description
of the TLM generation.

Our software generation is divided into C code generation and HdS gen-
eration. The C code generation [YDG04], generates flat C code out of the
hierarchical model captured in the SpecC SLDL. It converts behavior hierar-
chies into a set of C functions. Instance-specific variables are translated into a
set of data structure instances. Additionally, the channel connectivity between
behaviors is resolved into flat C code. In other words, the C code generation
solves similar issues as early C++ to C compilers that translated a class hierarchy
into flat C code.

Cross Compile and Link

Software Generation

TLM

C Code Build,Config.

Target Binary

SW DB

- RTOS

- Wrapper

- HAL

TLM (- SW)

+

ISS +

Wrapper

TLM (- SW +ISS)

Virtual Platform Exec.Hardware Platform Exec.

Code Gen. HdS Gen.

Figure 8.3. Software generation flow [SGD08].

High-Level Development, Modeling and Automatic Generation of HdS 213

The second portion, the HdS generation, generates code for processor internal
and external communication, including drivers and synchronization (polling or
interrupt). It also generates code to execute multiple tasks on the same proces-
sor. To create the complete binary SW image, it finally generates configuration
and build files (e.g. Makefile) which select and configure database components.
As such, a particular RTOS is chosen, properly adapted/ported to the selected
processor. A hardware abstraction layer (HAL) is included based on the tar-
get platform, consisting of low-level drivers for the timer, the programmable
interrupt controller (PIC), and the bus accesses.

Using a cross compiler, the final target binary (or binaries) is created, which
can execute on the target processor(s), or alternatively on a virtual platform. A
virtual platform allows validation and development of the final software binaries
already before the availability of real hardware. To generate a virtual platform,
our SW generation removes the model of the SW running on each processor
from the TLM and replaces it with an ISS that is wrapped for integration into
the system model. Each ISS instance then executes one SW binary.

8.4 Hardware-dependent Software Generation
The HdS generation uses the system TLM as an input (see example Fig-

ure 8.4), which was generated by the system compiler based on the designer’s
architecture decisions. Following the mapping definitions, illustrated in Fig-
ure 8.2, the behaviors B1, B2 and B3 execute on the processor. The behaviors
B4 and B5 are each mapped to an own HW accelerator. The TLM contains
hierarchical behaviors, channels, and additional HW to properly reflect the
platform characteristics. For example, it contains a model of a PIC that maps
multiple external interrupts to the available CPU interrupts, and a timer module
for periodic interrupts.

The HdS generation parses the input TLM into an abstract syntax tree and
then operates on this tree for code generation. For explanation, we distinguish
three generation aspects: communication generation, multi-task generation and
generation of the final target image. The following sections describe each aspect
individually.

8.4.1 Communication Generation
The communication generation deals with processor internal and external

communication. In particular, it creates the driver code for communication
between the software and external HW. It also generates code for synchroniza-
tion, for which it inserts stubs into the application code, and generates interrupt
handlers and/or polling code.

214 HARDWARE-DEPENDENT SOFTWARE

Internal Communication. Internal communication takes place between
tasks on the same processor. In the example shown in Figure 8.4, the channels
C1, C2, Sem1 and Sem2 are used for internal communication. These are in-
stances of our standard channels as also used in the specification. To provide the
particular communication on the target system, the abstract standard channels
are replaced with a target-specific implementation that uses the primitives of an
underlying RTOS (or an emulation thereof, in case an RTOS is avoided). Note,
that this implementation does not recreate the simulation environment on the
target. Instead, a target-specific implementation is used that recreates the same
interface and semantics as the abstract channels. For example, a blocking syn-
chronous communication channel is implemented on an RTOS-based system
with a semaphore, two events, and a memcpy using the services of our RTOS
Abstraction Layer (RAL), which we insert for independence of the actual RTOS
(for details, please refer to the later section about multi-task generation).

External Communication. To support heterogeneous systems, we follow
the ISO/OSI layering model [ISO94] to implement external communication.
Examples of external communication are the channels C3 and C4 of the initial
specification (see Figure 8.2). According to the mapping information, these
channels capture communication between different processing elements (e.g.
processor and custom hardware). These channels no longer appear directly in
the system TLM in Figure 8.4. Our system compiler has refined the abstract
channels into stacks of half channels (namely Net, Driver, and MAC), which

Core
HALOS

CPU

Task

B2

N
e
t

C1

B1

Task

B3C2

RTOS MODEL
TLM

M
A
C

HW

Int

Timer

PIC

Source

Status

Mask

Control

Load

Value

INT

INTA INTB INTC

UsrInt1

SysInt

D
r
iv
e
r

D
ri
v
e
r

INTC
INTB
INTA

Sem2

Sem1
UsrInt2

N
e
t

HW1

HW2

B4

B5

Net

MAC

Link

Net

MAC

Link

Figure 8.4. Processor and application TLM.

High-Level Development, Modeling and Automatic Generation of HdS 215

are inserted into the processor model. A matching stack of half channels is
inserted into each HW component (HW1 and HW2) as well.

At the top of the stack, the typed user data is marshalled into a flat untyped
data stream. This untyped stream provides a common representation that can
be interpreted among different processing elements regardless of bitwidth, en-
dianness and padding rules. This common representation for example allows
that a little endian processor can read and interpret the data stream of a big
endian processor.

The communication generation has access to the abstract syntax tree rep-
resenting the application code. Therefore, it can extract the necessary type
information from the application code and generate application-specific mar-
shalling code that uses standard conversion functions to create the untyped data
stream. For example, the user may define structure tReq that contains three
elements startTime, coeff1 and base, as shown in Listing 8.1.

Based on the information of the channel Net (see Figure 8.4), the communica-
tion generation produces marshalling code that serializes the structure data into
a flat byte stream as shown in Listing 8.2. Note that, in contrast to using fixed
bitwidth types already in the specification, as discussed in Chapter 5 and Chap-
ter 6, our system-level approach contains platform-agnostic types (e.g. plain
int) in the initial specification model. The marshalling process here therefore
is necessary in order to create the platform-specific types.

Data from the input structure (pointer pD) is converted into the buffer (pointer
This->buf). The mashalling code uses standard conversion functions for each
basic data type (e.g. uhonlong()). Later in the generation process, a processor-
optimized implementation of the marshaling function is selected from the data-
base.

The next half channel, the Driver, contains information about the channel’s
system-wide addressing. It maps the end-to-end channel, which connects two
behaviors, to a set of point-to-point links. In a platform with many busses, an
end-to-end link may connect processing elements on different busses. Then,
multiple point-to-point links create the connection across the busses, which
are connected via communication elements (e.g. bridge or transducer). Note
that, in comparison to the Chapter 5 and Chapter 6, our system-level approach

1 t yp ed ef s t r u c t s tReq {
2 long s t a r t T i m e ;
3 sh ort c o e f f 1 ;
4 unsigned sh ort base ;
5 } tReq ;

Listing 8.1. User type definition in the specification model.

216 HARDWARE-DEPENDENT SOFTWARE

1 void c p r e r e q C P U s e n d (/∗ . . . ∗ / ∗This , s t r u c t tReq ∗pD){
2 unsigned char ∗pB = This−>buf ;
3 h ton long (pB , pD−>s t a r t T i m e) ;
4 pB += 4 ;
5 h t o n s h o r t (pB , pD−>c o e f f 1) ;
6 pB += 2 ;
7 h t o n u s h o r t (pB , pD−>base) ;
8 pB += 2 ;
9 c l ink CPU CAN CTRL DLink send (/∗ . . . ∗ / This−>buf , 8) ;

10 }
Listing 8.2. Generated code for marshalling of user data.

generates a custom register addressing here on-the-fly, based on an available
system-wide view of the components and their address space.

The slave in our example is connected to the processor bus. Therefore,
direct communication is possible and no additional communication elements
are necessary. However, complex communication schemes spanning multiple
bus hierarchies are possible. Then, user messages are packetized to minimize
buffer requirements of intermediate communication partners. Depending on the
information in the Driver channel, the corresponding source code is generated.

The driver also implements a channel-specific synchronization mechanism,
which will be explained in the next section. Finally, the Driver transfers the data
using the Media Access Control (MAC) layer, which implements the low-level
access to the communication media. This layer provides services to transport an
arbitrary sized contiguous block of bytes to an address in the system. According
to the platform definition, the HdS generation selects later a processor-specific
MAC implementation. In a simple case of a processor’s primary bus, the MAC
may use the processor’s memory interface.

Synchronization. For a typical master/slave bus, external synchronization
is required for a slave to indicate it being ready for a data transfer (e.g. required
data being available). The designer choses the type of synchronization for
each channel, selecting between polling or interrupt-based synchronization.
Furthermore, the designer may choose to share interrupts between sources to
reduce the overall number of interrupt pins. These choices are reflected in the
generated system TLM.

If polling was chosen, polling code is generated as part of the driver code.
An example is outlined in Listing 8.3. The CPU accesses the slave’s polling
flag to check whether the slave is ready for the communication. This access is
performed using the MAC services analogous to the external communication
(see the call to function Ahb masterMemRead() in Line 5). If the slave is not
ready, the polling code uses RTOS services to delay execution for the polling

High-Level Development, Modeling and Automatic Generation of HdS 217

1 void c l ink CPU HW DLink send (/∗ . . . ∗ / ∗This ,
2 con s t void ∗pData , i n t l e n) {
3 unsigned char f l a g ;
4 do { /∗ p o l l s l a v e i f ready ∗ /
5 Ahb masterMemRead (/∗ . . . ∗ / ,
6 HW1 DLink 0 FLAG ADDR , &f l a g , s i z e o f (f l a g)) ;
7 i f (f l a g) { /∗ break i f ready ∗ /
8 break ;
9 }

10 /∗ de lay f o r p o l l . p e r i o d ∗ /
11 TaskDelay (HW1 DLink 0 POLL DELAY) ;
12 } while (1) ;
13 /∗ s u c c e s s f u l l y synch ’ ed , t r a n s f e r data now ∗ /
14 Ahb masterMemWrite (/∗ . . . ∗ / ,
15 HW1 DLink 0 DATA ADDR , pData , l e n) ;
16 }
Listing 8.3. Polling synchronization example.

period (see function call TaskDelay() in Line 11), and repeats polling. Once
determined that the slave is ready, the polling loop terminates (Line 8) and
transfers the data (Line 14).

In case of interrupt synchronization, the TLM contains a model of the in-
terrupt chain. In Figure 8.4, for example, the chain consists of the PIC, the
system interrupt handler SysInt, the application-specific interrupt handler INTC,
the user interrupt handler UsrInt1 and UsrInt2. Finally, semaphore channels
(Sem1, Sem2) connect each interrupt handler with the driver code, so that the
(short) interrupt handler can start the (long) driver to handle the communication.
To implement interrupt-based synchronization, our HdS generation produces
a chain of correlated code. The next paragraphs describe the interrupt-based
synchronization code, following the event sequence when sending a message
from B5, which is mapped to a hardware component, to B2, which is mapped
to the processor. The event sequence is illustrated in Figure 8.5.

At t0, the behavior B2 expects a message. With the message not being
available, B2 waits on the semaphore Sem1 and yields execution to the next
lower priority task B3. At t1, behavior B5, that is mapped to HW2, reaches the
code to send the expected message and signals via interrupt INTC the availability
of the message to the processor core. On the way, the PIC sets the processor
interrupt Int. This in turn triggers the interrupt chain on the processor, which
we have labeled 1 through 4.

1. The low-level assembly interrupt handler preempts the currently running
task B3. It stores the current context on the stack and then calls the system

218 HARDWARE-DEPENDENT SOFTWARE

interrupt handler. The low-level assembly interrupt handler, which is part
of the RTOS port is inserted from the software database.

2. The system interrupt handler (see half channel SysInt in Figure 8.4) com-
municates with the PIC. It determines through memory mapped I/O the
highest priority pending interrupt. It then invokes the application-specific
interrupt handler (see half channel INTC in the TLM in Figure 8.4). The
SysInt code is one element of the Hardware Abstraction Layer (HAL)
stored in the database.

3. Since the interrupt in this example is shared between HW1 and HW2,
the actual source of the interrupt is determined next. The application-
specific interrupt handler INTC determines the source of the interrupt by
reading the status registers in HW1 and HW2. Subsequently, INTC then
calls the corresponding User Interrupt Handler (in this case UsrInt2 of
Figure 8.4).

4. Finally, UsrInt2 calls the semaphore Sem1 to release the driver code that
executes in the behavior B2. The semaphore channel uses the earlier
described internal communication services.

After releasing semaphore Sem1, the interrupt handler terminates. Subse-
quently, the task for B2 becomes ready and is scheduled. Finally, after the
context switch, B2 reads the data from HW2.

For HdS generation, we implement this chain on the processor. The code falls
into two distinct portions. The first part is application-independent, and there-
fore can be stored in the software database. The second portion is application-
specific and has to be generated out of the system TLM. The code for steps 1
and 2 belongs to the first portion that is application-independent, and their code
is taken from the database. The code for steps 3 and 4, on the other hand, is

HW2HW1
PIC

Processor Core
INT B2 B3

IntC 1

2

3

4

Which Int.?

Int. Source?

Data Transfer

tim
e

t
0
t
1
t
2
t
5

t
4
t
5

Preemption by Int.Int

regB5regB4

Sem1.send()

Figure 8.5. Events in external communication.

High-Level Development, Modeling and Automatic Generation of HdS 219

1 void ARM7TDMI INTC body (/∗ . . . ∗ / ∗This) {
2 unsigned char f l a g ;
3 Ahb masterMemRead(/∗ . . . ∗ / ,
4 HW1 DLink 0 FLAG ADDR , &f l a g , s i z e o f (f l a g)) ;
5 i f (f l a g) {
6 c o s s e m a p h o r e r e l e a s e (/∗ . . . ∗ / This−>sem1) ;
7 }
8 Ahb masterMemRead(/∗ . . . ∗ / ,
9 HW2 DLink 1 FLAG ADDR , &f l a g , s i z e o f (f l a g)) ;

10 i f (f l a g) {
11 c o s s e m a p h o r e r e l e a s e (/∗ . . . ∗ / This−>sem2) ;
12 }
13 }
14

15 void ARM7TDMI OS CPU main (/∗ . . . ∗ / ∗This){
16 /∗ . . . ∗ /
17 c o s s e m a p h o r e i n i t (/∗ . . . ∗ / This−>sem1) ;
18 c o s s e m a p h o r e i n i t (/∗ . . . ∗ / This−>sem2) ;
19 B S P U s e r I r q R e g i s t e r (INTNR int1handler ,
20 ARM7TDMI INTC body , /∗ . . . ∗ /) ;
21 /∗ . . . ∗ /
22 }
Listing 8.4. Interrupt handler outline for shared interrupt.

application-specific, and is generated (step 3 based on INTC, and step 4 based
on UsrInt2).

Listing 8.4 outlines the generated code for an application specific interrupt
handler (as described for step 3) that is shared between two interrupt sources.
The handler sequentially checks the interrupt sources using the MAC commu-
nication services (e.g. Line 3). Once the handler finds the interrupt initiating
hardware, it releases the associated user task that executes the driver code (see
call to c os semaphore release() in Line 6).

In addition, startup code is necessary to setup the interrupt chain on the
processor side. For one, the application-specific interrupt handler needs to be
registered to the system interrupt handler, so that it executes upon receiving of
the associated interrupt. In this example, our HdS generator produces startup
code that registers application-specific interrupt handler INTC to the system
interrupt handler for execution upon receiving INTC on the PIC (see Listing 8.4,
Line 19). To gather the necessary information, it traverses the connectivity and
architectural information stored in the TLM. It also generates code to instantiate
the semaphore channel and inserts appropriate calls into the driver code.

220 HARDWARE-DEPENDENT SOFTWARE

8.4.2 Multi-Task Generation
When multiple tasks are mapped to the same processor, they have to be

dynamically scheduled to alternate their execution. Our multi-task generation
produces code that uses an underlying multi-task engine in order to control tasks
and schedule them. We support two different approaches for multi-tasking.
First, we mainly focus on a traditional execution on top of an off-the-shelf
RTOS. Furthermore, we provide an alternative of interrupt-based multi-tasking
that can execute on a "naked" processor without any operating system.

RTOS-based Multi-Tasking. Our main focus rests on targeting an off-
the-shelf RTOS. This ensures using a reliable, well-tested operating system
that offers great flexibility and often comes with significant tool support from
the RTOS vendor. Operating systems are available in a wide range and focus.
Often, they are highly configurable to tailor the OS to the application needs.
By configuration, the memory footprint can be minimized to fit the needs of the
embedded system under design.

Our multi-task generation makes use of a canonical OS interface, which we
call the RTOS Abstraction Layer (RAL), see Figure 8.6 (left). The very thin
RAL (few hundred lines of (mostly inlined) code), abstracts from the particular
OS’s function names and parameters. We have chosen the RAL approach to
limit the interdependency between our generation and the actual target RTOS.
To ensure a generic API, we investigated different RTOS APIs (uCOS-II, vx-
Works, eCos, ITRON, POSIX) and chose common primitives for task schedul-
ing, communication and synchronization.

Although the investigated RTOS APIs provided all necessary interfaces, this
may not be the case for other RTOS APIs. In such cases, the RAL implements
an emulation of the required functions that is constructed out of the available
primitives. This approach guarantees that always an identical API, the RAL,
is available to the generated SW generation, regardless of the particular RTOS
implementation.

The input TLM contains mapping of behaviors to tasks (Task B2, Task B3)
and their scheduling parameters. For RTOS-based multi-tasking, our HdS gen-
eration extracts the task control information from the TLM and generates task

HALInterrupts

RTOS

RTOS Abstraction Layer

Drivers

SW Application

HALInterrupts

RTOS Abstraction Layer

(emulation)

Drivers

SW Application

Figure 8.6. Software stack RTOS-based (left), interrupt-based (right).

High-Level Development, Modeling and Automatic Generation of HdS 221

creation calls to the RAL. It also initializes the task’s parameter set of the TLM
(e.g. priority, stack size) on the target. From SLDL statements, which describe
parallel execution of behaviors, our HdS generation produces code that calls
the RAL for task creation and release, and furthermore inserts code to join the
multiple threads of execution after their completion.

To give an example, Listing 8.5 shows a partial specification following the
system definition already shown in Figure 8.2. It instantiates the three behaviors;
B1, B2 and B3. It executes first B1 (Line 8) followed by a parallel execution of
B2 and B3 (Lines 9 through 12).

Listing 8.6 outlines the generated C-code. The sequentially executing B1 is
directly called in the parent’s main function (see call TB1 main() in Line 5).
The parallel executing behaviors B2 and B3 are spawned using the RAL API
function TaskCreate() (see Line 6 and Line 7). Note that TaskCreate() both
creates a task and releases it for immediate execution. After spawning the
tasks, the parent task waits until the created tasks have terminated (Lines 9 and
10).

In addition to the task control, processor internal communication is translated
to RTOS-based communication. For that, the standardized communication
channels (as described for the input) are implemented on top of the RAL. Our
multi-task generation instantiates the target implementation and connects the
channels according to the TLM connectivity information.

Interrupt-based Multi-Tasking. In the second case, targeting a "naked"
processor, concurrent software execution is performed without any RTOS. In-
stead, interrupts are utilized to provide multiple flows of execution. We support
this alternative for systems where RTOS execution is not desirable. This may be

1 b e h a v i o r B0 (/∗ . . . ∗ /) {
2 /∗ . . . ∗ /
3 TB1 B1 (/∗ . . . ∗ /) ; /∗ i n s t a n t i a t e behav ior B1 ∗ /
4 TB2 B2 (/∗ . . . ∗ /) ; /∗ i n s t a n t i a t e behav ior B2 ∗ /
5 TB3 B3 (/∗ . . . ∗ /) ; /∗ i n s t a n t i a t e behav ior B3 ∗ /
6

7 void main (void) {
8 B1 . main () ;
9 pa r {

10 B2 . main () ;
11 B3 . main () ;
12 }
13 }
14 } ;

Listing 8.5. Specification of behaviors.

222 HARDWARE-DEPENDENT SOFTWARE

1 void TB0 main (/∗ . . . ∗ /){
2 o s t a s k h a n d l e B 2 t h d l ;
3 o s t a s k h a n d l e B 3 t h d l ;
4 /∗ . . . ∗ /
5 TB1 main (/∗ . . . ∗ /) ;
6 B 2 t h d l = T askCrea t e (TB2 main , /∗ . . . ∗ /) ;
7 B 3 t h d l = T askCrea t e (TB3 main , /∗ . . . ∗ /) ;
8

9 T askJo in (B 2 t h d l) ;
10 T askJo in (B 3 t h d l) ;
11 }
Listing 8.6. Generated RTOS-based multi-tasking code outline.

the case, when the system consist of only very few tasks, the code is targeted to
execute on a DSP, or when strict memory footprint limitations rule out utilizing
an RTOS. We describe a motivating example for an interrupt-based solution in
Section 8.5. This case implements a GSM speech codec on a DSP with only
two reactive tasks.

For our interrupt-based multi-tasking alternative, the RAL (see Figure 8.6
(right)) implements a (very thin) RTOS emulation. It provides a subset of the
RTOS services needed for software execution (e.g. events, processor suspen-
sion, and interrupt registration). To give an intuitive explanation, the multi-task
generation converts the lowest priority task to execute in the processor main
function, and all other tasks are converted to execute in a state machine fashion,
in the context of their interrupt handlers.

More formally, we assume that each task is composed of a sequence of
computation (C), synchronization (S), and data transfers (T). Figure 8.7 (left)
shows an example sequence for one task. As described before, the driver code
for communicating with external hardware contains both synchronization and
communication. If only interrupts are used for synchronization, then the task
main function can be transformed into a state machine, as shown in Figure 8.7
(right).

In the state machine, each synchronization point starts a new state. For ex-
ample, state ST2 was created due to synchronization point S1, and ST3 due to
S2. The state machine transitions to the next state upon successful synchro-
nization. For example, upon receiving of interrupt I1, the state machine would
transition from ST1 to ST2. Additional states are inserted to implement con-
ditional execution and loops. For example, the separation between the states
ST0 and ST1 has been introduced to accommodate the one-time execution of
the initialization code in C0.

The created task’s state machine is then executed in the interrupt handlers,
which were initially chosen for synchronization of that task (in this example,

High-Level Development, Modeling and Automatic Generation of HdS 223

1 void i n t H a n d l e r I 1 () {
2 r e l e a s e (S1) ; /∗ s e t S1 ready ∗ /
3 execu t eT ask0 () ; /∗ t a s k s t a t e machine ∗ /
4 }
5 void execu t eT ask0 () {
6 do {
7 switch (S t a t e) {
8 /∗ . . . ∗ /
9 case ST1 : C1 (. . .) ;

10 S t a t e = ST2 ;
11 case ST2 : i f (a t t e m p t (S1)) {
12 T 1 r e c e i v e (. . .) ;
13 } e l s e {
14 break ;
15 }
16 C2 (. . .) ;
17 S t a t e = ST3 ;
18 case ST3 : /∗ . . . ∗ /
19 S t a t e = ST1 ;
20 }
21 } while (S t a t e == ST1) ;
22 }
Listing 8.7. Interrupt-based multi-tasking excerpt.

the handlers of I1 and I2). In order to preserve the task priorities, the interrupts
have to be chosen accordingly. A higher priority task has to exclusively use
higher priority interrupts than a lower priority task. Consequently, the lowest
priority task executes in the main task (Tmain), the startup task of the processor.

Each local variable of a task’s main function is integrated into a global data
structure. Hence, the task execution no longer relies on an own stack, and may
be executed in separate calls to the task’s state machine.

C0

C1

S1

C2

S2

T1

T2

ST0

ST3

ST2

ST1

C0

C1

S1

T1

S2

T2

I1

I2

C2

Cn

Sn

Tn

In

Computation

Synchronization

Transfer (Data)

Interrupt

Figure 8.7. Reactive task template input (left) and output (right).

224 HARDWARE-DEPENDENT SOFTWARE

Cross Compile

and Link

Software Generation

TLM

Gene-

rated

Code

Libs

Target Binary

SW DB

- RTOS

- Wrapper

- HAL

Appl.

Driver

Int.

Build and Configuration

RAL

RTOS

RTOS Port

Startup

HAL

P
ro
c
e
s
s
o
r

R
T
O
S

C
o
m
p
ile
r

B
o
a
rd

Code Gen. HdS Generation

Figure 8.8. Generation of target binary.

Listing 8.7 outlines the generated C implementation. Please assume for
explanation that the task’s state machine is currently executing in the interrupt
handler for I1, ST1 is the current state, and that computation C1 has just finished.
Next, the synchronization S1 is checked (line 11). In case the synchronization
has not yet occurred, the state machine terminates (line 14). Consequently, the
do-while loop, the function executeTask0, as well as the the interrupt handler,
all terminate. Thus, the processor can then serve a lower priority interrupt, or
the main function.

Upon receiving the next interrupt I1, the system interrupt handler calls the
registered user interrupt handler intHandler I1 (see line 1). In line 2, the handler
signals that S1 is ready and then calls the state machine again (line 3). The
current state is ST2, therefore the condition in line 11 is tested again. It now
passes, since the synchronization has occurred, receives the data (line 12), and
subsequently executes the computation C2 in line 16.

The switch-case statement (lines 7 to 20) is surrounded by a do-while-loop,
which is required to implement loops between states. In this example, the loop
is necessary to transition from state ST3 back to ST1 without terminating the
interrupt handler.

8.4.3 Binary Image Generation
The final aspect of HdS generation is the generation of a complete target

binary. Our generation uses a cross-compiler tool chain (gcc) that is specific
to the target processor and binary format. It generates configuration and make-
files for the binary image creation, which select components from the software

High-Level Development, Modeling and Automatic Generation of HdS 225

database, configure these components, and in addition control the compilation
and linking of generated code. This process is illustrated in Figure 8.8.

An important aspect for establishing a flexible generation flow, with a wide
variety of configurations with many processor and hardware combinations, is
an effective design of the database. It is essential to identify the dependencies
of each database component with respect to the selected hardware/software
configuration, e.g. the selected processor, RTOS, cross compiler, and board
components. Capturing all dependencies is necessary for correctly selecting a
component. On the other hand, overly specializing a component would lead to
code duplication within the database, and yield a code bloat.

The matrix of arrows in Figure 8.8 symbolizes the dependencies when se-
lecting a component. Usually the most specific element is the RTOS port, since
it depends on the RTOS type, the processor, and the cross-compiler (for exam-
ple, for the call frame layout and the stack layout needed for the task creation).
Our software generation also produces a customized Makefile, which selects
the components according to the architecture information in the TLM, and then
uses the cross-compiler to generate the target binary. Automating this step has
the advantage, that the TLM serves as the sole input to the binary generation,
avoids duplication of the system configuration (i.e. in the Makefile), and further
minimizes the user effort.

8.5 Experimental Results
In this section, we describe some practical applications of your approach.

We have applied it to a set of real-life examples. Two examples are covered
in more detail. The first is a telecommunication example, the second uses
an application from the automotive domain. Following that, we describe our
generation results for several applications to more quantitatively compare the
results.

8.5.1 Interrupt-based Implementation Example
We start by showing a specific example of an interrupt-based multi-tasking

implementation. We implemented a GSM 06.60 [ETSI96] encoder and decoder
on a Motorola DSP 56600 platform. As shown in Figure 8.9, the DSP is assisted
by a HW accelerator and four HW blocks that deal with input and output. The
HW accelerator is dedicated to the computation-intensive codebook search of
the encoding process.

In our application, the DSP only executes two reactive tasks (encoding and
decoding). Also, an RTOS port for this particular DSP was not easily avail-
able. Therefore, we applied our interrupt-based multi-tasking approach to this
example. Following a shortest-job-first scheduling policy, the longer executing
encoder is assigned the lower priority of the two tasks. Hence, the encoder will

226 HARDWARE-DEPENDENT SOFTWARE

Custom

HW

DSP 5660k

Encoder

Decoder

INTD

INTC

INTB
Codebook

search Cust. HW Cust. HWCust. HWCust. HW

Enc.

Input

Enc.

Output

Dec.

Input

Dec.

Output

DSP Port A

INTA

Figure 8.9. Media example of GSM transcoding.

execute in Tmain. The higher priority (shorter) decoder task is transformed into
a state machine. According to the architecture decisions, the decoder uses IntB
for synchronization. Hence, the generated decoder’s state machine will execute
in the interrupt handler of IntB.

Figure 8.10 shows the state machine for the decoder task, which consists of
4 states. The states ST1 and ST2 have been created due to synchronization (S1,
S2). The interrupt IntB is used for both synchronization points. A GSM speech
frame consists of four sub-frames. Accordingly, ST2 is repeated four times.
The states ST0 and ST3, respectivly, are inserted to accommodate initialization,
which executes only at the beginning, and post processing, which executes once
per frame.

The input data is read by T1 and T2, which receive the initial parameters and
the compressed sub-frame data, respectively. The decoded speech samples are
transferred by T3 without any additional synchronization into the output HW
block. This particular transfer is performed without a preceding synchroniza-
tion, since the receiving I/O HW is always ready.

Figure 8.11 shows the time line for transcoding one sub-frame after the
initialization has already passed. The processor is suspended at the start of the
time-line and waits for input data. At t1, IntA signals availability of input data,
and the registered interrupt handler is executed. The handler triggers event
e1 which the main task, Tmain is waiting on. Hence, after termination of the
interrupt handler Tmain is resumed. After some processing, the encoder feeds
the codebook accelerator. The encoder then suspends on event e2 waiting for
results from the accelerator. Again, the processor is suspended.

Later at t3, IntB signals the availability of sub-frame data for decoding. The
decoder state machine, which currently is in state ST2, is executed in the IntB
handler. It reads the input data (T2), decodes the sub-frame (Csub), and transfers
in T3 the decoded speech samples to the output HW. Again, the latter needs no
synchronization, since the output HW in the architecture is always available.
At t4, while decoding (in Csub), the decoder is preempted by the higher priority
IntC, which announces that the codebook search has finished. Subsequently, the
interrupt handler releases the event e2. After the decoder interrupt handler has

High-Level Development, Modeling and Automatic Generation of HdS 227

ST0

ST2

CInit

S2

Csub

ST1

S1

Cpre

IntB

ST3
Cpost

IntB

4
xfo
re
v
e
r

Cinit Initialize the decoder

S1 Parameters available

T1 Receive parameters

Cpre Preprocessing (linear prediction)

S2 New sub frame ready

T2 Receive sub frame

Csub Decode sub frame

T3 Output sub frame

Cpost Post processing

T3

T1

T2

Figure 8.10. State machine for GSM decoder.

finished, the encoder resumes at t6 and finishes at t7. The same cycle repeats
at t8 with the next sub-frame. Throughout the execution of our testbench, 3451
interrupts are triggered. More results are later available in Table 8.2.

8.5.2 Exploration Example
We use an automotive example to illustrate the exploration capabilities with

respect to comparing the two multi-tasking approaches. We model an Electronic
Control Unit (ECU) containing an ARM7TDMI processor [ARM7]. The pro-
cessor executes three tasks; anti-lock break control, RPM computation, and
engine fan controller. Six sensors and actuators are connected to the ECU via
two CAN busses (Figure 8.12). Three further sensors are integrated in the ECU
and are attached directly to the processor bus.

We have generated code for both approaches, first toward execution on top of
the RTOS μCOS-II [Lab02], and second for interrupt-based execution. μCOS-
II is a small, highly configurable RTOS that is mostly implemented in ANSI

S
T
2

timet7

Tmain

IntA

IntB

IntC

t1 t2 t3 t4 t5 t6 t8

Csub T3T2

encoder encoder

decoder

e1

e2

e1

e2

e1

Figure 8.11. GSM transcoding execution.

228 HARDWARE-DEPENDENT SOFTWARE

ECUCPU: ARMv7

AMBA AHB

CAN

Transducer

C
A
N
 B
u
s

Break Sensor

Left Rotation

Sensor

Left Break

Actuator

Right Rotation

Sensor

Right Break

Actuator

CAN

Transducer

C
A
N
 B
u
s

Temp.

Sensor

RPM

Sensor

Fan

Ralay

Dash-

board

display

Fan Control

RPM

Anti-Lock

Figure 8.12. Automotive example application.

Multi-tasking RTOS-based Interrupt-based
Footprint 36224 Bytes 21052 Bytes

Alloc. Stacks 4096 Bytes 1024 Bytes
CPU Busy Cycles 6.706 MCycles 5.106 MCycles

Latency RPM Task 1794 Cycles 1001 Cycles
Interrupts 1478 1027

Table 8.1. Automotive example results.

C. Ports of this RTOS are available for a wide range of processors, which
dramatically simplified the integration.

Table 8.1 compares the generated RTOS-based and interrupt-based multi-
tasking implementations. For the latter case, we mapped the lowest priority
task, the fan control, to Tmain, while the other two tasks were converted to state
machines for execution in interrupt handlers.

As the results in Table 8.1 show, the automotive example profits from the
interrupt-based solution. Avoiding the RTOS code yields a smaller memory
footprint, since a simpler, more specific code is used instead. The footprint
reflects the size of the ROM-able image and includes data, text and BSS segment.
Neither solution uses dynamic memory allocation.

The interrupt-based multi-tasking results also in a smaller stack size, since
all tasks share the same stack. Additionally, the interrupt-based solution shows
a lower CPU consumption. The CPU busy cycles drop from 6.7 MCycles to 5.1
MCycles. This drop is due to the simpler implementation. The RTOS startup
is avoided and fewer cycles are needed for the OS functionality (e.g. for event
handling and context switching) due to simplicity.

High-Level Development, Modeling and Automatic Generation of HdS 229

To give an inside view of the system’s performance, we analyze the interrupt
latency. For the purpose of our measurements, we focus on the delay from the
RPM sensor triggering the interrupt wire (to the PIC) to the first bus transaction
appearing on the bus to read the RPM sensor.

In the interrupt-based approach, the latency until reading the RPM sensor is
shorter (1001 cycles instead of 1794 cycles). This significant reduction is due
to the execution in the interrupt handler itself. To compare, in the RTOS-based
solution, the sensor is read in the task context, which results in an additional
event communication and a context switch.

Also, we counted the number of occurring interrupts, which drops from 1478
to 1027. The interrupt-based solution does not use the timer for keeping the
system time, which explains the lower number of interrupts. On the other
hand, the number of interrupts for data synchronization remains constant in
both solutions.

Our automotive example clearly shows the benefits of the interrupt-based
execution. We position it, where applicable, as an effective alternative in spe-
cial cases (very few tasks, strict optimization requirements, or unavailability
of an RTOS). Since either implementation can be generated automatically, a
comparative exploration becomes easily possible.

8.5.3 Generation Results
To show the benefits of an automatic HdS generation, we have applied our

HdS generation to a range of six target applications. The first two applica-
tions are the already described GSM transcoder and the car ECU. In addition,
we examined a JPEG encoder, an MP3 decoder implemented in software, an
MP3 decoder with 3 hardware accelerators, and a combined system with MP3
decoding and JPEG encoding.

Table 8.2 summarizes our generation results. The top section quantifies each
target applications’ complexity. It ranges from the simple JPEG with 2 I/O
blocks to the combined application Mp3 HW + JPEG, which uses 6 I/O blocks,
3 HW accelerators, and 4 busses.

Next, the table shows the number of generated lines of code for application
and HdS, each for the RTOS-based and the interrupt-based multi-tasking. As
described earlier, we have not implemented the GSM in an RTOS-based so-
lution, since we had no RTOS port available for the DSP. Also, we have not
realized the Mp3 HW + JPEG example in the interrupt-based form, since it uses
services we do not intend to replicate with interrupts. In the examples with HW
acceleration, the HdS code is larger due to the extra effort in communication.
Overall, a significant amount of code is generated (e.g. 1186 lines for Mp3 HW
+ JPEG).

230 HARDWARE-DEPENDENT SOFTWARE

Example Mp3 Mp3 Mp3 HW
GSM Car JPEG SW HW + JPEG

Complexity
IO/ HW/ Bus 4/ 1/ 1 9/ 2/ 3 2/ 0 /1 2/ 0/ 1 2/ 3/ 4 6/ 3/ 4

SW Behaviors 112 10 34 55 54 90
Channels 18 23 11 10 26 47

Tasks/ ISRs 2/ 3 3/ 5 1/ 2 1/ 3 1/ 8 3/ 14
Lines of Code, RTOS-based

Application - 153 818 13914 12548 13480
HdS - 649 210 299 763 1186

Lines of Code, Interrupt-based
Application 5921 210 797 13558 12218 -

HdS 377 575 187 256 660 -
Execution, RTOS-based

CPU Cycles - 6.7M 127.7M 185.8M 44.5M 174.6M
CPU Load - 0.9% 100.0% 100.0% 30.9% 86.6%
Interrupts - 1478 805 4195 1144 1914

Execution, Interrupt-based
CPU Cycles 42.0M 5.1M 126.7M 182.3M 43.3M -

CPU Load 42.5% 0.7% 100.0% 100.0% 30.5% -
Interrupts 3451 1027 726 4078 1054 -

Table 8.2. SW generation and execution results.

Automatically generating the software binaries yields a significant gain in
productivity. In all examples, our HdS generation completes in less than a
second. On the other hand, manually writing the HdS would take days. Thus,
the code generation in our approach has a significant impact on reducing the
overall design time of embedded systems with HdS context.

To validate the correctness of the generated code, we executed each synthe-
sized target binary on a virtual platform. For that, we integrated a Motorola
proprietary instruction set simulator (ISS) for the DSP, and the SWARM ISS
[Dal00] for the ARM7TMDI.

Each application executes functionally correct, yielding an output matching
the specification. Table 8.2 shows the execution statistics of the ISS cosimula-
tion. As in the car example, fewer CPU cycles (busy cycles only) are consumed
in the interrupt-based solution. However, with an increasing computation com-
plexity, the relative improvement becomes marginal. Similar to before, avoiding
the OS timer tick reduces the number of processed interrupts.

High-Level Development, Modeling and Automatic Generation of HdS 231

8.6 Conclusions
Embedded software generation is an essential aspect of implementing to-

days SoC. It avoids the tedious and error prone manual implementation. In
this chapter, we have presented a systematic approach for generating the final
target binaries from an abstract specification model. We have shown software
generation as an integral part of an ESL flow. Beginning from an abstract model
containing the application specification, our flow automatically generates a sys-
tem TLM based on the designer’s architecture decisions. From the generated
TLM, the software generation then automatically generates the binaries for each
processor in the system. Together, this completes the ESL flow for the soft-
ware, offering a seamless solution from an abstract system model down to an
implementation on embedded processors.

The presented HdS generation addresses three parts: communication gener-
ation, multi-task generation, and binary image generation. It generates commu-
nication drivers, interrupt handlers, and adjusts for the target multi-tasking. Our
approach supports targeting toward an existing RTOS. Furthermore, it offers
an alternative to use interrupts for multi-tasking if an RTOS-based execution is
undesirable.

We have demonstrated automatic generation using six real-life target ap-
plications: different media applications and a control system. The ESL flow
with integrated software generation addresses a wide range of target processors,
platforms and applications.

Automating the tedious and error-prone process of manual firmware devel-
opment results in significant gains in productivity. Not only is the automatic
generation much faster than a manual implementation, it also allows the de-
signer to focus on the essential algorithms, without the burden of implementa-
tion details. Further, with the automatic generation, alternative solutions can
be quickly and easily generated. This allows for a rapid exploration of the
embedded software design space, e.g. when investigating alternative mapping
solutions.

Acknowledgments
The authors thank the SCE research team at the Center for Embedded Com-

puter Systems at UC Irvine for their technical support. The authors also thank
the editors and reviewers of this book for their valuable feedback in improving
this chapter.

232 HARDWARE-DEPENDENT SOFTWARE

References

[AMBA] Advanced RISC Machines Ltd (ARM). AMBA Specification (Rev.
2.0), ARM IHI 0011A.

[ARM7] Advanced RISC Machines Ltd. (ARM). ARM7TDMI (Rev 4)
Technical Reference Manual, 2001.

[BBB+05] Luca Benini, Davide Bertozzi, Alessandro Bogliolo, Francesco
Menichelli, and Mauro Olivier. MPARM: Exploring the Multi-
Processor SoC Design Space with SystemC. VLSI Signal Pro-
cessing, 41:169–182, 2005.

[BCG+97] Felice Balarin, Massimiliano Chiodo, Paolo Giusto, Harry Hsieh,
Attila Jurecska, Luciano Lavagno, Claudio Passerone, Alberto
Sangiovanni-Vincentelli, Ellen Sentovich, Kei Suzuki, and Bas-
sam Tabbara. Hardware-Software Co-Design of Embedded Sys-
tems: The POLIS Approach. Kluwer Academic Publishers, 1997.

[CG03] Lukai Cai and Daniel Gajski. Transaction Level Modeling:
An Overview. In Proceedings of the International Conference
on Hardware/Software Codesign and System Synthesis, Newport
Beach, CA, October 2003.

[CKL+00] Jordi Cortadella, Alex Kondratyev, Luciano Lavagno, Marc Mas-
sot, Sandra Moral, Claudio Passerone, Yosinori Watanabe, and
Alberto Sangiovanni-Vincentelli. Task Generation and Compile
Time Scheduling for Mixed Data-Control Embedded Software.
In Proceedings of the Design Automation Conference (DAC), Los
Angeles, CA, June 2000.

[CoWa] CoWare. Virtual Platform Designer. www.coware.com.
[Dal00] Michael Dales. SWARM 0.44 Documentation. Department

of Computer Science, University of Glasgow, November 2000.
www.cl.cam.ac.uk/~mwd24/phd/swarm.html.

[DGP+08] Rainer Dömer, Andreas Gerstlauer, Junyu Peng, Dongwan Shin,
Lukai Cai, Haobo Yu, Samar Abdi, and Daniel Gajski. System-on-
Chip Environment: A SpecC-based framework for heterogeneous
MPSoC design. EURASIP Journal on Embedded Systems, 2008.

[ETSI96] European Telecommunication Standards Institute (ETSI). Digital
cellular telecommunications system; Enhanced Full Rate (EFR)
speech transcoding, 1996. GSM 06.60.

[GLMS02] Thorsten Grötker, Stan Liao, Grant Martin, and Stuart Swan. Sys-
tem Design with SystemC. Kluwer Academic Publishers, 2002.

[GYJ01] Lovic Gauthier, Sungjoo Yo, and Ahmed A. Jerraya. Auto-
matic Generation and Targeting of Application-Specific Operating

High-Level Development, Modeling and Automatic Generation of HdS 233

Systems and Embedded Systems Software. IEEE Transactions
on Computer-Aided Design of Intergrated Circuits and Systems
(TCAD), 20(11), November 2001.

[GYNJ01] Patrice Gerin, Sungjoo Yoo, Gabriela Nicolescu, and Ahmed A.
Jerraya. Scalable and Flexible Cosimulation of SoC Designs with
Heterogeneous Multi-Processor Target Architectures. In Proceed-
ings of the Asia and South Pacific Design Automation Conference
(ASPDAC), Yokohama, Japan, January 2001.

[GZD+00] Daniel D. Gajski, Jianwen Zhu, Rainer Dömer, Andreas Gerst-
lauer, and Shuqing Zhao. SpecC: Specification Language and
Design Methodology. Kluwer Academic Publishers, 2000.

[HPSV03] F. Herrera, H. Posadas, P. SÃ¡nchez, and E. Villar. Systematic
Embedded Software Generation from SystemC. In Proceedings
of the Design, Automation and Test in Europe (DATE) Conference,
Munich, Germany, March 2003.

[HYL+06] Sungpack Hong, Sungjoo Yoo, Sheayun Lee, Sangwoo Lee,
Hye Jeong Nam, Bum-Seok Yoo, Jaehyung Hwang, Donghyun
Song, Janghwan Kim, Jeongeun Kim, HoonSang Jin, Kyu-Myung
Choi, Jeong-Taek Kong, and SooKwan Eo. Creation and Utiliza-
tion of a Virtual Platform for Embedded Software Optimization:
An Industrial Case Study. In Proceedings of the International
Conference on Hardware/Software Codesign and System Synthe-
sis, Seoul, South Korea, October 2006.

[ISO94] International Organization for Standardization (ISO). Reference
Model of Open System Interconnection (OSI), second edition,
1994. ISO/IEC 7498 Standard.

[KBR05] Matthias Krause, Oliver Bringmann, and Wolfgang Rosenstiel.
Target Software Generation: An Approach for Automatic Map-
ping of SystemC Specifications onto Real-Time Operating Sys-
tems. Design Automation for Embedded Systems, 10(4):229–251,
December 2005.

[KKW+06] T. Kempf, K. Karuri, S. Wallentowitz, G. Ascheid, R. Leupers, and
H. Meyr. A SW Performance Estimation Framework for Early
System-Level-Design Using Fine-Grained Instrumentation. In
Proceedings of the Design, Automation and Test in Europe (DATE)
Conference, Munich, Germany, March 2006.

[Lab02] Jean J. Labrosse. MicroC/OS-II: The Real-Time Kernel. CMP
Books, 2002.

[NG05] Andre Nacul and Tony Givargis. Lightweight Multitasking Sup-
port for Embedded Systems Using the Phantom Serializing Com-

234 HARDWARE-DEPENDENT SOFTWARE

piler. In Proceedings of the Design, Automation and Test in Europe
(DATE) Conference, Munich, Germany, March 2005.

[RPZM93] Sebastian Ritz, Matthias Pankert, Vojin Zivojnvic, and Heinrich
Meyr. High-Level Software Synthesis for the Design of Commu-
nication Systems. IEEE Journal on Selected Areas in Communi-
cations, April 1993.

[SGD07] Gunar Schirner, Andreas Gerstlauer, and Rainer Dömer. Abstract,
Multifaceted Modeling of Embedded Processors for System Level
Design. In Proceedings of the Asia and South Pacific Design Au-
tomation Conference (ASPDAC), Yokohama, Japan, January 2007.

[SGD08] Gunar Schirner, Andreas Gerstlauer, and Rainer Dömer. Au-
tomatic Generation of Hardware dependent Software for MP-
SoCs from Abstract System Specifications. In Proceedings of the
Asia and South Pacific Design Automation Conference (ASPDAC),
Seoul, Korea, January 2008.

[YDG04] Haobo Yu, Rainer Dömer, and Daniel Gajski. Embedded Software
Generation from System Level Design Languages. In Proceedings
of the Asia and South Pacific Design Automation Conference (AS-
PDAC), Yokohama, Japan, January 2004.

