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Abstract— With the increasing demand for parallel comput-

ing power, manycore platforms are attracting more and more

attention due to their potential to improve performance and

scalability of parallel applications. However, as the core count

increases, core-to-core communication becomes expensive. For

manycore architectures using directory-based cache coherence

protocols, the core-to-core communication latency depends not

only on the physical placement on the chip, but also on the

location of the distributed cache tag directory. In this paper,

we first define the concept of core distance for multicore and

manycore architectures. Using a ping-pong spin-lock benchmark,

we quantify the core distance on a ring-network platform and

propose an approach to optimize thread-to-core mapping in

order to minimize on-chip communication overhead. In our

experiments, our approach speeds up communication-intensive

benchmarks by more than 25% on average over the Linux

default mapping strategy.

I. INTRODUCTION

Manycore processors have become popular in recent years
to provide capable platforms for those highly parallel applica-
tions which have extraordinary scaling and vector capabilities
that cannot be satisfied by conventional multicore processors.
Generally speaking, manycore platforms refer to processors
with dozens to hundreds and soon thousands of cores on
chip. Thus, in order to fully utilize manycore platforms, an
application must scale well past hundreds of threads and
distribute equal workloads among those parallel threads.

One recent example of a manycore processor is the Xeon
PhiTM coprocessor, a readily available implementation of
the Intel R© Many Integrated Core (MIC) architecture. Fig. 1
depicts the conceptual structure of the Intel Xeon Phi ar-
chitecture [1]. On the single die of the coprocessor, up to
61 x86-based cores are integrated. These parallel processing

Fig. 1. Intel R© Xeon PhiTM coprocessor architecture [1].

cores communicate via a high performance bidirectional ring
interconnect. Each core is fully functional and fetches and
decodes instructions in-order from four hardware thread con-
texts. Thus, in total, there are 240 logical cores available on
the Intel Xeon Phi 5110P coprocessor. For the on-chip cache
hierarchy, each core includes 32 KB L1 instruction and data
cache, as well as a private 512 KB L2 cache. In order to
keep the L2 cache data globally consistent and reduce hot-
spot contention for data references, a distributed Tag Directory
(TD) is coresident with each core to cross-snoop L2 caches in
all cores. Every physical memory address is uniquely mapped
to one of 64 distributed tag directories on the ring network
via a reversible hash function. Using the distributed TD
infrastructure, the caches are kept consistent without software
intervention. In general, the Xeon Phi coprocessor can be
viewed as a symmetric multiprocessor (SMP) with shared
Uniform Memory Access (UMA) [2][3].

A. Motivation

Increasing the number of cores provides potential to im-
prove performance and scalability for highly parallel pro-
grams, but also brings downsides. As the chip size is enlarged
to accomodate more processing units, core-to-core transfers
are not always significantly better than main memory latency
and optimization becomes crucial. For the Xeon Phi copro-
cessor specifically, because of the opaque hashing method
and the resulting ”random” distribution of addresses around
the ring, no previous software optimization has been found
to improve core-to-core transfers significantly [3]. In the
remainder of this paper, we propose our software strategy to
optimize thread-to-core mapping on manycore platforms with
distributed tag directories, and show that it minimizes core-
to-core communication latency.

II. CORE DISTANCE

In this section, we define core distance and provide a
memory ping-pong benchmark to quantify it. We then show
measured core distances for a multicore and manycore pro-
cessor to show the architectural differences between these
platforms.

A. Definition of Core Distance

Each core usually has its own local cache to utilize program
locality and speed up memory access. In order to keep the data
globally coherent among all caches, the sharing of a data block
is broadcast on the interconnecting medium (in snooping
protocols) or passed to the directory that tracks the state
of the cache (in directory-based protocols). By maintaining
coherent caches, data can be easily transferred via shared
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variables between cores. However the core-to-core transfer
latency varies a lot between cores on the same processor
and different processors. To quantify the core-to-core tranfer
latency, we can define core distance as the duration it takes
to move a data word back and forth between two cores (one
round trip). A larger core distance then means that it is more
expensive to share data between these two cores.

Algorithm 1 Ping-Pong Communication Function

1: cycles t pingpong (varptr, val)
2: { T1 := CurrentCycles()
3: for iter = 1 to ITERATION do

4: while Load(varptr) = val do
5: Processor Pause
6: end while

7: Store(varptr, val)
8: end for

9: T2 := CurrentCycles()
10: return (T2 − T1)/ITERATION

11: }

In order to measure core distances on multicore and many-
core processors, we propose a memory ping-pong communica-
tion benchmark. Fig. 2 shows the communication between two
cores and Algorithm 1 lists the pingpong function executing
in the threads, which are bound to the measured cores. Each
thread starts a timer in local variable T1. Then, it compares
the shared memory address varptr against its local value
val. If they match, the program goes into the while loop,
pauses the core for a few clock cycles and then checks the
sharing address again. Otherwise, the thread stores its val to
the sharing address which is then communicated through the
cache hierarchy to the other core. Each thread tries to update
the shared variable in turn and runs this procedure for multiple
iterations. At the end, the program stops the timer, and returns
the average round-trip communication latency.

B. Core Distances on Hierarchical Multicore Platforms

As expected, on multicore systems using snooping cache
coherency, core distance is highly correlative to the core
placement on the platform. For example, Fig. 3 illustrates
the architecture of a Intel R© Xeon dual-CPU system. Fig. 4
shows the corresponding measured core distances from Core
0 to other cores. As hyperthreading is enabled, there are 32
logical cores in total on this platform. In Fig. 4, the core
distance between the two logical threads on the same physical
core (Core 0 and 16) is minimum as the two hyperthreads can
communicate via the local L1 or L2 cache. Since Core 0 to 7
are on the same processor and Core 8 to 15 are on the other
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Fig. 2. Ping-pong communication for measuring core distance.
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Fig. 3. Intel R© Xeon E5-2680 dual-CPU architecture.

Fig. 4. Core Distances from Core 0 to other cores on Intel Xeon E5-2680.

one, interprocessor communication is more expensive, costing
1200 vs. 300 cycles for a round trip.

C. Core Distances on Manycore Platforms

We see that core distance is not always correlating with the
physical distance on chip. For a manycore system communi-
cating over a ring network, such as the Xeon PhiTM 5110P
coprocessor, one could expect the core distance as indicated
with the green line in Fig. 5, where Core 0 has a shorter core
distance to its neighbors than to the opposite core on the ring
network. In contrast to the expectation, the measured core
distances from Core 0 to Core 4n+1 (0≤n≤59) are shown in
the blue line in Fig. 5. Except for Core 237, which is another
hardware thread on the same physical core, Core 125 exhibits
the shortest core distance to Core 0.

On a closer look, we note that the Intel Xeon Phi copro-
cessor uses a directory-based cache coherence protocol. The
distributed tag directory maintaining cache coherence plays
an important role in the core-to-core communication. Fig. 6
depicts the detailed communication model on this platform.

Fig. 5. Core distances from Core 0 to other cores on Xeon Phi 5110P.
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Fig. 6. Cache coherence via distributed tag directories (TD).

When one thread (Pong in Fig. 6) has a cache miss and needs
to fetch an updated value, it first talks to the responsible tag
directory (the red TD in Fig. 6) to find which core cache
contains the new value (Step 1). Every memory reference
the processor generates is mapped through a one-to-one hash
function to a TD based on the physical address. Notably, the
responsible TD is not necessarily co-located with the core
generating the cache miss [2] and could be associated with any
core on the chip. When the responsible TD finds another core
(Ping in Fig. 6) owns the updated value, it sends a request for
the new value to the specific core (Step 2), gets the value from
that core (Step 3) and passes it back to the core exeperiencing
the cache miss (Step 4). Finally, the TD updates the sharing
status of the cache block in the first core.

D. Core Distances on Busy Manycore Platforms

When multiple pairs of communication happen concur-
rently, the core distances on the manycore processor become
even more expensive and unpredictable. Fig. 7 shows the
core distances from Core 0 to Core 4n+1 (0≤n≤59) on a
busy Xeon Phi coprocessor (green line), in comparison to
the situation when only two cores communicate with each
other on the chip (blue line, same as the blue line in Fig. 5).
Here we run a Monte Carlo simulation which issues 60 pairs
of concurrent communications and randomly distributes them
on the ring network. As half of the chip is busy and the
cores compete for the access to network, the core-to-core
communication latency grows up to 10,000 cycles for one
round trip. Also, the location of the responsible tag directory
becomes negligible compared to the interference between
parallel communications.

Fig. 7. Core distances from Core 0 to other cores at 50% core utilization.

III. MINIMIZING INTER-CORE COMMUNICATION

In this section, we exploit the above observations and
improve application performance by optimizing the thread-
to-core mapping to minimize the on-chip communication
overhead.

A. Mapping Communicating Threads Close to the TD

Based on the core distance curve in Fig. 5, we can infer
the location of the responsible TD by finding the core index
which has the shortest core distance, ignoring the logical cores
on the same physical core. Algorithm 2 describes the function
to find the responsible tag directory on the ring network. In
Function FindTD, one thread is fixed to Core 0 and the other
thread is set to the other cores on the ring network. Both
threads run the pingpong function simultaneously. As one
thread may start first and suspend for the other, we choose
to use the core distance measured in the thread starting later
(by checking timestamp T1 of each thread). The function will
find the minimum core distance and return the corresponding
coreindex as the location of the identified tag directory.

Algorithm 2 Find the Responsible Tag Directory

1: unsigned int FindTD (char ∗var)
2: { for all c ∈ ProcessorCores do
3: set core affinity to 0 for Thread th1

4: set core affinity to c for Thread th2

5: create Thread th1 to run t1 := pingpong(var, 0)
6: create Thread th2 to run t2 := pingpong(var, c)
7: if th2 starts later then
8: coredist0,c := t2
9: else

10: coredist0,c := t1
11: end if

12: end for

13: return coreindex where coredist0,coreindex = min{coredist0,c}

14: }

With the knowledge of the TD location we can reduce the
communication latency. By invoking the FindTD function at
the beginning of the program, our approach profiles the ap-
plication and determines the TD locations of the shared vari-
ables1 in the application. Mapping threads close to these tag
directories will reduce the onchip communication overhead2.
Algorithm 3 and Algorithm 4 compare the thread initialization
with and without optimization respectively. Rather than using
the default thread attributes in Algorithm 3, Algorithm 4 first
finds the tag directories tdi of each communication channel
chi, and then sets the core affinity of the communicating
thread close to tdi. GetCore returns a core index which is
near tdi and tries to balance work load among all available
cores in a greedy fashion. Next, all communicating threads
are created with the affinity-optimized thread attributes.

Fig. 8 shows the optimized core distances for the Intel Xeon
Phi coprocessor, with one thread placed at the responsible TD
(Core 125, using the same TD as Fig. 5). The minimum core
distance here is about 500 cycles, when mapping the other
thread next to the tag directory. This is much lower than the
core distance in Fig. 5 which is as high as 1500 cycles. Also,

1The size of a shared variable should be smaller than one cache block
(64 bytes on Intel Xeon Phi) and mapped to one tag directory.

2As the hash function is unknown and the mapping is based on the
physical address of the memory reference, it is very difficult to allocate a
shared variable whose responsible tag directory is close to the communicating
cores. So instead of moving the TD, we move the threads.
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Algorithm 3 Thread Initialization without Optimization

1: for all Thread thi,1, thi,2 using Channel chi do

2: thi,1.ThreadCreate(DefaultThreadAttributes)
3: thi,2.ThreadCreate(DefaultThreadAttributes)

4: end for

Algorithm 4 Thread Initialization with Optimization

1: for all Channel chi do

2: tdi := FindTD(addressof(chi))
3: set core affinity to GetCore(tdi) in ThreadAttributesi,1

4: set core affinity to GetCore(tdi) in ThreadAttributesi,2

5: end for

6: for all Thread thi,1, thi,2 using Channel chi do

7: thi,1.ThreadCreate(ThreadAttributesi,1)
8: thi,2.ThreadCreate(ThreadAttributesi,2)

9: end for

Fig. 8. Optimized inter-core communication latency.

the core distance is now predictable with the physical location
of the core, as indicated by the blue line in Fig. 8. The further
two cores are on the ring network, the larger the core distance
is between them.

B. Pizza Slice Algorithm

In a busy situation where many pairs of core-to-core com-
munication run simultaneously, transfer latency is extremely
expensive (Fig. 7) and unpredictable. Here, in order to reduce
the interference and improve onchip communication, we pro-
pose a software algorithm which divides the ring network into
a given number of sections and localizes the communication
into these sections. We name this the Pizza Slice Algorithm
due to its similarity with a sliced pizza (Fig. 9). By evenly
distributing the concurrent communications onto a given num-
ber of different slices of the ring network, our approach maps
threads onto cores of one section and selects a shared variable
whose responsible tag directory is in the same section3.

Fig. 10 compares the core distances from Core 0 to Core
n (1≤n≤39) in one section, before and after applying the
Pizza Slice Algorithm to the Xeon Phi coprocessor in which
half of the chip is busy communicating. Core distances are
measured using Monte Carlo simulation in both cases. With
the Pizza Slice Algorithm, the threads and tag directories
are localized into one section, and communication latencies
decrease dramatically (from more than 7000 to less than 1000
cycles).

3We need to allocate a few (about 25%) more shared variables than
defined in the program so as to find enough communication channels in each
section.
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Fig. 9. ”Pizza Slice Algorithm” for cores and TDs on a ring network.

Fig. 10. Comparison of communication latency before and after applying
the Pizza Slice Algorithm.

IV. EXPERIMENTAL RESULTS

To demonstrate the performance speedup for actual applica-
tions, we present experimental results of two communication-
intensive benchmarks: a producer-consumer example and a
Mandelbrot set renderer model. All the experiments are con-
ducted on the Intel Xeon Phi 5110P coprocessor running at
1.052 GHz.

A. Producer-Consumer Model

Our producer-consumer model is a classic example of a
multiprocess synchronization problem. Fig. 11(a) shows the
block diagram where Producer and Consumer are children of
the root thread, communicating a data value through a spin-
locked channel which has a buffer size of one. The Producer
generates a data value and puts it into the channel buffer.
After the Consumer fetches the data, the Producer resumes
to generate new value. In addition to the channel buffer, the
Producer and Consumer respectively own a local variable to
store the communicated data. The channel buffer is accessed
by both Producer and Consumer threads, which contain a copy
of the data block in their local caches. Thus, the responsible
tag directory for the channel data is of major concern in the
communication. To speed up the synchronization, we can map
Producer and Consumer threads close to the tag directory of
the channel block.

To ensure a fair comparison, we run both the default and
our optimized version in the same process, so that the same
TDs are used. Fig. 11(b) shows the timeline of our experi-
mental evaluation. First, the model runs with Linux default
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Fig. 11. Producer-consumer example.

settings (from T1 to T2). Next, we profile the application and
apply the Pizza Slice Algorithm. The overhead of profiling
and optimizing the thread mapping is measured by T3-T2.
Finally, the model runs again with the optimized thread-to-
core mapping from T3 to T4. The performance speedup of the
model is calculated by dividing T2-T1 by T4-T2 (i.e. including
the profiling overhead).

1) Assigning Threads onto One Physical Core: According
to Fig. 5, communication between logical threads on the same
physical core is the fastest possible option. Fig. 12 shows the
performance improvement of the producer-consumer model
by mapping both threads to the same physical core. Running
the benchmark for 100 iterations, we show the statistical
results of the application speedup.

As the inner core distance is 10 times smaller than that
between physical cores, the optimized producer-consumer
model achieves an order of magnitude higher execution speed
(7x to 16x) than the original model. The variation of the
performance speedup is due to the varied locations of the
responsible TD and resulting execution time in the original
model. On average the performance increases by 11.66x.

2) Assigning Threads to Close Cores: In most applications,
it is a bad idea to map threads onto the same physical core.
Fig. 13 shows the performance of the producer-consumer
example when assigning the threads onto cores close to the TD
(one core co-located with the tag directory, and the other next
to it). Here, our approach shortens communication latency and
gains speedup in most experiments, up to 2.5x. In some rare
cases (2 of the 100 iterations), if the Linux default scheduler
”luckily” sets threads to the optimal cores, our approach
performs only a little worse (95%) due to our overhead. The
mean value of the speedup is 1.45x.

Fig. 12. Speedup of the producer-consumer example when mapping threads
onto the same physical core.

Fig. 13. Speedup of the producer-consumer example when mapping threads
close to the TD.

B. Mandelbrot Set Renderer Example

As an example of highly parallel graphics applications, we
use a renderer for Mandelbrot set images [4]. Fig. 14 shows
its block diagram. In the model, there are four Coordinators
which work on four separate slices of each frame and send
coordinates in the complex plane to 8 Mandelbrot worker
threads. Each worker thread calculates whether the point be-
longs to the Mandelbrot set or not. Zooming into an interesting
area of the image, our application generates a series of 100
Mandelbrot set images.

Fig. 15(a) shows that our Pizza Slice Algorithm accelerates
the graphics application by a maximum speedup of 150%
and a minimum of 95%. The Pizza approach optimizes the
application by mapping each Coordinator and its associated
worker threads and channel tag directories into one of four
sections on the ring network. Worker threads are assigned
to the same cores of the responsible TDs (or next to TD to
balance CPU load) and the Coordinator is placed in the middle
of the section. Fig. 15(b) shows the overhead of profiling
and optimization (time T3-T2 in Fig. 11(b)). Compared to
the execution time of the new model (T4-T2), the profiling
overhead is less than 0.8 second absolute, or 1% of the
execution time. The speedup is 125% on average, as shown
in the histogram in Fig. 15(c).

V. RELATED WORK

With the fast increasing number of processing cores on a
single die, we expect hundreds and even thousands of cores
integrated on the Chip Multiprocessor (CMP) systems, which
are known as manycore platforms. Currently, some manycore
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Fig. 14. Block diagram of the Mandelbrot renderer example.
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(a) Performance speedup. (b) Profiling overhead. (c) Histogram of the speedup.

Fig. 15. Apply Pizza Slice Algorithm to the Mandelbrot renderer.

systems are readily available, e.g. Tilera [5], Intel’s TeraFlop
[6] and MIC [1]. Together with GPGPU and distributed shared
memory (DSM) systems, these high-performance computing
platforms provide abundant parallel processing power. How
to efficiently exploit these platforms has been a hot topic
in recent researches. [7] and [8] address the thread mapping
strategy in heterogeneous multiprocessor systems by utilizing
dynamic thread-to-core assignment. [9] proposes a formal
model to characterize threads and cache hierarchy of GPGPUs
and generate an optimized thread mapping scheme. [10] also
optimizes the shared cache GPGPU, but targets applications
with irregular data accesses. [11] and [12] describe novel
approaches to schedule threads on DSM systems, taking mem-
ory traces and hierarchy into consideration. [13] addresses
the problem of application mapping on a Network-on-Chip
(NoC) multiprocessor. In [14] and [15], the authors propose
an analytical model to characterize programs, machines and
costs for multiprocessor platforms with hierarchical memory
architectures.

In comparison to these works, our approach differs in two
aspects. First, we are optimizing thread mapping on homo-
geneous manycore platforms with distributed tag directories
maintaining cache coherence. As this type of platform is a
different processor architecture, the problem of thread-to-core
mapping cannot be addressed by the existing methods for
CMPs with hierarchical memory system or GPGPUs. Second,
we propose the measurement of core distance to quantify
the core-to-core transfer latency precisely, rather than using
theoretical values as in other work.

VI. CONCLUSION

In this paper, we propose a software approach to opti-
mize the thread-to-core mapping for homogeneous manycore
processors with distributed tag directories. By profiling the
application and optimizing thread assignments, our approach
can reduce the core-to-core transfer latency significantly and
improve the application performance by more than 25% over
the Linux default strategy.

In future work, we plan to extend our approach to more
applications and platforms. Currently, we only consider com-
munication where the shared variables are within one cache
block and mapped to one TD. Based on the further refinement
and measurement of core distances, we intend to model more
general applications and platforms, and automatically generate
optimized thread-to-core mapping.
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