
Communication Protocol Analysis of Transaction-Level Models
using Satisfiability Modulo Theories

Che-Wei Chang Rainer Dömer

Center for Embedded Computer Systems Center for Embedded Computer Systems
University of California, Irvine University of California, Irvine
Irvine, CA 92697-2625, USA Irvine, CA 92697-2625, USA

e-mail: cheweic@uci.edu e-mail: doemer@uci.edu

Abstract—A critical aspect in SoC design is the correctness of
communication between system blocks. In this work, we present
a novel approach to formally verify various aspects of commu-
nication models, including timing constraints and liveness. Our
approach automatically extracts timing relations and constraints
from the design and builds a Satisfiability Modulo Theories (SMT)
model whose assertions are then formally verified along with
properties of interest input by the designer. Our method also ad-
dresses the complexity growth with a hierarchical approach. We
demonstrate our approach on models communicating over indus-
try standard bus protocol AMBA AHB and CAN bus. Our results
show that the generated assertions can be solved within resonable
time.

I. INTRODUCTION

In system-level design, a transaction level model (TLM) de-
scribes the system components, their abstract computation be-
havior, and in particular the system communication over busses
at an abstract functional level. Typically, the functionality and
timing of a TLM is validated through simulation. In this pa-
per, we formally verify the model and propose a method us-
ing Satisfiability Modulo Theories (SMT) [4] to statically ana-
lyze the TLM and verify features of interest. In particular, our
main focus here is on the timing constraints in the communi-
cation protocols. As illustrated in Fig 1, we perform multiple
rounds of verification using SMT, following a designer-in-the-
loop methodology.

TLM

Refinement

Further

refinement

Arch Model

TLM Model

Protocol

Library

User
Refinement

SMT assertion

Generator

TLM Model

SMT assertion

SMT

Solver

SAT/UNSAT/UNKNOWN

.

.

.

Constraint Verification

Fig. 1. Refinement methodology with static constraint analysis

Based on the given execution semantics of Discrete Event Sim-
ulation (DES), our proposed approach extracts the timing rela-
tions specified in the design model and converts them into as-
sertions as input for the SMT solver1. The SMT solver checks

1We use Z3 theorem prover [3] developed by Microsoft Research.

the satisfiability of the assertions and reports the result to the
system designer. If the assertions are satisfiable, the SMT
solver can provide a detailed report of the symbol assignments
which make the assertions true. On the other hand, if the model
is found unsatisfiable, the SMT solver reports the conflicting
assertions leading to the unsatisfiability. Based on the result,
the system designer can determine whether or not the TLM
satisfies the desired design requirements, as well as where the
design fails the requirements, if so.

A. Designer Augmented Assertions
Our proposed methodology in this paper is to automatically

extract timing relations and constraints from a given design and
build a corresponding SMT model as verification framework.
Then the designer can verify the properties of interest on the
framework by augmenting the SMT model with assertions re-
flecting his points of interest. For example, to verify that the
execution time of the application is always less than 100 time
units, the designer can augment the SMT model with an as-
sertion asking ”Can the execution time be more than 100
time units?”. If this is found unsatisfiable, the application will
execute in 100 time units or less, taking all conditions into ac-
count. In other words, the execution time is proven to meet the
timing constraint. On the other hand, if it is found satisfiable,
the tool will also lists the conditions satisfying the assertions so
that the designer can examine the situation.

B. TLM with Communication Timing
In a top-down system design flow, the system architecture

model is further refined into a TLM. The main objective of
TLM refinement is to choose and parameterize a bus proto-
col to implement the communication between the processing
elements in the system. The communication protocol is speci-
fied by the inserted transaction level bus model which specifies
the detailed communication timing, including synchronization
and delays compliant to the chosen protocol. Compared with
the previous model, TLM with communication timing better
represents the real-world design in which communication does
take time. The communication timing also has great influence
on the execution time and even liveness of the design. Fig 2
shows two TLM examples and their corresponding timing di-
agrams. In both designs, the corresponding timing informa-
tion for AMBA Advanced High-performance Bus (AHB) and
Controller Area Network (CAN) bus protocol is specified in
the TLM channel[10]. By formally extracting the timing rela-

978-1-4799-7792-5/15/$31.00 ©2015 IEEE

7A-5

606

tions from the TLM and checking these with the SMT solver,
our proposed method can verify the meeting of the timing con-
straints with the selected architecture and bus protocol.

 !"#

$%&'(

)*+,-.,/'

01.2,-'&-34

 !"5

$%&'(

)*+0/6789-

01.2'-:34

;0/6789-<

01.2,-.=34(

 !">

$%&'(

?1,%?@,7A1B

01.2'-0&34

C
D
E F?

)
G
)

!
.
9A

?
1
91

H IJKH #L

!
)
!

!
)
!
(=
-
A

M
!
N
(,
A/
9

M
!
N
(=
-
A

D
E

F.
9-
'O
6

P >

#(Q'16-

3M4(G@6@.R(=@1R'16(Q/'(!MS(T8,(GU+(/Q(1()*+(?@,7A1B(-V167A-

>

#

5
5 >

?WC

=191

* # * 5

$%&'(

*'/=80-'

$%&'(

!/.,86-'

;0/6789-<

1%T2,-.=34(

1%T2'-0&34

;0/6789-<

MW$

GU+

MW$

0/668.@019@/.(9@6-

*'/=80-'

0/672(9@6-

!/.,86-'

0/672(9@6-

X(5(0B02 5(0B02 5(0B02

* # * 5

$%&'(

*'/=80-'

$%&'(

!/.,86-'

;0/6789-<

=1912,-.=34(

=1912'-0&34

;0/6789-<

3$4(G@6@.R(=@1R'16,(Q/'(1'0%@9-098'-(6/=-A(1.=(GU+(/Q(1(*'/=80-'O!/.,86-'(-V167A-

G'1.,109@/.(U-&-A(+/=-A

M'0%@9-098'-(+/=-A

*'/=80-'

0/672(9@6-

!/.,86-'

0/672(9@6-

7/AA@.R

QA1R

'-,-9

QA1R

,-.=

=191

Fig. 2. TLMs with detailed communication timing

C. Related Work
There is significant work in the realm of formal verification

of system-level design, and one research method in this area
is to convert the semantics of a behavioral model into another
well-defined representation and make use of existing tools to
validate the properties of interest. In [8] designs in SystemC are
transformed into UPPAAL time automata and verified by UP-
PAAL model checker; in [7] and [6] a method to convert Sys-
temC into state machines for verification is proposed; [9] pro-
posed to translate SystemC models into a Petri-net based repre-
sentation for embedded systems (PRES+) for model checking;
[2] proposes a multi-layer modeling to represent SystemC de-
sign in a predictive synchronization dependency graph (PSDG)
and extended Petri net is proposed for formal deadlock check-
ing. [1] translates SystemC to Kripke structure and applies
symbolic model checking for verification. In contrast, Our
approach acts as an interactive property checking tool which
brings uncertainties about critical properties and corner cases
to the attention of the designer. In our method, the designer
verifies points of interest by adding corresponding assertions
to the extracted SMT model. The satisfiability report obtained
through our method highlights often special situations, such as
missed acknowledge signals or unsatisfied condition, and as-
sists the designer in verification of the model for all cases. In
this paper, we use SpecC2 language [11] to create the system
level model.

II. TIMING RELATIONS IN MODELS

A. Time Interval Model

In system design, functionality is not the only concern. Tim-
ing constraints are critical as well, especially for real-time sys-
tems and communication protocols. Therefore, the notion of

2Due to its similarity, our results are equally applicable to SystemC

time is an important aspect of the model. In this paper, we use
a time interval ⟨Tstart, Tend⟩ [5] to represent the start and end
time of the execution of a statement s in the model. To prop-
erly reflect the discrete event semantics with delta cycles, we
make every time stamp a 3-tuple ⟨Time(t), Delta(d), Order(o)⟩.
Note that we use the third member, called order, to distinguish
statements that otherwise happen at the same time and delta
cycle. The ordering is determined based on the timing relation
between statements and assigned automatically by the solver.
For such time stamps, we define a set of operations as listed in
Table I , describing the relations equality and greater-than, as
well as time advance by wait-for-time.

TABLE I
OPERATIONS OF TIME STAMP

Operation Definition

TA = TB TA.t = TB.t, TA.d = TB.d, TA.o = TB.o

TA >TB TA.t >TB.t or
TA.t = TB.t, TA.d >TB.d or
TA.t = TB.t, TA.d = TB.d, TA.o >TB.o

TA waitfor N TA.t = TA.t + N, TA.d = 0

Exact timing, such as delay or execution time of computation
and communication, can be specified by using wait-for-time
statements that carry a time argument of integral constant type.
When a wait-for-time statement is executed, the current behav-
ior is suspended from execution for the specified time. Fig 3(A)
shows an example with waitfor, wait, and notify state-
ments. Here, statement A is executed val time units before
statement B. Formally ”Tstart.t(stmnt B) = Tend.t(stmnt A) +
val, Tstart.d(stmnt B) = 0” will be generated in the SMT model.

B. Timing Constraints
Minimum or maximum bounds on the time between two

statements in the model are called timing constraints. To meet
real-time constraints imposed on the application by the envi-
ronment, e.g. for communication, such constraints need to be
specified with the design model so that it can be implemented
accordingly.
In the SpecC language [11], timing constraints can be specified
in the model with a special do-timing construct, with which the
timing constraints can be checked during simulation or, in our
case, be extracted to assertions for formal verification. The syn-
tax of timing constraints contains two parts: the do block spec-
ifies a set of labeled statements, whereas the timing block
contains the actual constraints. In the do block, the statements
whose timing the designer wants to check are given a unique
label and in the following timing block the labels are used to
set the constraints. Constraints are specified with the range
construct, which takes four arguments. The first two arguments
specify the labels and the last two the lower and upper bounds
of the timing constraint, respectively. A do-timing example
is shown in Fig 3(B). There are three labels in the do block,
and two constraints are specified with range constructs in the
timing block. Note that label L2 is attached to a compound
statement which contains two child behavior calls. The follow-
ing condition must hold for the constraints in this example:

0 ≤ Tstart.t(L2)− Tstart.t(L1) ≤ 100

0 ≤ Tstart.t(L3)− Tstart.t(L2) ≤ 300

7A-5

607

Since Tstart(L1) = Tstart(i A) and Tstart(L2) = Tend(i A), the first
condition limits the execution time of i A, and the second sets
the constraint for the total execution time of i B and i C.

III. TIMING RELATION EXTRACTION

A system model is composed of multiple computation blocks
(modules, behaviors) with communication (channel) between
them. We distinguish two types of behaviors: 1)Leaf and
2)Hierarchical behavior, which implements the computation
and specifies the composition of instances respectively.

 !"#$%&'()"$'*+&,%-%./01(2

((("$'3(%*30415

((("$')(%*)0415

((("$'6(%*60415

((($&%7(-#%.0$&%71(2

7& 2

((((((((((89:(((%*3;-#%.01(5(

((((((((((8<:(2(%*);-#%.01(5

(((((((((((((((((%*6;-#%.01(5(=((

((((((((((8>:(2(=(=

?%-%./(2

'#./!(0895(8<5(@5(9@@1(5(

'#./!(08<5(8>5(@5(>@@1(5(

((((((=

(((=

=

8&A!'()&B.7

CDD!'()&B.7

031(!"#$%&E(!"#E(#.7('%#"$(0)1()%*#"+"',(F&.G?'#%.?(

 !"#$%&'(8!#H9(

0%.(!$!.?(!9E(&B?(!$!.?(!<1(2

((($&%7(-#%.0$&%71(2

((((((4

((((((G?-.?*3(5

((((((A#%?H&'($#I5(

((((((G?-.?*)(5(

((((((4(

((((((G?-.?*6(5(

A#%?(!9(5(((((((

((((((G?-.?*+(5(

.&?%HJ(!<(5(

((((((4(

(((=

=

Fig. 3. Two types of timing specification in SpecC language[11]

In our proposed method, we utilize the logic of uninter-
preted functions with linear arithmetic (QF LIA) which incor-
porates the Core and Ints theories to generate the assertions.
The Core theory contains the basic types and operations for
Boolean logic, and the Ints theory defines the integer type
and basic functions for integer arithmetic and comparison. We
use a function symbol (in SMT-LIB2 language) to represent
each time stamp in the model and convert the timing relations
between those stamps into assertions. For a newly introduced
function symbol, the user can define the number of arguments,
and the data type of the argument and the return value. In our
method, the return value of an uninterpreted function is seen as
the value of a time stamp, and the arguments of the function
are used to specify the number of iterations a block is executed
(if in a pipelined or loop structure). Take the waitfor state-
ment in Fig 3(A) as an example. In the example, stmnt A and
stmnt B will be executed once only and no argument is needed
in the function symbol declaration for these two statements,
and there is a delay of val time units between the execution of
stmnt A and stmnt B inserted by the waitfor val statement.
Thus, the assertions below are generated for the timing relation
above. Our tool will name the symbol with the full hierarchy
path to ensure the uniqueness of each function symbol.

(declare− fun Tend.t stmntA () Int)

(declare− fun Tstart.t stmntB () Int)

(assert (= Tstart.t stmntB (+ Tend.t stmntA val)))

A. Timing Relation for Hierarchical Behaviors
In SpecC, the child behavior instantiation implies a function

call to the child behavior. For a behavior S consisting of a
set of child behavior instances ⟨s1, s2, s3, ...sn⟩, the following
condition holds:

∀i ∈ {1, 2, 3, ...n}, Tstart(S) ≤ Tstart(si), Tend(S) ≥ Tend(si)

The timing relation between the child behaviors is dependent
on the execution type specified in the parent behavior. In this
paper, we support sequential, parallel, pipelined, and loop be-
haviors.
1) Sequential Execution of statements is defined by ordered
time intervals that do not overlap. Formally, for a statement
S consisting of a sequence of sub-statements ⟨s1, s2, ...sn⟩, the
following conditions hold:

∀i ∈ {1, 2, ..., n},Tstart(S) ≤ Tstart(si),

Tend(si) ≤ Tend(S)

Tstart(si) < Tend(si)

∀i ∈ {1, 2, ..., n− 1},Tend(si) ≤ Tstart(si+1)

2) Parallel Execution can be specified by par or pipe state-
ments. Formally, for a par statement S consisting of concur-
rent child statements ⟨s1, s2, ...sn⟩, the following conditions
hold:

∀i ∈ {1, 2, ..., n},Tstart(S) ≤ Tstart(si),

Tend(S) ≥ Tend(si)

Tstart(si) < Tend(si)

3) Pipelined Execution of statements is a special form of con-
current execution. Formally, for a pipe statement S executed
for m iterations, let si.j represents the j-th iteration of the ex-
ecution of statement si. Then, the following conditions hold:

∀i, x ∈ {1, 2, ..., n}, j, y ∈ {1, 2, ...,m} :

Tstart(si.j) < Tend(si.j),

Tstart(si.j) = Tstart(sx.y), if i + j = x + y

Tend(si.j) = Tend(sx.y), if i + j = x + y

Tend(si.j) ≤ Tstart(sx.y), if i + j < x + y

A limitation of our approach is that the number of iterations m
has to be a known integer. If it is statically unknown (i.e. a
variable), our tool will prompt the designer to input an upper
bound for the loop.
4) Loop Execution can be regarded as a special case of
pipelined execution with only one stage. As above, we assume
that the number of iterations is a finite constant.

B. Timing Relation Extraction for Leaf Behaviors

We pay significant attention in this paper to analyze the tim-
ing information specified in leaf behaviors and channels, which
is critical in order to capture communication timing in TLMs.
Fig. 4(A) highlights the statements which are analyzed in the
source code as well as the rules to extract the correspond-
ing timing relations for the static analysis. The rule for the
waitfor statement has been introduced already. We now de-
scribe the others.
1) Conditional Execution: When conditional execution, such
as a if statement or if-else statement, is used in the model,
we create a time interval ⟨Tif start, Tif end⟩ and a logic stamp
Cif which represents the logic condition (for if-else, we also
create a tuple ⟨Telse start, Telse end⟩). Fig. 5 illustrates the tim-
ing relations for the conditional execution. Here, Tprev and

7A-5

608

Tnext represent the time stamps before and after the conditional
execution. As shown with the selection structure in Fig. 5, the
value of Tnext is dependent on the binary value of Cif . Note
that Tnever is a time stamp with a very large value representing
infinity. We represent the situation that a statement will never
be executed by giving the corresponding time stamp this large
value (there is no way to represent infinity in the SMT-LIB lan-
guage). Any time stamp greater or equal to Tnever means that
the corresponding situation will never happen. Note that our
tool will not analyze the specified condition in an if-statement,
but only create the conditional assertions as listed in the illus-
tration. It is the SMT solver’s job to find an assignment for the
condition and time stamps that satisfy the assertions.

 !"#$%&'(()%*+!',#-!(./(%*+!',#-!(01

2

(((($&%3(4#%*()$&%31(2

((((((((%,()51((2

((((((((((((5(

((((((((((((6#%+,&'()781(9

((((((((((((5(

((((((((((((6#%+(:(9((;

((((((((5(

((((((((*&+%,<(=(9(

((((((((5

((((((((.>?!*3)51(9

((((((((5(

((((((((0>'!-!%$!()51(9(((;

;

%*@%*!(

-"#**!@(,A*-+%&*

-'!#+!(6#%+B*&+%,<(

#??!'+%&*?

-'!#+!(%,B+"!*B!@?!(

#??!'+%&*
%*-'!#?!(

CD#-+(E%4!

)F1(+%4%*G(#H?+'#-+%&*(,&'(@!#,) 1(6"%@!(@&&I(A*'&@@%*G

6"%@!()-&*31(2

(((?+#+!4!*+?(9

;

,&'()%J89(%K49(%LL1(2

((((%,)-&*3)%11(2

(((((((?+#+!4!*+?(9(;

;

((((%((2M/5/m !"#

$%&'()*+,-./####$%&'() !*+,-./

####)# #01232m !"#

$%&'()*+,-./0####$%&'()+ !"#$%&'

Fig. 4. Timing relation extraction for a leaf behavior

…Cif = true

Tprev Tnext

Tif_start Tif_end

Cif = false

…Cif = true

Tprev Tnext

Tif_start Tif_end

Cif = false

Telse_start Telse_end

…

if (Cif == true): Tif_start = Tprev

Tnext = Tif_end

Tnext = Tprev

if (Cif == true): Tif_start = Tprev

Tnext = Tif_end

Telse_start = Tprev

Tnext = Telse_end

Tif_start = Tnever

Telse_start = Tnever

Tif_start = Tneverif (Cif == false):

if (Cif == false):

Fig. 5. Timing relation extraction for conditional execution

2) Loop Unrolling: To limit the verification space and the exe-
cution time of the solver, for each loop with undefined iteration
count (i.e., the condition is variable), our tool will prompt the
designer to provide an the upper bound for the loop, and then
unroll the loop to multiple if statements. Fig. 4(B) illustrates
the loop unrolling performed by our tool. It also shows that the
tool creates implication assertions for the conditions generated
by loop unrolling.
3) wait-notify synchronization: In order to analyze a TLM with
synchronization among multiple concurrent behaviors, we sup-
port events and the corresponding wait-notify synchro-
nization. When a wait statement is executed, it suspends
the current thread from execution until the event is triggered
by a notify. A time interval ⟨Tstart, Tend⟩ is generated as
for other statements. For a wait statement W triggered by a
notify statement N , the following conditions hold:

Tstart(W) ≤ Tstart(N),

Tend.t(W) = Tend.t(N),

Tend.d(W) = Tend.d(N) + 1

Note that Tstart equals Tend for a notify statement. Also, to
analyze the satisfiability of the specified timing constraints, we
have to determine the mapping between wait and notify
statements, i.e. which notify wakes up which wait. Our
proposed method to generate the assertions for the wait-notify
mapping is illustrated in Fig 6.

 !"#$%&'

&&&(

 !"#$%&'&

&&&(&

 !"#$%&'

&&&(&

&&&(&

 !"#$%&'

&&&(&

&&&#$&)*! +,&&&

& !"#$%&-

&&&(&

.#/01# 0&!$

.20304

*! +
"450 $6170

86#"&'

&&&(

86#"&'

&&&(&

86#" '

&&&(&

&&&(&

86#"&-

&&&(&&

90:63#!4&9;
90:63#!4&9< 90:63#!4&9=

90:63#!4&9> 90:63#!4&9?
90:63#!4&9@ 90:63#!4&9A

 !"#$%&&'&B

86#"&&&&'

Fig. 6. Timing relation extraction for the wait-notify statement

In this example, all behaviors are executed in parallel except
for the two behavior pairs ⟨B1, B2⟩ and ⟨B6, B7⟩ executed se-
quentially. Our method consists of two steps:
(1) for every event in the model, our approach generates the
assertions to sort the time stamps of the notify statements
which trigger the event. This step is illustrated in the upper
part of Fig 6. Note that if the notify statement is inside a
conditional statement, the value of its time stamp is dependent
on the condition. For example, Tstart.t for the notify state-
ment in behavior B4 in Fig. 6 will be greater than Tnever if the
logic condition is false.
(2) for every wait in the model, we generate the assertions
to ”search” the sorted time stamps of the notify statements
and find one that is greater than and the closest to Tstart of the
wait, and set the time and delta cycle of the wait using the
condition we listed above. This step is illustrated in the lower
part of Fig. 6.
4) Channel Interface Function Call: In a TLM, the timing in-
formation of the target bus protocol and the synchronization
mechanism between communicating parties are specified in the
interface methods defined in the channel. The communication
between the behaviors takes place by calling those interface
functions. To generate assertions for the SMT solver, our ap-
proach traverses down to the interface method in the channel
when it is called. Consequently, the timing information speci-
fied in the channel model is taken into consideration during the
timing analysis of the behavior.

C. Liveness and Deadlock
For a multi-PEs system model, improper execution order or

communication may lead to problems, including deadlock. In
our method, a deadlock caused by circular waiting in the model

7A-5

609

will be reported to the designer in the form of unsatisfiable as-
sertions since there are conflicts in the timing relations. An-
other potential deadlock would be a wait statement missing
the wake-up signal. Fig. 6 also shows examples for two cases.
Behavior B6 shows one case in which wait X misses all noti-
fication for X therefore it will never be waken up. Behavior B7
illustrates another case. wait Y can not wake up if the condi-
tion for notify Y in behavior B4 is not true. Both situations
are covered by our tool and reported to the designer.

D. Hierarchical Timing Analysis
The number of assertions generated by our method increases

with the complexity of the model. To keep the number of as-
sertions manageable and limit the run time of the SMT solver,
our method addresses the complexity growth by analyzing the
timing constraints in a hierarchical manner. Timing constraints
verified at a lower hierarchy level are regarded as the prerequi-
site conditions for the verification of the higher level. Verified
timing constraints can be specified by use of the do-timing con-
struct in the model. When our method finds a do-timing con-
struct during the design traversal, it will take the constraints as
they listed and not traverse further down the hierarchy. Thus,
the assertions needed for model verification at the higher hier-
archical level are greatly reduced.

!
" #$

%
&
%

'
(
)*

$
+
)+

,, - ./0-

,123+45

*6753

869(:

9;;53

869(:

,18<)1)<45

=(:1

23+45
 !

+;;*<>+)<6(

*6753

869(:

9;;53

869(:

,?)

23+45
@1 A)B1

23+45

Fig. 7. Hierarchical timing analysis of CAN bus protocol

Take the CAN bus protocol as an example. The bit time gen-
erated by the bit time logic for each engine control unit (ECU)
can vary due to different local operating frequencies. Thus, the
time needed for transmission can differ from one frame to an-
other. To verify the timing constraint of the frame transmission,
we use the pre-verified lower and upper bound of the bit time as
prerequisite conditions. Fig. 7 illustrates the hierarchical tim-
ing analysis of CAN protocol from the bit time via frame time
up to the application.

IV. EXPERIMENTS

We use two standard bus protocols widely used in industry to
demonstrate our approach. As shown in Table II , both mod-
els are of reasonable size with practical analysis times. The
first example is a three-ECU communication over a CAN bus
protocol[10]. In this automotive example, the RPMcompute
ECU issues a request to an RPMsensor using a remote frame.
Upon the reception of the request, the sensor initiates an op-
eration to read revolutions per minute (RPM) from the engine
and sends it back to RPMcompute using a data frame. Af-
ter receiving the raw RPM from the sensor, the RPMcompute
ECU calculates the average RPM and sends that to Dashboard
ECU for displaying. The procedure is illustrated in Fig. 2(A),
and the detailed bus TLM is shown in Fig 8. Note that the
bit time units required for each communication step in CAN
bus protocol are specified with do-timing construct as prereq-
uisite. In this example, the timing is analyzed on assumptions

that reading RPM value from engine takes 40 bit time units and
computing average RPM takes 10 to 20 bit time units.

 !"#$%&'()*+,#

()#")./

()#")

#)01.213%&'4,56-/

7#)01$%&'$"089):

;#2<).213%&'+)*+,#/

%)=9)+<

;#2<).213%&'4,56-/

#)01.213%&'+)*+,#/

()*1

;#2<).213%&'4,56-/

%)4)2")

#)01.213%&'4,56-/

 !"#$ 2<(<#)05&#,4)++,#

1,

;02<$.+,>/$?

21@A---B

4*<8@$A---B

10<0@$ACB

$$$$C

*,<2>D$.),>/$?$

<252*E

#0*E)$.21?$4*<8?$

$$$$$$$F52*.21/?$F50G.21//$

#0*E)$.4*<8?$10<0?$

$$$$$$$F52*.4*<8/?$F50G.4*<8//

#0*E)$.10<0?$4#4?$F52*C$

$$$$$$C$

#)01$.<0#E)<321/

1,

$$;02<$.),>/$?

$$72*69<$21H$4*<8H$10<0:$

;!28)$.21$I$<0#E)<321/

#)<9#*$10<0H$4*<8

;#2<)$.21/

1,

$$$*,<2>D$.+,>/$?

;02<$.),>/$?$

$7,9<69<$21H$4*<8H$10<0:$

;!28)$.<G31,*)/

21H$4*<8H$10<0H$<G31,*)

 !"#$J*E2*)

K610<)$

%&'

 !"#$%&'L,569<)

%)=9)+<$./

7L,569<)$MNO:

()*1./

 !"#$P0+!Q,0#1

%)4)2")./

Fig. 8. TLM of automotive example using CAN bus

Our second example is a producer-consumer model commu-
nicating over an AMBA AHB protocol. Here, the producer
and consumer call interface functions send and receive,
respectively, to transfer data through an AMBA AHB chan-
nel specified at TLM abstraction [10]. Fig. 9 illustrates the
TLM with the detailed bus model. Note that a parallel behav-
ior PollFlag is created to respond for the slave (Consumer) to
all polling requests from the master (Producer). The procedure
contains three steps as the timing diagram shown in Fig. 2(B):
master reads the flag in PollFlag, master resets the flag, and
then sends the data to slave. In this model, the delays compliant
to the AHB reference are specified by waitfor statements.

 !" #$

Fig. 9. TLM of Producer-Consumer example using AMBA AHB

The statistics of TLM timing analysis for both bus protocols

7A-5

610

TABLE II
STATIC SMT ANALYSIS OF TLM EXAMPLES USING AMBA AHB AND CAN BUS PROTOCOLS

exp Constraint Condition #ofassertions LOC Time Result
Liveness and timing analysis for CAN TLM

1 None No Circular Waiting 382 (3 augmented) 24963 > 2hr UNKNOWN
2 Tend(DashDisp)< Tnever No Circular Waiting 383 (4 augmented) 24972 189s SAT
3 Tend(RPMcmp)≤ 200 units Minimum execution time 384 (5 augmented) 24975 50s UNSAT
4 Tend(RPMcmp)≤ 500 units Write always fails in the 1st attempt 387 (8 augmented) 24984 284s SAT
5 Tend(RPMcmp)≥ 300 units Write succeeds in the 1st attempt 387 (8 augmented) 24984 5s UNSAT
6 Tend(RPMcmp)≤ 500 units Bus utilization ≤ 60% 385 (6 augmented) 25054 135s SAT

Liveness and timing analysis for AHB TLM
7 None No Circular Waiting 240 (6 augmented) 19389 332s SAT
8 Tend(Prod)< Tnever No Circular Waiting 241 (7 augmented) 19392 313s SAT
9 Tend(Prod) < 6 cycles Minimum execution time 242 (8 augmented) 19395 4s UNSAT

10 Tend(Prod) ≤ 10 cycles Polling succeeds in the first 2 attemps 243 (9 augmented) 19401 333s SAT
11 Tend(Prod) ≥ 10 cycles Polling succeeds in the first 2 attemps 243 (9 augmented) 19401 114s UNSAT

are listed in Table II . In the experiments, we verify the sat-
isfiability of liveness and timing constraints. Exp.1 and Exp.7
check if there is any conflict caused by circular waiting in the
model, and the others verify the liveness and timing constraints
in various scenarios specified with user augmented assertions.
Exp.6 in the table shows a scenario where we allow the model
to utilize the bus up to 60% maximum, that is, on average
over 5 slots only 3 may be used. The number of assertions,
lines of code (LOC) for those assertions and the run time of
the solver are also listed in the table. According to the mea-
sured time, the satisfiability searching for these two models
and the constraints we added is reasonably fast, and as is of-
ten expected, unsatisfiable solutions are faster obtained than
satisfiable ones. Note that for Exp.1 the solver gave no answer
after two hours of calculation. To reduce the search time, we
added an assumption that the entire transaction finishes in fi-
nite time (test case 2). All experiments have been performed
on a host PC with a 4-core CPU (Intel(R) Core(TM)2 Quad)
at 3.0 GHz with Microsoft Z3 solver (version 4.1). Both ex-
periments contain initial designer augmented assertions (3 for
the CAN TLM and 6 for the AHB TLM) which are inserted to
specify the real use case. Taking the CAN bus as an example,
the three user augmented assertions reflect the timing relations
shown in Fig. 2(A): the end time of remote frame transmission
in RPMcompute equals the end time of the remote frame re-
ception in RPMsensor; the end of frame transmission in RPM-
sensor equals the end of the frame reception in RPMcompute;
and the end of the frame transmission in RPMcompute equals
the end of the frame reception in Dashboard. The initial 6 user
assertions in the AHB example reflect a similar situation.

V. CONCLUSION

In this paper, we have proposed an approach to verify live-
ness and timing constraints by extracting timing relations from
a TLM design model and using a SMT solver to verify the sat-
isfiability of the corresponding assertions. We verify the timing
information specified in computation as well as in communica-
tion. Also, we introduce a hierarchical method to cope with
the complexity growth of the model. We demonstrated our ap-
proach with two standard bus protocols AMBA AHB and CAN
bus. Our approach utilizes the designer’s augmented assertion

reflecting the properties of interest. In future work, we plan
to improve the interaction between the designer and the SMT
assertion generator.

REFERENCES

[1] C. Chou, Y. Ho, C. Hsieh, C. Huang. ”Symbolic model checking on sys-
temc designs,” in DAC ’12, pages 327–333. ACM.

[2] C. Chou, C. Hsu, Y. Chao, and C. Huang, ”Formal deadlock checking on
high-level systemc designs,” in ICCAD ’10, pages 794–799. IEEE Press.

[3] L. De Moura and N. Bjørner, ”Z3: An efficient smt solver,” in
TACAS’08/ETAPS’08, pages 337–340. Springer-Verlag.

[4] L. De Moura and N. Bjørner, ”Satisfiability modulo theories: Introduc-
tion and applications,” in Commun. ACM, 54(9):69–77, Sept. 2011.

[5] M. Fujita and H. Nakamura, ”The standard specc language,” in ISSS,
pages 81–86. ACM Press, 2001.

[6] A. Habibi, H. Moinudeen, and S. Tahar, ”Generating finite state machines
from systemc,” in DATE ’06, pages 76–81. European Design and Automa-
tion Association.

[7] A. Habibi S. Tahar, ”An approach for the verification of systemc designs
using asml,” in ATVA, pages 69–83. Springer, ’05.

[8] P. Herber, J. Fellmuth, and S. Glesner, ”Model checking systemc designs
using timed automata,” in CODES+ISSS ’08, pages 131–136. ACM.

[9] D. Karlsson, P. Eles, and Z. Peng, ”Formal verification of systemc designs
using a petri-net based representation,” in DATE ’06, pages 1228–1233.

[10] G. Schirner and R. Dömer, ”Quantitative analysis of the speed/accuracy
trade-off in transaction level modeling,” in ACM Trans. Embed. Comput.
Syst., 8:4:1–4:29, Jan. 2009.

[11] D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, S. Zhao, ”SpecC: Speci-
fication Language and Methodology,” in Kluwer Academic Publishers,
Boston, March 2000.

7A-5

611

