
Introduction to Hardware-dependent Software Design

Hardware-dependent Software for Multi- and Many-Core Embedded Systems

Rainer Dömer Andreas Gerstlauer Wolfgang Müller

University of California at Irvine University of Texas at Austin University of Paderborn
Irvine, CA 92697, USA Austin, TX 78712, USA 33102 Paderborn, Germany
doemer@uci.edu gerstl@ece.utexas.edu wolfgang@acm.org

Abstract— Due to the rapidly increasing software content in
embedded systems, Hardware-dependent Software (HdS) has be-
come a critical topic in system design. In this paper, we provide
a brief overview on the topic of HdS, discuss the issues and com-
plexities involved in the design of HdS, and motivate the need for
special attention to HdS in research and development.

I. INTRODUCTION

Microelectronics are ubiquitous and took over large parts of
our daily life. Together with an increasing profileration of such
embedded systems, their complexities are growing exponen-
tially. Mobile phones advanced to highly equipped communi-
cation and computing devices with support for multiple pro-
tocols like GSM 850/900/1800/1900, UMTS, IEEE 802.11b/g,
Bluetooth, USB, and IrDA. Similarly, modern cars are typically
equipped with 30-70 electronic control units (ECUs) connected
by different networks like LIN, CAN, or FlexRay. In all cases,
at the same time that system complexities in general are grow-
ing, the significance of embedded software is increasing at an
even higher rate. During modern system development, up to
80% of the system content and functionality is implemented
in software. Embedded software, that resides on the proces-
sors and microcontrollers, may already exceed 9GB in size
[3]. These developments indicate that Hardware-dependent
Software (HdS) has significantly gained relevance in embed-
ded systems and Systems-on-Chip (SoCs) design, mainly due
to its flexibility, the possibility of late change, and the quick
adaptability.

The importance of HdS was early observed by the Virtual
Socket Interface Alliance (VSIA) in 2002. The resulting out-
come and taxonomy is summarized and further developed in
[1]. However, until today only very few text books [4] pro-
vide complete overviews of the HdS area. The remainder of
this paper aims to provide an introduction to HdS, the layer of
software in embedded systems that directly interacts with the
underlying hardware platform. We will introduce the key com-
ponents of HdS and outline the various aspects in designing
HdS for embedded systems.

A. Design Productivity Gap

The major driver behind electronic systems design in gen-
eral, and HdS design in particular, is the design productivity

gap that we are facing for a number of years now, and that, de-
spite of many great efforts on all fronts to overcome the gap,
still keeps growing.

The hardware design community is well-aware of the pro-
ductivity gap in hardware design. For many years now, the
potential capacities in chip size outpace the capabilities of de-
signing these chips.

Fig. 1. Hardware- and software productivity gaps combined form the system
design gap (source: Ecker et. al. [3]).

In particular, the capacity in chips doubles about every 18
months according to Moore’s law [6], whereas the productiv-
ity growth in hardware design over the last years is estimated
at only 1.6x over 18 months [10]. This gap in productivity
growth, the so-called hardware design gap, is illustrated in the
center of Figure 1 [3].

As embedded systems consist of both hardware and soft-
ware, both productivity factors need to be taken into account
when we aim to design entire systems. Due to Humphrey [5],
we can identify a growth of software functions of 10x every
10 years [5]. Considering that additional software productiv-
ity gap, the situation for entire systems only gets worse. In
this context, the actual needs in embedded software complex-
ity would require an estimated growth of 2x over 10 months
in order to satisfy the complexity involved in building real sys-
tems [3].



B. System Design Gap

Fact is, that we actually face two design gaps at the same
time, a software design gap in addition to the well-known hard-
ware design gap. Combining both productivity gaps, as shown
in Figure 1, result in a large system design gap.

Moreover, additional complexity is created from the close in-
teraction and tight dependency between the software and hard-
ware domains. In other words, the necessary interfacing of
software and hardware adds yet another layer of complexity.
Thus, Hardware-dependent Software (HdS) is at the core of this
system design challenge, as it deals exactly with those parts of
the embedded software that interact directly with the underly-
ing hardware.

II. HARDWARE-DEPENDENT SOFTWARE

Hardware-dependent Software (HdS) can be defined as the
software in an embedded system that closely interacts with the
underlying hardware platform [3].

Typically, HdS is specifically built for a particular block of
hardware, and both the HdS and the hardware together imple-
ment a systems’ functionality. As such, HdS provides the appli-
cation software with an interface to easily access those features
which are directly supported by hardware components.

Looking at HdS from the perspective of software architec-
ture, we can identify HdS as a layer of software modules in
between the application software and the underlying hardware
platform. In other words, HdS can very well be seen as low
level software.

OS /
RTOS

Device
Drivers

Communication
Protocol Stacks

Middleware /
Adapter Layer

Bo
ot

Fi
rm

wa
re

Hardware Abstraction Layer

I/O, 
Peripherals

System Bus

Timer, Interrupt, Debug, 
Power, Clock

Core Memory

Ha
rd

w
ar

e
Ha

rd
w

ar
e-

de
pe

nd
en

t 
So

ftw
ar

e
So

ftw
ar

e Application Software

CoreCoren

Fig. 2. HdS in a layered software architecture (based on Ecker et. al. [3]).

Figure 2 shows the layering of the general HdS architec-
ture. It should be clear that the layered HdS architecture shown
is conceptual and generic. In many cases, depending on the
actual embedded application, the software layers present will
vary widely.

At the top portion of the figure, the application software and
middleware layers are supported by a layer of various HdS

modules in the middle. The HdS layer, in turn, is supported
by the underlying hardware at the very bottom of Figure 2.

HdS typically runs in the kernel space of an operating sys-
tem, whereas middleware and application software run in user
space. As such, HdS includes the software modules for boot
code, device drivers, hardware-dependent portions of protocol
stacks, and DSP algorithms.

As shown in Figure 2, the embedded software stack is con-
ceptually composed of several main components: Application
software implements the functionality of the system, consisting
of multiple processes and/or threads. Middleware represents a
software layer for application-specific services and acts as an
adapter layer between the application software and the oper-
ating system. The real-time operating system (RTOS) man-
ages the application tasks and allows the sharing of available
resources. Communication protocol stacks operate on top of
device drivers which in turn provide the access to hardware
resources. Boot firmware support the initial boot process of
the embedded computer system. Today, most desktops and
servers are BIOS-based whereas embedded system typically
come with proprietary boot firmware1. Finally, the hardware
abstraction layer (HAL) is a software layer used in many em-
bedded contexts that provides an abstract interface to access the
actual hardware resources.

RTOS, communication protocol stacks (including device
drivers and interrupt handlers), boot firmware and HAL to-
gether form the hardware-dependent software stack.

III. DEVELOPING HDS

HdS development tools and design flows are typically spe-
cific to individual application areas. Nevertheless, common
approaches across different areas can be identified.

Today, in many cases developing HdS means software cod-
ing by classical dedicated C development environments and
targeted tool chains, i.e., C cross-compilers, off/online debug-
gers, linters, and target-specific assemblers and linkers. Due to
its proximity to the underlying hardware, HdS in many cases
needs to be able to access the hardware directly. HdS devel-
opment therefore requires target-specific extensions of the lan-
guage and tool chain beyond standard ANSI C using mech-
anisms such as intrinsics, pragmas or inline assembly. Such
proprietary extensions coupled with the fact that C inherently
exposes many machine-specifics, makes the HdS development
process highly specific, error-prone and tedious. While a HAL
aims to mitigate such effects by allowing the majority of the
HdS to be developed independent of the underlying hardware,
there is an on-going need for development solutions at higher
levels of abstraction.

For some domains, we can observe that Matlab and Simulink
were accepted as a pseudo-standard in order increase produc-
tivity. With the application of Matlab, the notion of model-
based design was introduced2. In this context, model-based
design referred to Simulink and Stateflow models for modeling

1We currently observe a migration from BIOS to EFI (Extensible Frame-
work Interface). Apple Computers already moved to EFI with their Intel plat-
forms, and MSI recently introduced its first EFI board.

2At the same time, the OMG introduced their concepts of Model-Driven
Architecture which are different from those introduced by Matlab.



and as front-ends for advanced code generators which may be
certified along RTCA DO-178B or IEC 61508. Examples for
C code generation are the Real-Time Workshop by MathWorks
and TargetLink by dSPACE. However, it should be noted that
such model-based design and code generation concepts are typ-
ically reserved for higher layers of the software stack such as
the application level. In constrast, due to the lack of control
over the hardware, they may apply to HdS development only to
a lesser degree.

Similar, automatic generation-based approaches can be ap-
plied to different aspects of HdS development using more
domain-specific solutions. In all cases, the idea is to auto-
matically generate low level HdS code from some abstract,
high-level input description. For example, there are approaches
for automatic assembly of customized RTOS implementations
from an abstract selection of OS functionality required for a
specific design instance [8]. Similarly, based on a high-level
description of device registers, basic firmware to access hard-
ware functionality can be automatically implemented [2]. Fur-
thermore, complete protocol stacks and device drivers can be
automatically synthesized to provide desired abstract commu-
nication primitives such as message-passing or semaphores in
communication with external hardware [9]. In all cases, the
goal of such on-going research is to provide solutions for auto-
mated HdS development across different target instances with-
out the need for manual coding and associated debugging and
validation costs.

IV. HDS FOR MULTI- AND MANY-CORE PLATFORMS

The introduction of multi- and many core platform will cer-
tainly have considerable impact on embedded systems and their
HdS. Studies from Venture Development Corp. (VDC), for in-
stance, project a six time increase of the multicore micropro-
cessors market between 2007 and 2011. Due to different appli-
cation areas multi- and many-core platforms may cover sym-
metric, homogeneous architectures as well as combinations of
heterogeneous cores with different parameters. In all cases,
however, one or more cores are combined into a complete pro-
cessor together with other hardware resources. At least a subset
of these resources, such as interrupt controllers, L2 caches, or
system bus interfaces, are typically shared among the cores.
Depending on the number of cores, a processor with more than
one core is typically called a multi-core (2-10 cores) or many-
core (tens, hundreds, or thousands of cores) processor.

In each processor, a single operating system as part of
a common, shared HdS stack manages threads or processes
across cores3. Proper initialization, access and management
of shared or replicated resources across cores and among pro-
cesses/threads is one of the main complexity challenges in
multi-/many-core firmware, driver, OS/RTOS and hence HdS
development. For example, only recently have the first real-
time scheduling implementations for multi-core processors
emerged by RTOS vendors such as QNX [7]. As we are moving
towards massively parallel many-core contexts, exponentially

3In contrast, when assembled into a multi-processor system, OS/RTOS and
HdS stacks in each single-, multi- or many-core processor manage application
thread/processes either standalone or in a distributed fashion across processors
and eventually their cores in a hierarchical fashion.

growing complexities in relation to race conditions, synchro-
nization, and thread/process interactions will make the efficient
implementation of necessary fairness and real-time guarantees
a tremendous challenge.

V. CONCLUSION

Multi- and many-core HdS implementation, debugging, and
verification impose significant complexities in the context of
reliable and safe embedded real-time systems. Closing the pro-
ductivity gap in system design is a challenge. The biggest ob-
stacles may remain the efficient use of parallel computing re-
sources and the verification of complete systems. However,
this heavily relies on the specific application. Executing in-
dependent functions on different cores may help to reduce the
number of microcontrollers. Challenges significantly increase
with increased dependencies between those functions. Then,
efficient inter-core and inter-chip communication is required
which is not sufficiently supported by current tools. Current
efforts on virtualization of resources provide promising direc-
tions to solve the main challenges.

REFERENCES

[1] B. Bailey, G. Martin, and T. Anderson. Taxonomies for the De-
velopment and Verification of Digital Systems. Springer, 2005.

[2] W. Ecker, V. Esen, T. Steininger, and M. Velten. HW/SW inter-
face - implementation and modeling. In W. Ecker, W. Müller,
and R. Dömer, editors, Hardware-dependent Software - Princi-
ples and Practice. Springer, 2008.

[3] W. Ecker, W. Müller, and R. Dömer. Hardware-dependent soft-
ware - introduction and overview. In W. Ecker, W. Müller, and
R. Dömer, editors, Hardware-dependent Software - Principles
and Practice. Springer, 2008.

[4] W. Ecker, W. Müller, and R. Dömer. Hardware-dependent Soft-
ware - Principles and Practice. Springer, 2008.

[5] W. S. Humphrey. The future of software engineering: Part V.
Software Engineering Institute, First Quarter 2002.

[6] G. E. Moore. Cramming more components onto integrated cir-
cuits. Electronics, 38(8):114–117, April 1965.

[7] QNX Software Systems. QNX Neutrino RTOS.
http://www.qnx.com/products/neutrino rtos/,
2008.

[8] F. Rammig, M. Ditze, P. Janacik, T. Heimfarth, T. Kerstan,
S. Oberthuer, and K. Stahl. Basic concepts of real time op-
erating systems. In W. Ecker, W. Müller, and R. Dömer, ed-
itors, Hardware-dependent Software - Principles and Practice.
Springer, 2008.

[9] G. Schirner, A. Gerstlauer, and R. Dömer. Automatic generation
of hardware dependent software for MPSoCs from abstract sys-
tem specifications. In Proceedings of the Asia and South Pacific
Design Automation Conference (ASPDAC), Seoul, Korea, Jan.
2008.

[10] Sematech Inc. International technology roadmap
for semiconductors (ITRS), 2004 update, design.
http://www.itrs.net, 2004.


