
Automatic Re-coding of Reference Code
into Structured and Analyzable SoC Models

Pramod Chandraiah Rainer Dömer
Center for Embedded Computer Systems Center for Embedded Computer Systems

University of California, Irvine University of California, Irvine

pramodc@cecs.uci.edu doemer@cecs.uci.edu

Abstract— The quality of the input system model has a direct
bearing on the effectiveness of the system exploration and synthe-
sis tools. Given a well-structured system model, tools today are ef-
fective in generating efficient implementations. However, readily
available reference C codes are not conducive for system synthe-
sis as they lack the necessary structure and analyzability needed
by the design flow. Usually reference C code is manually con-
verted into a SoC model by applying necessary transformations.
The type of transformations depends on the underlying design
flow and tools. Proper structural hierarchy is one essential fea-
ture needed for architectural exploration. In this paper, we pro-
vide automatic C code transformations to encapsulate functions
and insert structural hierarchy to create well-structured and an-
alyzable SoC models. Our automatic transformations, combined
with interactive application of the designer’s knowledge and ex-
perience, enable faster creation of structural hierarchy in C mod-
els and hence result in significant reduction of the overall design
time.

I. INTRODUCTION

The large availability of embedded applications in the form

of reference C code has made C implementations a natural

starting point of most System-On-Chip (SoC) design processes.

Easily obtained from open-source projects and standardizing

committees, these C codes not only serve as reference models

for functional verification purposes, but also can be used for

deriving end SoC implementations. However, there are signif-

icant obstacles in directly using such C sources for the SoC

design process. First of all, these C codes typically come from

different sources, such as the signal-processing or the general-

purpose programming community. Often, these sources are

designed and optimized to run on a regular PC environment

where the intended target machine architecture is known. How-

ever, such code is usually not suitable for SoC design where a

custom target architecture with multiple processing elements

is still to be derived, and where a chain of tools (rather than a

single compiler) will be used to derive the end implementation.

Second, the C language itself poses numerous challenges for

system design tools. The freedom available through a range

of programming constructs make the models ambiguous to the

system design tools. Commonly used constructs such as C

pointers, dynamic memory allocation, recursion, and more, re-

sult in ambiguities and negatively affect the analyzability, ver-

ifiability and synthesize-ability of the tools.

System design tools require a clear structure and analyzability

in their input models. The model features expected by the de-

Specification Model

Refinement-1

Intermediate Model-1

Refinement-N

Intermediate Model-N

Implementation Model

Capture/Re-Coding

Less than 1
week

12-14 weeks

...

...

Manual

Automatic

Reference
Model

Fig. 1. Motivation: Design time of MP3 decoder in a refinement-based

system design flow [1].

sign tools depend on the tasks undertaken by the tools. For in-

stance, system-level architecture exploration, which performs

tasks such as partitioning and mapping of application onto an

abstract architectural platform, often requires explicit specifi-

cation of code and data partitions in models. Similarly, synthe-

sis tools typically require models without pointers, recursive

functions, dynamic memory allocation, and so on. Since struc-

tural hierarchy is one essential feature needed by system design

tools, we address the problem of creating well-structured SoC

models in this paper.

A. Motivation

Structural hierarchy is a critical property needed by system

design tools [7]. With a well-structured model, the architec-

ture exploration tools can attempt different code partitioning

by grouping and re-grouping different encapsulated blocks and

mapping them onto different components in the virtual archi-

tecture.

In order to study the intricacies and complications involved in

creating a system specification, we applied a top-down design

methodology, as shown in Figure 1, to the example of a multi-

media application, a MP3 audio decoder. Here, the design pro-

cess starts with an abstract specification model which is then

refined to create models at lower abstraction levels, including

transaction-level, bus-functional and implementation models.

After a series of refinement steps, an actual implementation

model is finally derived. Each of the refinement steps in the

design flow is automated to the extent that model generation is

5B-3

440978-1-4244-1922-7/08/$25.00 ©2008 IEEE

Global Variables
Global Functions

Parameters

Local variables

(a) Syntactical hierarchy in C code (b) Syntactical hierarchy in SLDL code

Global Variables

Global Functions

Parameters

Local variables
Classes

Ports
Member variables
Instances

Methods
Parameters

Local variables

Fig. 2. Hierarchy of scopes in C and SLDL

fully automatic, and the designer has to only make the design

decisions such as component allocation, mapping and schedul-

ing. Due to this automation, we were able to implement our

MP3 decoder model, an industry-size application, in less than

one week [3]. In contrast, manually re-coding the MP3 ref-

erence code into a structured specification model took 12-14

weeks. Writing and re-writing this model was the main bot-

tleneck of the whole design process. More than 90% of the

overall design time was spent in creating this model.

Also, we need to emphasize that specification capturing is not

a one time task. Every time a change in the design is re-

quired for a successful refinement step, it is necessary to re-

code/change the input specification (as shown by back arrows

in Figure 1), making the whole task of specification writing

iterative. Such interruptions in the design flow cause costly

delays. The problem of lengthy re-coding of models is also

emphasized in [11, 8].

In this paper we present a set of automatic source code trans-

formations needed to create structural hierarchy in the system

model. These transformations are integrated into a program-

ming environment which facilitates fast conversion of ”flat” C

code into a hierarchical system model.

B. Related Work

The effectiveness of today’s system design flows depends on

the quality of the initial specification model. However, the cre-

ation of this model from the readily available C references is

a problem which has not received much attention. Typically,

the designer is expected to manually create the specification

of acceptable quality to suite tools. [12] provides user guided

transformations for functional partitioning and structural re-

organization to transform a system level specification in sys-

tem design language (SDL [10]) into a HW/SW architecture

in C/VHDL. Unlike this work, our work focuses on creating

a model with structural hierarchy from a flat unstructured C

code. The Compaan tool-set [13] transforms a sequential appli-

cation written in Matlab into a Kahn Process Network that acts

as input model for architecture exploration of multiprocessor

architectures. Sprint [14] from IMEC transforms a sequential

C program to a task-level pipelined program in SystemC, with

user-defined task boundaries. Unlike these, the primary focus

of our work is to create a well-structured and analyzable model

in System Level Design Language (SLDL) from C code under

the control of the designer. In our approach, the designer is not

restricted to one type of model. Instead, she/he has complete

Model 0 Model 1 Model N

n Global functions

m Global variables
n Global functions

m Global variables

1 Main Class
n' Classes
m' Members

0 Global functions
0 Global variables

N stepsStep-1

Fig. 3. Introducing structural hierarchy

control (”designer-in-the-loop”) to code/re-code the model in

order to arrive at the most suitable specification model.

II. MODELING STRUCTURAL HIERARCHY

The ”flat” C language is insufficient when it comes to mod-

eling structural hierarchy. System Level Design Languages

(SLDLs) such as SystemC [9] and SpecC [7], which are super-

sets of the C language, have the necessary language extensions

to specify structural hierarchy and to isolate computation from

communication. In particular, SLDLs provide an extra level

of scope compared to the C language. This difference is de-

picted in Figure 2. In case of C, there are only 2 major levels of

hierarchy, global scope which consists of variables and global

functions, and local scope consisting of function parameters

and local variables. Elements in the global scope are globally

available across the whole program.

In SLDLs, in contrast, there is an additional level of hierarchy

available through classes which represent modules/behaviors

and channels. This class scope contains ports, member vari-

ables, instances of other classes, and methods. Methods, just

like functions, have their own local scope consisting of local

variables and parameters 1. Connectivity from higher levels to

the class scope is available through ports. This additional level

of hierarchy available in SLDLs is used to describe structural

hierarchy in SoC models.

Though C functions can be thought of as computation encap-

sulation entities, as such they are insufficient in providing iso-

lation from communication. System design tools require com-

putation blocks, communication channels and interfaces to be

explicitly specified. SLDLs provide behaviors and channels

to capture the computation and communication, respectively.

These encapsulation entities provide a means to explicitly and

unambiguously specify the communication interface through

ports. Ports provide a means to specify not only the data type,

but also the type of access (Read, Write, Read-Write) using

in, out, and inout directions. Use of behaviors/modules with

proper port mappings makes it possible to statically represent

and analyze the structural hierarchy and connectivity of a de-

sign model.

A. Problem Definition

Introducing structural hierarchy in flat C code in order to cre-

ate a well-structured SoC model in SLDL involves introducing

this new class scope and encapsulating the global variables and

global functions. Local scopes of functions are also encapsu-

lated within the class scope. This problem of introducing struc-

tural hierarchy is depicted in Figure 3. The initial flat C model,

1Minor levels of scopes are also possible through compound statements in

both C and SLDLs. These, however, omitted in the figure for brevity.

5B-3

441

f1()

f2()

f4()

f3()

B_f1 B_f2

B_f3 B_f4

i_b_f2 i_b_f3

i_b_f4

(a) Function call hierarchy (b) Syntactical SLDL hierarchy

B_f1

B_f2

B_f3

B_f4

(c) Structural hierarchy

Fig. 4. Converting function call chain to structural hierarchy

Model0, with n global variables and m global functions, is first

converted into a SLDL model, Model1, with one initial Main

class. Typically, this initial class becomes the testbench of the

design into which other classes including the design-under-test

(DUT) are successively instantiated. Following this, the global

functions in the model are encapsulated in a new class scope in

a series of N iterative steps creating n′ classes with m′ member

variables, and ideally 0 global entities.

This problem of introducing structural hierarchy includes 3

sub-problems:

1. Encapsulating n global functions into n′ classes, by fol-

lowing the function call hierarchy in top-down order

2. Analysis to determine the variables affected by introduc-

tion of new class scopes

3. Migration of global and local variables into appropriate

class scope, global scope or local scope.

4. Establishing connections through channels, ports and pa-

rameters to make the communication explicit.

As we can see, creating structural hierarchy is a complex pro-

cess, which is very error-prone and time consuming when per-

formed manually. In this paper, we propose a technique that au-

tomates most of these tasks. In particular, the tasks of analysis,

encapsulating and establishing connections can be automated.

Only the tasks requiring decision making based on application

knowledge and designer experience, such as determining the

functions to be encapsulated and the destination of migrating

variables, are controlled by the designer. In the next section,

we will present our source level transformations that imple-

ment this approach.

III. CREATING STRUCTURAL HIERARCHY

The partial structure available in the C code in the form of

functions can be used as starting point to create a proper struc-

tural hierarchy in the model. Most functions can be encap-

sulated into separate behaviors to create a modular SoC model.

By static analysis, the function call hierarchy of the overall pro-

gram is generated. Figure 4(a) shows an example function call

hierarchy2. Function f1() calls f2()which in turn calls f3() and

f4(). This call chain is then traversed in the hierarchical or-

der and the functions are encapsulated in behavior shells with

definite interface. Figure 4(b) shows the resulting syntactical

structure after encapsulation. Figure 4(c) shows the structural

2Note that function hierarchy only provides information about a function

and the child functions it calls. It does not indicate the order of the functions.

int func(int w, int x, int *p)

{ *p = w+x+*p}

/* … */

pointer = &s

c= func (a, b[i], pointer)

/*…*/

}

I: {R:a, R:b[10], R: i, RW:s, W: c }

Complete interface

(a) Code Snippet (b) Interface of func()

Fig. 5. Determining statically analyzable interface of code blocks

1. int a[32], b[16], c, d, x;
2. …
3. x = i *i; //CAT(x) in this block is RW
4. a[i]++; //CAT(a) in this block is RW
5. a[2i] = c+d; //CAT(c,d) in this block is R
6. b[i] = c*d-x; //CAT(b) in this block is W

Fig. 6. Cumulative access of variables in a block

hierarchy of the resulting model.

More specifically, the process of encapsulating C code blocks

into behaviors involves multiple steps:

(a) Determining the statically analyzable interface of the se-

lected block of C code

(b) Re-coding to encapsulate the block in a behavior/module

class

(c) Instantiating the new class and replacing the function call

with a call to the new instance

A. Statically analyzable interface

The interface of an encapsulating class is the list of data

items the class accesses. An unambiguous interface contains

access type information (direction) and does not include point-

ers, and does not depend on run-time values. When all the

classes in the model have a well-defined interface, the design

tools can fully rely on this interface without having to analyze

the body of the block. Figure 5 shows a piece of C code and

the corresponding interface of a function func().
The complete interface contains the access type information

(such as read/write). This information will be later used to gen-

erate the appropriate direction of the ports (in, out, inout). The

interface of a block is determined by analyzing the Cumula-

tive Access Types (CAT) of all the variables within the block,

and reveals the access type of all contained scalar and vector

variables. The overall access of a variable in a block is the ac-

cumulation of all local accesses in the individual expressions,

as shown in Figure 6[4]. This can be represented as

CAT (var) = ∪Access(expr),∀expr ∈ block

We classify the cumulative accesses to variables into 3 cat-

egories, Read(R), Write(W), and Read-Write(RW). Figure 6

shows variables with 3 different cumulative access types

(CATs). Since we want the interface to be statically analyzable,

for any vector accessed using a non-constant index variable, a

safe assumption is made and the whole array is assumed to be

accessed. If the access to the specific array elements cannot be

determined statically, as for b[i] in Figure 5, the complete in-

terface includes the whole array b and the index i. If there is a

5B-3

442

B_f1

Parent Behavior

void f1 ()
{…
}

f1();

…

…

I_B_f1.main();

Parent Behavior

void f1 ()
{…
}

…

…

I_B_f1

(a) Initial structure with global function (b) Global function encapsulated in behavior
(syntactical structure)

New behavior

B B

Fig. 7. Encapsulating function into behavior

pointer in the interface, then using the pointer the block could

access more than one variable at run-time. This ambiguity is

overcome by using a flow-insensitive and context-insensitive

pointer analysis [2] and replacing the pointer with the actual

variable it points to [5]. In Figure 5 the pointer is replaced with

the actual variable s. Note that the return value of the function

(variable c) must also be considered as part of the interface

(with write access type).

B. Encapsulating functions

The overview of re-coding involved in converting a function

into a behavior is shown in Figure 7. The figure only shows the

encapsulation aspect of structural hierarchy and not the con-

nectivity aspect. The interface generated in the previous step

is used to create the port list of the new behavior. Each port

contains the direction information (in, out, inout) which is de-

rived from the cumulative access information determined in the

previous step. Figure 8(a) shows an example model with be-

havior B calling function f1(). This function is encapsulated

into a new behavior B f1 as shown in Figure 8(b). The func-

tion call is re-scoped from its original scope into the new scope

of the behavior (B f1). The new behavior is created with the

body containing a function call to the function (line 3 in Fig-

ure 8(b)).

After creating the new behavior, the behavior needs to be in-

stantiated. The new behavior is instantiated (I B f1) in its par-

ent behavior (B, line 13). The port map needed for the instan-

tiation is generated by analyzing the function arguments and

using the port list of the newly created behavior as reference.

The port map for instance I B f1 is (a, b, i1, s, result). Also

note that, the variables a, b, i1, s, which were originally in the

local scope of function B::main(), are now re-scoped into B.

This is necessary as these variables are needed for port map-

ping. After creating the instance, the original function call in

parent behavior B is replaced with the call to the newly created

instance (line 21).

C. Encapsulating statements

Similar to encapsulating functions, regular C statements can

also be encapsulated. This transformation is necessary to en-

capsulate statements that exist between instances of behaviors

so as to have a clean composition of behaviors at each hier-

archical level. This transformation is similar to encapsulating

functions and thus left out for brevity.

D. Establishing connectivity

Encapsulating functions and statements is just one aspect of

structural hierarchy. After encapsulating the global functions,

1. behavior B (in int p1, in int p2,
out int result)

2. {
3. void main()
4. {
5. int i1, a, b[10], s, *pa;
6. a = p1+p2;
7. s = p1-p2;
8. pa = &s;
9. …..
10. result = f1(a, b[i1], pa);
11. …..
12. }
13. int f1(int w, int x, int *p)
14. { *p = w+x+*p;
15. return *p;
16. }
17.};

(a) Original model (Model 1) (b) Function encapsulated in behavior (Model 2)

1. behavior B_f1(in int w, in int
x[10], in int i, inout int s, out int c) {

2. void main()
3. { c= f1(w, x[i], &s);
4. }
5. int f1(int w, int x, int *p)
6. { *p = w+x+*p;
7. return *p;
8. }
9. };
10. behavior B (in int p1, in int p2, out int

result) {
11. int a, b[10], i1, s;
12. //Instantiate child behavior here
13. I_B_f1(a, b, i1, s, result);
14. void main()
15. {
16. int *pa;
17. a = p1+p2;
18. s = p1-p2;
19. pa = &s;
20. …..
21. I_ B_f1.main();
22. …..
23. }
24. } ;

Fig. 8. Encapsulating function into behavior

the global variables in the global scope must be migrated from

the global scope to a class scope where they are used. After do-

ing so, since the variable is no longer global, explicit connec-

tion needs to be established by inserting ports in all the behav-

iors recursively across the entire hierarchy of behaviors. This

transformation analyzes the access of the variables across the

program and determines the lowest common parent scope. The

variable is migrated into that scope and establishes the connec-

tion by inserting ports and parameters in all the behaviors and

functions affected. This transformation is discussed in detail in

[6].

IV. RECODING COMPLEXITIES

The automatic transformations must generate a model that

is syntactically correct and semantically the same as the initial

flat model. Though the program transformations described in

the previous section seem straightforward and simple, there are

complexities which, if not addressed, could result in incorrect

code. Some of these complexities arise because of the differ-

ence in the semantics of the functions and behaviors. For ex-

ample, the semantics of function parameters is different from

the semantics of ports. When function parameters are replaced

with ports, it is necessary to maintain the pass-by-value and

pass-by-address semantics. This is ensured by adhering to strict

recoding rules. For example, a function parameter passed as

value can only be replaced with an in port irrespective of how

the variable is accessed within the function body. Function pa-

rameters passed as address can be replaced with any of the ports

as determined by CAT analysis.

Some of the complexities arise because of the programming

style. Since expressions cannot appear in the portmap of an

instance3, expressions in function arguments such as w+x in

line 3 of Figure 9(a) must be first evaluated into a temporary

variable wx (line 6 in Figure 9(b)) and this temporary variable

is used for portmapping (line 4). Similarly, when the return

value from the function is ignored or read implicitly (line 3

Figure 9(a)), an explicit variable (retval) is created to hold the

return value and all the implicit reads of the return value are

replaced with the explicit read of this variable as shown by the

3Having an expression in the the portmap results in ambiguity regarding the

location of the expression evaluation.

5B-3

443

1. int func(int, int, int);
2. /*…*/
3. if (func(w+x, y, z))
4. { /* do */
5. }

1. behavior B_func (in int, in int, in int, out int);
2. /*…*/
3. int wx, retval;
4. B_func I_B_func (wx, y, z, retval); //Instance
5. /*…*/
6. wx=w+x;
7. I_B_func.main();
8. if (retval)
9. { /* do */
10.}

(a) Initial code with function func() (b) Code after replacing func() with behavior

Fig. 9. Recoding complexities

modified if structure in line-3. When a variable in the local

scope of the function is migrated into a class, it becomes a static

variable and becomes available in the larger scope, thus becom-

ing available to all the members in the scope. The transforma-

tion has to ensure renaming of the variable in case of name

clashes.

The other complexities due to use of arrays and pointers in

function calls are handled as described in Section B.

V. RESTRICTIONS

Though the transformations are automatic and handle most

of the practical C codes, some programming constructs can-

not be handled by our transformations. Encapsulating func-

tions applies only to internal functions, as opposed to exter-

nal/library functions. If the pointer analysis fails to determine

the target variable, or if the pointer is determined to point to

more than one variable, then the transformation is not per-

formed. Further, encapsulating statements is difficult in pres-

ence of conditional goto statements which could transfer the

control flow into the statement block under consideration.

VI. SOURCE RE-CODER

The structure of the SoC model depends on the underlying

platform, application and also the architecture the designer has

conceptualized. It is necessary to give control to the designer

so that she/he can create a model that is most suitable to their

needs. Further, in many C codes designer’s inputs are critical

in resolving many statically unanalyzable coding scenarios in-

volving pointers, unstructured control flow (goto statements),

recursive functions, and more. For example, in the context

of introducing structural hierarchy, when there exists multiple

function calls to the function being encapsulated, designer in-

put is needed to decide the number of instances to be created.

Meeting these requirements necessitates a designer-controlled

environment, where the designer makes the design decisions

and the tedious recoding happens through automation.

To aid the designer in coding and re-coding, we have integrated

our transformations into a source re-coder. The source re-coder

is a controlled, interactive approach to implement analysis and

recoding tasks. In other words, it is an intelligent union of ed-

itor, compiler, and powerful transformation and analysis tools.

The re-coder supports re-modeling of SLDL models at all lev-

els of abstraction. It consists of 5 main components:

• Textual editor maintaining textual document object

• Abstract Syntax Tree (AST) of the design model to cap-

ture the structure of the program

• Preprocessor and Parser to convert the document object

into AST

• Transformation and analysis tool set

• Code generator to apply changes

When the transformation to create structural hierarchy is in-

voked, the functional hierarchy of the input program is first

presented to the designer. The designer invokes the automatic

transformations on selected functions based on her/his knowl-

edge of the application with a click of a button. The source

code transformations are performed and presented to the de-

signer instantly in the editor window. AST is designed to cap-

ture the complete structure of the program so that the code gen-

erator can generate the code in its near original form. The de-

signer can also make changes to the code by typing and these

changes are applied to the AST on-the-fly, keeping it updated

all the time. This intelligent mix of application knowledge and

the automation of the recoding makes our transformation very

effective. Using source recoder, tedious and time-consuming

manual programming is replaced by automatic programming.

VII. EXPERIMENTS AND RESULTS

We applied our source recoder on different real-life embed-

ded C codes to create models with structural hierarchy. The

transformation were implemented to create a well-structured

model in SpecC [7] SLDL. First, we will demonstrate the use

of source recoder on a MP3 decoder design example. The MP3

example had 30 functions and spanned around 3000 lines of

code. Using the source recoder 43 behaviors were introduced

to create the structured model. First the major functions were

converted into behaviors, following which the C statements be-

tween them were encapsulated. Note that not all the functions

were encapsulated into behaviors as some of the functions were

too small and were called too often to be regarded as special

computation blocks. An example code structure of part of the

code segment and the corresponding structural hierarchy cre-

ated using our source re-coder is shown in Figure 10.

The main advantage of creating structural hierarchy and mak-

ing the model more analyzable is to enable automatic design

exploration. To conduct automatic design exploration, we used

the SCE tool-set [1]. The automatic refinement tool expects

a model with clean structural hierarchy with all the compu-

tation blocks completely encapsulated. At every hierarchical

level, the tool expects the behavior to contain either only C

code (such behaviors known as leaf behaviors) or composed of

behavior instances. Using one such structured SoC model of

the MP3 decoder, we were able to evaluate 6 different HW/SW

architectures using the SCE architecture refinement tool.

A. Productivity factor

Our source re-coder results in significant reduction in de-

sign time of the SoC model. To demonstrate this, we applied

the source recoder on different industrial strength design exam-

ples. Four of these examples are listed in Table I. Each of these

examples spanned few thousand lines of code. The table pro-

vides the number of functions in the input C code and number

of behaviors that were introduced to create well-structured SoC

model. The behaviors were created by encapsulating functions

and statements. The functions for encapsulation were chosen

based on our knowledge of the application. Small functions

5B-3

444

decodeMP3

do_layer3

III_antialiasIII_dequant III_hybrid

III_i_stereoIII_synth_1to1

B_decodeMP3
B_do_layer3

B_III_dequant

B_III_antialias

(a) Partial function hierarchy in MP3 code

B_III_hybrid

B_III_i_stereo

B_synth_1to1

(b) Structural hierarchy in the MP3 code

B_dct64

dct64

Fig. 10. MP3 code strucutral hierarchy

TABLE I

PRODUCTIVITY GAIN FOR DIFFERENT EXAMPLES

Properties JPEG Float-point MP3 Fix-point MP3 GSM

Lines of C code 1K 3K 10K 10K

C Functions 32 30 67 163

Lines of SpecC code 1.6K 7K 13K 7K

Behaviors created 28 43 54 70

Re-coding time ≈ 30 mins ≈ 35 mins ≈ 40 mins ≈ 50 mins

Manual time 1.5 week 3 weeks 2 weeks 4 weeks

Productivity factor 120 205 120 192

which are called often, such as getbits(), were left as global

functions. Using the automatic transformations in the source

recoder, these models were created in a matter of minutes. In

the past, these transformations were conducted manually on

each of these examples by different designers. This manual

recoding took weeks of development time as shown in Table I.

Using our source recoder, the well-structured SoC models were

created in the order of minutes instead of weeks, resulting in

large productivity gains.

VIII. SUMMARY AND CONCLUSIONS

The lack of structural hierarchy and the presence of ambi-

guities makes the direct adoption of C code for system explo-

ration and synthesis difficult. The design exploration and sys-

tem synthesis tools require models with clean structural hierar-

chy, where the computation blocks are encapsulated and have

a statically analyzable interface. The quality of this input SoC

model directly determines the effectiveness of the system de-

sign tools. Creating this structural hierarchy and preparing the

models for system synthesis is a critical and extremely time

consuming task when performed manually.

In this paper, we proposed automatic source transformations to

create models with structural hierarchy from the C code. The

transformations use the existing partial structure available in

the form of functional hierarchy to create behaviors with static

interface. To control the structure of the model being gener-

ated, the transformations are made available to the designer

in the form of an intelligent editor. The designer selectively

chooses significant functions and statement blocks to be en-

capsulated and interactively invokes the transformation tools to

realize the code transformations on-the-fly.

We showed that the transformations are effective on real-life

design examples. The original code with flat structure, which

made the automatic architectural exploration tool ineffective,

was transformed into a structured model which could facilitate

exploration of multiple HW/SW partitionings. This automa-

tion of tedious recoding tasks and use of designer’s knowledge

makes our source recoder effective on real-life examples and

results in large productivity gains.

ACKNOWLEDGMENTS

The authors thank the members of the System-on-Chip En-

vironment group in the Center for Embedded Computer Sys-

tems at UC Irvine for providing the SCE tool-set for our exper-

iments.

REFERENCES

[1] S. Abdi, J. Peng, H. Yu, D. Shin, A. Gerstlauer, R. Dömer,

and D. Gajski. System-on-chip environment (SCE version 2.2.0

beta): Tutorial. Technical Report CECS-TR-03-41, CECS, Uni-

versity of California, Irvine, 2003.

[2] L. O. Andersen. Program Analysis and Specialization for the
C Programming Language. PhD thesis, DIKU, University of

Copenhagen, May 1994.

[3] P. Chandraiah and R. Dömer. Specification and design of an

mp3 audio decoder. Technical Report CECS-TR-05-04, CECS,

University of California, Irvine, 2005.

[4] P. Chandraiah and R. Dömer. Designer-controlled generation

of parallel and flexible heterogeneous MPSoC specification. In

DAC, 2007.

[5] P. Chandraiah and R. Dömer. Pointer re-coding for creating

definitive mpsoc models. In CODES, 2007.

[6] P. Chandraiah, J. Peng, and R. Dömer. Creating explicit commu-

nication in SoC models using interactive re-coding. In ASPDAC,

2007.

[7] A. Gerstlauer, R. Dömer, J. Peng, and D. D. Gajski. System
Design: A Practical Guide with SpecC. Kluwer Academic Pub-

lishers, 2001.

[8] A. Gerstlauer, S. Zhao, D. D. Gajski, and A. M. Horak. SpecC

system-level design methodology applied to the design of a

GSM vocoder. In Proceedings of the Workshop of Synthesis and
System Integration of Mixed Information Technologies, Kyoto,

Japan, April 2000.

[9] F. Ghenassia. Transaction-Level Modeling with SystemC : TLM
Concepts and Applications for Embedded Systems. Springer-

Verlag, 2006.

[10] International Telecommunication Union (ITU). Specification
and Description Language (SDL), November 1999. ITU-T Rec-

ommendation Z.100.

[11] A. Jerraya, H. Tenhunen, and W. Wolf. Guest editors’ introduc-

tion: Multiprocessor systems-on-chips. Computer, 38(7):36–40,

2005.

[12] G. F. Marchioro, J.-M. Daveau, and A. A. Jerraya. Transforma-

tional partitioning for co-design of multiprocessor systems. In

ICCAD, 1997.

[13] A. Pimentel, L.O.Hertzberger, P. Lieverse, and P. Wolf. Explor-

ing embedded-systems architectures with artemis. IEEE Trans-
actions on Computers, 34(1), November 2001.

[14] Sprint parallelizes real life applications for embedded systems.

http://www.imec.be/design/sprint/.

5B-3

445

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

