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Abstract

This report presents a C/C++ based system design flow that uses SpecC, VCC and SystemC tools. The
design starts with a pure C model that is then converted into a SpecC model. A so-called behavior exploration
task then takes place to analyze and optimize the system behavior. We then perform architectural exploration
using VCC. Once this is complete, the behavior model is refined to an architecture model utilizing the SpecC
methodology and the SpecC refinement tool. Finally, the design is linked to implementation using SystemC.
We utilize this design flow to achieve the design from C to silicon in an efficient manner. An example of the
JPEG encoder is utilized to prove this methodology.
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C/C++ Based System Design Flow Using SpecC, VCC and
SystemC

Lukai Cai Mike Olivarez
University of California, SPS,Motorola
Irvine
Abstract

This report presents a C/C++ based system design flow
that uses SpecC, VCC and SystemC tools. The design
starts with a pure C model that is then converted into a
SpecC model. A so-called behavior exploration task then
takes place to analyze and optimize the system behavior.
We then perform architectural exploration using VCC.
Once this is complete, the behavior model is refined to an
architecture model utilizing the SpecC methodology and
the SpecC refinement tool. Finally, the design is linked to
implementation using SystemC. We utilize this design flow
to achieve the design from C to silicon in an efficient
manner. An example of the JPEG encoder is utilized to
prove this methodology.

1 Introduction

System-level design issues are becoming
increasingly critical as implementation technology
involves more and more complex integrated circuits
and software programs. In addition, time-to-market
pressures are increasing. A potential solution to
improve the time and quality of a complex system
design is to make design decisions at higher levels of
abstractions. This would also allow for the reuse of
larger design components.

There appears to be an increasing trend towards
the use of the C/C++ language as a basis for the next
generation modeling tools and platform based design
methodology to encompass design reuse. However,
even with this convergence, industry is suffering the
pain that there is no one tool and no one complete
design methodology that can implement a top-down
design methodology from C to silicon. Even more
mature modeling environments such as VCC face
significant hurdles in achieving a complete top-down
flow [3][4][5].

In this report we suggest a C/C++ based top-
down design flow from C to silicon, to make the
system design smooth and efficient, by using
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currently available tools. We developed our design
methodology by using SpecC [1][2], VCC [3][4][5],
and SystemC [6][7][8]. Although there are some
other tools and methodologies, such as SPADE [9],
Ptolemy [10], and Polis [11], we choose SpecC, VCC
and SystemC because they are all C-related and each
has strong support in at least one field of design. We
made the design flow based on our experiences of
attempting to model the JPEG encoder with SpecC,
SystemC and VCC, and one internal project,
attempting to implement architecture exploration for
MPEG encoding and decoding using VCC.

The report is organized as follows: section 2
introduces the design flow; section ¢) describes the
behavior exploration; section4 describes the
architecture exploration; in section 5 and section 6,
model refinements are introduced. Finally,
conclusions are given in section 7.

2 Top-down design flow

As shown in Figure 1, we describe the system on
3 different levels of abstraction:

Behavior level: system model at the behavior
level only represents system functionality, without
any timing information.

Architecture level: system at the architecture
level is described with a set of interconnected
components, each of which represents a computation
component or a storage component of architecture.
Wires representing system buses connect the ports of
architecture components. The model of each
architecture component is functionally correct with
added abstract timing information.
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Figure 1 Top-down design flow overview.

Implementation level: the implementation level
describes computation components in terms of
register transfers executed in each clock cycle for
custom hardware or in terms of instruction sequence
for software.

To start design from the behavior level and to end
design at the implementation level, designers should
accomplish four tasks.

a) Behavior exploration: it analyzes and optimizes
the behavior model.

b) Behavior-architecture refinement: it refines the
behavior model to the architecture model.

c) Architecture exploration: it allocates system
components, maps the behavior to the
architecture, and schedule different behavior
blocks.

d) Architecture-communication refinement: it
refines the architecture model to the
implementation model.

Ideally, the entire design process should be
accomplished by using one language to model three
different levels of abstraction and using tools to do

four tasks. However, currently there is no one tool
that can go through the entire design flow efficiently.
A variety of tools supporting various languages must
be used to get the greatest return on tool capabilities
and people’s skills. Therefore, we use SpecC, VCC,
and SystemC together for our design flow, which is
shown in Figure 1 and Figure 2.

The SpecC methodology is a top down
methodology. It provides four well-defined levels of
abstraction (models). Among the four models, SpecC
specification model is at the behavior level while
SpecC communication model is at the architecture
level. SpecC methodology also provides a well-
defined method for moving down these successive
levels. In terms of assisting in this process, SpecC
today provides a profiler at the specification model,
and a model refinement tool to help in the
conversion from specification model to
communication model. We use SpecC for behavior
exploration and behavior-architecture refinement.

VCC [3][4][5] is a behavior/architecture co-
design and design export tool. VCC models a system
at the behavior level by the use of whitebox C, a
tool-specific C based language. By mapping the
behavior blocks to virtual architecture components
saved in the VCC library, VCC estimates the system
performance, which helps designers to select the
suitable architecture and behavior-architecture
mapping solution with the best performance.
Therefore, we use VCC to implement architecture
exploration.

SystemC is a C++ class library that can be used
to create a cycle-accurate model for software
algorithms, hardware architectures, and interfaces,
related to system-level designs [6][7][8]. Compared
with SpecC, it has more powerful support for the
RTL model of hardware design. Moreover, SystemC
co-simulation and synthesis tools can help to
generate RTL level design model from the
architecture level. Thus, we use SystemC for
architecture-implementation refinement.
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Figure 2: Detailed system design flow

Note that in the design flow, we model the system
by four different languages: standard ANSI-C as
input, SpecC as behavior model and architecture
model, VCC as behavior model, and SystemC as
architecture model and output implementation
model. Converting ANSI-C behavior model to SpecC
behavior model is relatively easy because SpecC is a
C-based language. Converting SpecC architecture
model to SystemC architecture model is also smooth
because SpecC is C based and SystemC is C++
based, which also supports ANSI C. Furthermore,
both of them support similar system design concepts,
such as event and wait. However, we met difficulties
when converting SpecC behavior model to VCC
behavior model because VCC behavior modeling
uses a graphical integration scheme. Thus, we
generated a SpecC-VCC converter to automatically
implement the necessary language conversion.

3 Behavior exploration

Current platform based design methodologies,
such as VCC’s, focus on performing behavior to
architecture mapping and exploring various
combinations of mapping [3][4]. This provides a
limited opportunity for system performance
optimizations. Purely architectural exploration has
the disadvantage that system performance can only
be estimated after architecture mapping has taken
place. This limits the opportunity to see more global,
inter-behavioral optimization opportunities.

We strongly believe that the system behavior and
the interaction between behavior blocks should be
completely understood and explored before behavior
to architecture mapping and exploration takes place.
An initial behavior based exploration, called
behavior exploration, allows for better heuristics
when selecting the behavior to architectural
component mapping. For example, since system level
design consists of many architectural components
(processors, ASICs, and IP blocks), parallel and
pipelined execution possibilities among behavior



blocks at the behavior level needs to be exploited.
However, when using pure platform based design,
behavioral exploration is done within the constraints
of the chosen architectural components. Because of
this, opportunities for performance optimization
would be missed by an exploration of different
architectural mappings before performance
estimation. (In  VCC, performance profiling
capability is provided by wusing a built in
microprocessor model with associated compiler and
profiling tool). These missed opportunities reduce
functionality or speed capabilities and optimizations
in the final design.

Behavior modeling is not a straightforward task
because it must take into account later architecture
exploration. Furthermore, behavior modeling for
optimized system level design is different from the
algorithm modeling associated with pure software
design. We also believe a good top-down model for
system level design should allow for performance
estimation of the design is understood before and
after the mapping process takes place.

In this section, we first discuss some confusion
between behavior and architecture, and then we
discuss the difference between a pure software model
and a system level design model. Finally, we
introduce the behavior exploration.

3.1 Sequential programming model vs.
parallel programming model

ANSI-C programs consist of a number of
functions. The executing sequence among function
calls is sequential. Therefore, this is the sequential
programming model.

In general, hardware language consists of a
number of components executing in parallel, which
can be called the parallel programming model.

One step of behavior exploration is the
conversion from a sequential programming model to
a parallel programming model.

3.2 Clean model and non-clean model

For the purposes of further discussion we need to
define two terms:

a) Clean computation: Behaviors are defined
hierarchically; each behavior can also contain a
number of behavior instantiations of other
behaviors. For example, in the C language,
behaviors are represented by functions, and the
behavior instances are represented by function
calls. In a clean computation behavior, only two
types of behaviors, leaf behavior and non-leaf
behavior, are allowed. Leaf behavior contains a
sequence of statements without any behavior
instances. Non-leaf behavior contains only
behavior instances without any statement
execution. Figure 3(a) is a leaf behavior, Figure
3(b) is a non-leaf behavior. Figure 3(c) is a non-
clean computation behavior.

b) Clean communication: In a clean communication
model, parameters are passed by value among
behavior instances. Figure 3(d) is a non-clean
communication model; Figure 3(e) is a clean
communication model.

If a model is both communication-clean and
computation-clean, it is a clean model. Otherwise, it
is a non-clean model. In general, C is a non-clean
modeling language. Hardware languages are clean
modeling languages. Thus, one step of behavior
exploration is the transition of a model from non-
clean to clean.

3.3 Behavior parallel, behavior pipeline
vs. architecture parallel

Neither the concept of pipelining nor parallelism
exists within the C language. However, to efficiently
perform behavior modeling, system level design
language must supports these concepts. Two terms
are defined for this purpose:

a) Behavior-parallel: Two behaviors are defined as
behavior-parallel if the execution sequence of
the two behaviors does not influence the
simulation result. Otherwise, the two behaviors
are defined as behavior-sequential.

b) Behavior-pipeline: 1f, within a sequential
programming model, a number of behaviors are
executed one after another in a loop body, and
behavior communicates only with the next
behavior, then the execution relation between
these behaviors can be termed as: behavior-
pipeline.
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Figure 3: Examples of clean computation and communication in C language.

Another term, namely architecture-parallel can
be defined as: if, during behavior to architecture
mapping, behavior A and behavior B are mapped to
different architecture components, then the
implementation relation between A and B is called
architecture-parallel.  Otherwise it is called
architecture-sequential.

During behavior-architecture mapping, if we map
either a set of behavior-parallel or behavior-pipeline
behaviors to different architecture components to
form architecture-parallel, then we reach a parallel
matching. Parallel matching is a necessary but not a
sufficient condition of parallel execution.

3.4 Choosing system level
language (SLDL)

First, we need to choose a system level design
language for behavior exploration. To understand
behaviors by behavior exploration, the chosen SLDL
must satisfy three conditions:

design

a) Ease and accuracy of profiling.

b) Ease of converting from original C language.

c) Ease of converting from one model to another
when the execution sequence of behaviors
changes.

We evaluated both the SpecC and SystemC
languages for behavior exploration by using the
JPEG encoder example. SpecC is considered the
better language for this task.

3.4.1 [Ease and accuracy of profiling

SpecC is a C syntax extension language. SystemC
is C++ library extension. The SpecC behavior model
can be profiled relatively easily. It is difficult to
accurately profile the SystemC model because of the
C++ class library burden, which does not allow for
the splitting of system computational needs from the
SystemC simulator’s computational needs.
Furthermore, SpecC provides a behavior profiler.

3.4.2 Ease of model converting

Since SpecC is an extension of the C-language, it
inherently supports sequential modeling. In addition,
SpecC has the added par and pipe keywords. This
allows for the explicit definition and modeling of
behavior-parallel, and behavior-pipeline execution.
Converting a C model to a sequential SpecC model is
simple because it only contains the syntax change,
which is illustrated by the example in Table 1.
Converting a sequential SpecC model to a parallel
SpecC model is also simple because it only contains
keyword (par/pipe) adding shown in Table 1.
Similarly, by adding or deleting par/pipe keyword,
designers can convert one model to another to
explore different execution sequences among
behaviors.



Original C SpecC model

SystemC model

model (sequential execution) (sequential execution)
main(){ main f) { sc_main() {
F1(); Fl.main(); F1 F2_inst(“inst1”);
F2(); o2matn 0 F2 F2_inst(“inst2”);
F3(); } smain () ; F3 F3_inst(“inst3”); }

SpecC model

(parallel execution)

SystemC model
(parallel execution)

main() {

par {
F1.main();
F2.main();

H
F3.main(); }

sc_main() {
F1 F2 inst(“inst1”);
F2 F2_inst(“inst2”);
F3 F3_inst(“inst3”); }

Table 1: Model example with SpecC and SystemC

On the other hand, the SystemC language only
supports parallel programming. Since SystemC
processes are executed in a parallel fashion, it does
not support explicit sequential execution. The
executing sequences of behaviors are determined by
a signal-trigger mechanism. This introduces
problems when converting a C model to SystemC
and converting from one model to another.

To convert a C model to a sequential SystemC
model, designers must keep adding trigger signals
and wait statements for each behavior. This is true,
although the top-level behavior of the SystemC
shown in Table 1 does not change much from the C
model. For example, to make F1 execute after the
execution of F2, designers must declare a signal
F1 done at the top level behavior, add a statement to
trigger FI _done at the end of the execution of F1,
and add a statement to wait F'/ _done at the beginning
of the execution of F2.

To convert a sequential SystemC model to a
parallel SystemC model, designers must delete old
trigger signals and add new signals. For example,
parallelization of F/ and F2 needs four steps. First,
designers delete the signal F/ done and related
statements inserted in the previous step. Second,
designers declare a new signal FI F2 start. Third,
designers add a statement to trigger FI _F2 start
before the execution of the top-level behavior.
Finally, designers add statements to wait
F1 _F2 start at the beginning of the execution of F/
and F2, respectively. Since the execution sequence
change is implemented by adding/deleting trigger

signals and related trigger/wait statements, the
processes of converting from one model to another is
tedious using SystemC.

Therefore, we choose SpecC rather than
SystemC for the behavior exploration.

3.5 Behavior exploration process

The tasks of behavior exploration are:

a) Convert a non-clean C model to a non-clean
sequential SpecC model.

b) Convert the non-clean sequential SpecC model
to a clean sequential SpecC model.

c¢) Determine the granularity of behaviors, merge
small behaviors, and split big behaviors based on
the profiling results.

d) Explore the specification in order to find
behavior-parallel and behavior-pipeline
attributes among behaviors and converting the
SpecC model by specifying parallel/pipeline
execution relationships among behaviors.

e) Determine the most time-consuming behaviors
by analyzing the profiling results.

f) Change the communication models among
behaviors in order to enable parallel execution.

In task ¢, we use the SpecC profiler to produce
the characteristics of behaviors. The SpecC profiler
estimates characteristics of behaviors by computing
sum of weighted operations based on a testbench
simulation utilizing a designer-provided weight



table. By analyzing these profiling results and the
structure of the code, the system designer can
determine the granularity of the design. Then
behaviors are merged and split accordingly.

In task d, we find the behaviors containing
behavior-parallel and behavior-pipeline in the
specification by using SpecC profiler. The SpecC
profiler provides statistics representing traffic and
connection between behaviors. Therefore, sets of
behavior-parallel and behavior-pipeline behaviors
are found.

After finding behavior-parallel and behavior-
pipeline, designers then update the original
sequential SpecC to specify parallel and pipeline
execution, by simply adding the par/pipe keywords.
The SpecC profiler is again applied to the updated
specification model in order to compute the
performance improvement given by parallel/pipeline
execution. The model is refined accordingly, with
the refinement being repeated until an optimal
performance is reached.

Finally, we re-model the communication. As we
mentioned before, parallel-match is the sufficient
condition of the parallel execution. Parallel-match
can guarantee the parallel execution if and only if
the communication among behaviors is modeled
correctly.

Handle > DCT » Quantiz » Huffman
data < < ation <

Figure 4: Sequential JPEG encoder model

Figure 4 shows an error-modeling example for a
JPEG encoder. After the Handle data completes its
execution, it sends the output(1l) to DCT. Similarly,
DCT sends the output(2) to the Quantization block,
Quantization block sends the output(3) to Huffman,
and Huffman sends the output(4) back to
Quantization, after their execution. Then the
output(4) triggers the output(5) produced by
Quantization, and the output(5) triggers the
output(6) produced by DCT. As long as Handle data
receives output(6), it starts the execution on the next
frame of data. Modeling the communication in this
way, the four behaviors are executed sequentially,
even they are mapped to four different architectural
components and have gained parallel match.

H1 D1 C1
Handle > DCT » Quantiz » Huffman
data < < ation <
H2 D2 Cc2

Figure 5: Pipeline JPEG encode model

To make four behaviors run in a pipeline fashion,
we remodel the communication among behaviors
shown in Figure 5. After successor behavior entity
receives input from its predecessor behavior entity, it
will immediately send an acknowledge back to the
predecessor behavior entity, which will trigger the
execution of its predecessor. For example, when
DCT receives input HI from Handle data, it
immediately sends the acknowledge H2 to Handle
data. As long as Handledata receives H2, it starts
execution on the next frame of data.

The resulting behavior model is clean and has
suitable granularity. It can be imported into the VCC
architectural exploration tool directly using VCC’s
graphical input capabilities, or indirectly using the
SpecC-VCC translator.

4 Architecture exploration

In this project, we use VCC as our architecture
exploration tool. We have built a translator to
convert from our SpecC behavioral model to a VCC
behavior model for importing into VCC.

VCC can estimate the system performance for the
implementation on different target architectures.
During performance estimation, it can handle bus
competition as well as different memory/cache
structures. We use VCC to evaluate the performance
of the architecture exploration result. In stead of
VCC, other third party tools can also be used for this
purpose.

During architecture exploration, we first choose
the system architecture. According to the heuristics
provided by behavior exploration under SpecC, we
then map behaviors to the architecture in order to
achieve parallel match. We also map time-
consuming  functions to  specific hardware
components for the fast execution time. After
behavior-architecture mapping, we evaluate the
performance of the implementation by using VCC.
If the design requirements are not met, then the



process of system architecture selection or the
behavior-architecture mapping will be repeated.

Because behaviors can be matched to different
components and platforms, a variety of Intellectual
Property (IP) components can be used in a mix and
match fashion from a variety of vendors. IP can be
exchanged at different levels of abstraction, from
behavior  definition for IP  protection, to
implementable hard and soft IP. This allows system
designers and integrators to take advantage of IP
reuse and exchange to reduce design cycle time with
greater quality of designs.

5 Behavior-architecture
refinement

After we derive the target architecture and
behavior-architecture mapping solution, we use the
SpecC refinement tool to refine the SpecC behavior
model to SpecC architecture model. The SpecC
refinement tools can automatically refine the
behavior model to the architecture model with
abstract communication (channel). Designers need to
refine channels to wires manually following the
guidelines of the SpecC Methodology [1].

6 Architecture-implementation
refinement

After behavior-architecture refinement, the SpecC
architecture model is then translated into a SystemC
architecture model. This translation allows for the
use of SystemC based synthesis tools. This
capability allows designers to take advantage of the
vast selection of design and verification tools that
currently exist to take care of the structural RTL
down to mask creation steps of the flow. Though
this is true, SystemC currently has and is working on
more capabilities that will allow designs done at
higher levels of abstraction to be more effective in
creating new products more quickly.

SystemC already supports a well-defined HDL
model and will support an RTOS and analog model
in the future [6]. Using SystemC, implementation
modeling and verification can be completed.
Furthermore, the SystemC behavior to RTL synthesis
tools can be used to generate an RTL model. Clearly
defined constructs for synthesis have been developed
for both behavioral and structural SystemC. Upon

ensuring the model follows these guidelines,
synthesis to the final product can be achieved.

By using the defined guidelines, models created in
SpecC or VCC can be translated to SystemC code
that will ensure the ability to synthesize to final
products. SystemC allows designers to make tweaks
in the translated design as needed at the RTL level.
This is helpful when creating minor changes that will
result in cost reduction re-spins of a product, as well
as ensuring better power utilization techniques are
used.

Because SystemC is C based, it is possible to
easily implement mixed mode simulations between
SpecC and SystemC models. This will allow for
quickly adding new functionality for product
derivatives, and verifying the product behavior
before committing to the complete design. The
down side remains that the simulation will only run
as fast as the lowest abstraction model level will
allow. This method should only be used if the
original higher abstraction level model is not
available and will take too long to create.

7 Conclusion

In this report, we provide C/C++ based system
design flow based on the use of the SpecC, VCC,
and SystemC. The report introduced the concepts of
behavior exploration under SpecC. These concepts
can be utilized to provide a suitable model and
heuristics for later architecture exploration under
VCC.

Our methodology is a C language-based
methodology, from specification to implementation.
Conversion from C to SpecC to SystemC is a logical
and straightforward process. IP can be modeled at
different levels of abstraction allowing for IP reuse,
exchange, and integration to be possible. SpecC and
SystemC languages enable tools to have a common
framework for interoperability. This allows
designers to utilize the best “point tool” solution for
the implementation of the methodology. Since both
languages use C as the underlying technology,
interoperability can be achieved.  This method
quickly converts the C model to an implementation,
resulting in decreased design cycle time.

In the design flow, the SpecC profiler, VCC
architectural exploration tool, SpecC refinement tool



and SystemC synthesis tools, all help to complete an
optimized system design. Using this methodology, a
JPEG encoder has been created and can be placed
into current synthesis tools. Although more
automation is needed, the methodology proves
design decisions and trade-offs can be easily made at
higher levels of abstraction, resulting in an easing of
the time to market pressure.
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