
Parallelization Optimization of System-Level
Specification

Lukai Cai
Daniel D. Gajski

Center for Embedded Computer Systems
University of California
Irvine, CA 92697, USA
{lcai, gajski} @cecs.uci.edu

Abstract
This paper introduces the parallelization optimization of system-level specification, which explores maximal

parallelism among functional blocks of the design. We introduce two tools, spec profiler and spec optimizer, to implement
the parallelization optimization automatically.

Index
1Introduction...1
2Implementation of Parallelization Optimization ..2

2.1 Parallelization Optimization Tasks ...2
2.2 Sequential Behavior Searching..2
2.3 Dependency Analysis ...3

2.3.1 Definition..3
2.3.2 Dependency analysis ...3

2.4 Instance Structure Optimization ..3
2.4.1 Hierarchical Parallel Structure ...3
2.4.2 Goals of Instance Structure Optimization..3
2.4.3 Algorithms for Instance Structure Optimization ..4

3Specification Modeling Process...8
4Experiential results..9

4.1 Manual Parallelization vs. Automatic Parallelization..9
4.2 Results for 10 Instance Examples ..9
4.3 Results for 20 Instance Examples ..9
4.4 Real Project Examples ..10

5Conclusion...11
Reference..11

List of Figures
Figure 1: Extended Gajski and Kuhn’s Y chart ..1
Figure 2: Example 1 of parallelization optimization..2
Figure 3: Parallelization optimization tasks ..2
Figure 4: Example 2 of parallelization optimization..3
Figure 5: Three types of ParGroup..5
Figure 6: Four cases of inserting instance x to a Flat ParGroup...5
Figure 7: Three cases of inserting instance x to a Par ParGroup..7
Figure 8: Three cases of inserting instance x to a Sequ ParGroup. ..8
Figure 9: An example of designers’ improvements on the results of constructive algorithm..8

List of Tables
Table 1 : Overview of three solutions for the example in Figure 9 ...8
Table 2: Design time of the manual parallelization..9
Table 3: Results for 10 instance examples..9
Table 4: Results for 20-30 instance examples ..10
Table 5: Results for JPEG and Vocode Project Examples...10

1

Parallelization Optimization of System-Level Specification
Lukai Cai, Daniel D. Gajski

Center for Embedded Computer Systems
University of California
Irvine, CA 92697, USA
{lcai, gajski} @cecs.uci.edu

Abstract
This paper introduces the parallelization optimization

of system-level specification, which explores maximal
parallelism among functional blocks of the design. We
introduce two tools, spec profiler and spec optimizer, to
implement the parallelization optimization automatically.

1 Introduction

In order to handle the ever increasing complexity and
time-to-market pressures in the design of system-on-
chips(SOCs) or embedded systems, the design has been
raised to the system level to increase productivity. Figure 1
illustrates extended Gajski and Kuhn’s Y chart[1]
representing the entire design flow, which is composed of
four different levels: system level, RTL level, logic level,
and transistor level. The thick arc represents the system
level design. It starts from the specification representing
the design’s functionality, which is denoted by point S.
The system level design then synthesizes the specification
to the system architecture denoted by point A. A system
architecture consists of a number of PEs (processing
elements) connected by buses. Each PE implements a
number of functional blocks in the specification. The
system level design contains a series of tasks including PE
allocation and behavior binding. PE allocation selects
PEs for the architecture. Behavior binding maps different
function blocks in the specification to different PEs.

In addition to tasks in existing system level design, we
add task specification tuning to the system design flow,
which is denoted by the dotted circle around point S.
Specification tuning not only reduces the complexity of
the specification, but also explores maximal parallelism
existing in the specification, which are used for tasks PE
allocation and behavior binding in later steps. For
example, if only two functional blocks can be executed in
parallel in the specification, then PE allocation will choose
no more than two PEs in the architecture because of parallel
execution. For the same reason, behavior binding also
maps the two functional blocks to different PEs.

Behavioral System

RTL

Logic

Transistor
S A

Architectural

Physical

Specification
tuning

Figure 1: Extended Gajski and Kuhn’s Y chart

This paper introduces the parallelization optimization
of specification tuning, which exploits maximal parallelism
among functional blocks of the design’s specification.
Designers can implement parallelization optimization
manually. In general, designers start modeling the
specification from existing C/C++ code. Since C/C++
language does not support parallelism, designers must
manually find the parallelism by analyzing the code or
designs’ algorithms, which is time-consuming.

After finding the parallelism among the functional
blocks in the specification, designers must determine the
hierarchical parallel structure of the specification. After
parallelization optimization, one original specification may
produce different hierarchical parallel structures. For
example, in Figure 2(a), functional blocks A, B, C, and D are
executed sequentially. In Figure 2(b), the dependencies
among the functional blocks are displayed. Block C can
only be executed after the execution of A, while block D
can only be executed after the execution of B. In Figure 2(c)
and (d), two possible hierarchical parallel structures are
shown. The functional blocks separated by dotted line
represent parallel executed blocks. In Figure 2(c), block C

2

and D are executed parallel after the parallel execution of A
and B. In Figure 2(d), block C is executed after A while
block D is executed after B. The execution of A and C is
parallel with the execution of B and D. Because one
original specification may produce different hierarchical
parallel structures, we prefer implementing parallelization
optimization structurally by tools rather than randomly by
hand.

A

B

C

D

(a) Original
executing sequence

A B

C D

(b) Dependencies
among functional blocks

A B

C D

A B

C D

(c) Solution 1 after
parallelization optimization

(d) Solution 2 after
parallelization optimization

Figure 2: Example 1 of parallelization optimization

Therefore we make two tools, spec profiler and spec
optimizer, to implement parallelization optimization
automatically: spec profiler analyzes the dependencies
among functional blocks; spec optimizer finds out the
hierarchical parallel structure with maximal parallelism. We
compared the manual parallelization with the automatic
parallelization and concluded the automatic parallelization
produced better results in terms of design time and
hierarchical parallel structures.

We use SpecC language[2][3] to model the
specification. In contrast to other system level design
languages such as SystemC[4], SpecC language is a
synthesis-based design language because it provides
keywords such as par and pipe to model parallel and
pipeline executing relations among functional blocks.
Explicitly specifying the executing relations enables
system-level synthesis tools to recognize the hierarchical
parallel structures, which make it possible for them to
implement PE selection and behavior binding
automatically.

SpecC uses a keyword behavior to represent a
functional block. Each behavior contains a number of
methods that define the functionality, a set of ports that
connect it with other behaviors, and a number of behavior
instances to support behavior hierarchical modeling.

The paper is organized as follows: Section 2 describes
the implementation of the automatic parallelization; Section
3 introduces the specification modeling process with the
automatic parallelization; Section 4 gives experimental
results. Finally, the conclusion is made in Section 5.

2 Implementation of
Parallelization Optimization

2.1 Parallelization Optimization Tasks

In this paper, we parallelize sequential behaviors. A
sequential behavior is defined as the behavior that only
contains a number of sequential executing behavior
instances.

The parallelization optimization contains three tasks
shown in Figure 3. The first task, sequential behavior
searching, finds all the sequential behaviors in the
specification. The second task, dependency analysis,
computes the dependencies among behavior instances of
the sequential behaviors. Finally, the third task, instance
structure optimization, finds the hierarchical parallel
structure for each sequential behavior according to the
dependencies.

Sequential behavior
searching

Dependency analysis

Instance structure
optimization

Figure 3: Parallelization optimization tasks

2.2 Sequential Behavior Searching

We first find all the sequential behaviors in the
specification. Sequential behaviors are identified by
internally attributes of SpecC internal representing format.

3

2.3 Dependency Analysis

2.3.1 Definition

A sequential behavior A contains behavior instances B
and C, a set of local variable Vi, and a set of port Pj. B is
executed before C. If there exists a Vi or Pj that

(a) B write to Vi/Pj and C reads from Vi/Pj, or
(b) Both B and C write to Vi/Pj, or
(c) There exists a behavior instance D of A such that D

depends on B and C depends on D,

then behavior instance C depends on behavior instance
B.

If Behavior instance C depends on behavior instance B,
then C must be executed after the execution of B.
Otherwise, Behavior instances B and C can be executed
parallel.

2.3.2 Dependency analysis

We compute the dependencies among behavior
instances by analyzing the port traffic of behavior
instances.

First, we use a spec profiler [5] to produce the
specification statistics. Spec profiler generates the static
traffic and dynamic traffic of behavior ports. Static traffic of
the port refers to the number of ports of leaf behaviors to
which it is connected. Leaf behavior is the behavior
containing only a set of methods without any behavior
instances, which is used as the instance of other behaviors.
Dynamic traffic of the port refers to the number of port
access during simulation. If the port is an input port, and
static/dynamic traffic is greater than 0 for that port, we
conclude that the behavior statically/dynamically read from
the port. Likewise, if the port is an output port and
static/dynamic traffic is greater than 0, we conclude that the
behavior statically/dynamically write to the port. The
“inout” port can be treated in a similar way.

Second, we analyze the port connections of behavior
instances. If behavior instances B and C of sequential
behavior A meet the conditions (a) or (b) in 2.3.1 statically
or dynamically, then C statically or dynamically depends on
B.

Finally, we find the static/dynamic behavior
dependencies based on the condition (c) in 2.3.1.

After dependency analysis, designers can determine
whether one behavior instance depends on another based

on either static dependency or more greedy, dynamical
dependency.

2.4 Instance Structure Optimization

2.4.1 Hierarchical Parallel Structure

Instance structure optimization changes the instance
structure from one-level pure-sequential structure to multi-
level hierarchical parallel structure. Figure 4 gives an
example of the hierarchical parallel structure. After instance
structure optimization, the produced hierarchical parallel
structure has three levels shown in Figure 4(c). In the first
level, D and E are parallel executed. In the second level, B is
executed before the execution of D and E. In the third level,
A and C(C is executed after A) are executed parallel with B,
D, and E. Note that two of three levels are parallel
structure.

A

B

C

D

(a) Original
executing sequence

A B

C D

(b) Dependencies
among functional blocks

A B

C D

(c) Hierarchial parallel
structure after
parallelization
optimization

E

E E

Figure 4: Example 2 of parallelization optimization

2.4.2 Goals of Instance Structure Optimization

During instance structure optimization, we want to
achieve two goals.

(a) Minimize the number of added dependencies among
behavior instances.

After instance structure optimization, some
independent behavior instances will be changed to
dependent behavior instances because of overuse
parallelism. For example, the solution shown in Figure 2(c)
adds two pairs of dependencies: D depends on A and C
depends on B, while do not exist in Figure 2(b). Adding
dependencies among behavior instances are unavoidable;
therefore we choose minimizing the number of added
dependencies as the first goal.

4

(b) Minimize the length of critical path of produced
hierarchical parallel structure.

The length of the critical path of hierarchical parallel
structure is defined as the number of behavior instances on
the longest path from the first starting behavior instance to
the last ending behavior instance, while parallel-executed
instances can be executed simultaneously.

2.4.3 Algorithms for Instance Structure Optimization

We implemented two algorithms for instance structure
optimization: ASAP(as soon as possible) algorithm and
constructive algorithm.

2.4.3.1 ASAP Algorithm

Algorithm 1 outlines the ASAP algorithm for instance
structure optimization for each sequential behavior. B is an
instance group that contains a set of behavior instances in
sequential behaviors. Hier_Struct denotes the generated
hierarchical parallel structure containing a link of groups,
each of which is executed sequentially from the head to the
tail of the link. The function DependentOnB(b) returns Φ if
no behavior instance on which b depends is in B, otherwise
it returns the first instance on which b depends.
CurGroup.Append(b) inserts b to a group CurGroup. All
the instances in CurGroup are executed parallel. After the
execution of for loop each time, CurGroup records a set of
parallel executing behavior instances.
Hier_Struct.Append(CurGroup) then appends the current
CurGroup at the end of the link of Hier_Struct. Figure 2(c)
is the hierarchical parallel structure generated by ASAP
algorithm.

The ASAP algorithm has only goal (b), which is to
minimize the length of the critical path. It gives the optimal
solution in terms of the critical path but may add a large
amount of dependencies among behavior instances.

Algorithm 1: ASAP Algorithm.

B = {all the behavior instances};
Hier_Struct = {};

while B ≠ Φ do
CurGroup = {};
for each instance bi ∈ B do

if DependentOnB(bi) = Φ then
CurGroup = CurGroup.Append(bi , Par);
B = B - {bi);

do
endfor
Hier_Struct = Hier_Struct.Append(CurGroup,

Sequ);
do

2.4.3.2 Constructive Algorithm

Besides ASAP algorithm, we also implemented a
constructive algorithm. The constructive algorithm
schedules one behavior instance at a time in the order of
the execution sequence in the original sequential behavior
and produces a temporal hierarchical parallel structure. It is
constructive because it constructs the hierarchical parallel
structure without performing any backtracking, i.e.
changing the previously produced temporal structure. The
constructive algorithm has both goals (a) and (b) during
instance structure optimization. Figure 2(d) is the
hierarchical parallel structure generated by the constructive
algorithm.

2.4.3.2.1 Data Structure of Hierarchical Parallel Structure

Before introducing the constructive algorithm, we first
specify the data structure for the hierarchical parallel
structure in the algorithm. Each hierarchical parallel
structure is represented by a data structure ParGroup.
Each ParGroup contains a set/link of child ParGroups, or a
link of behavior instances. The items in the links are
executed sequentially from head to tail of the link. The
items in the set are executed parallel. Figure 5 shows three
types of ParGroups. Flat ParGroup contains a behavior
instance link without any child ParGroups. Par ParGroup
contains a set of child ParGroups. Sequ ParGroup
contains a link of child ParGroups.

5

A

B

C

D

G1

G1

A

B

C

D

G1

(a) G1 is
 Flat ParGroup

(b) G1 is
 Par ParGroup

(c) G1 is
 Sequ ParGroup

A

B

C

D

Figure 5: Three types of ParGroup

2.4.3.2.2 Algorithm Overview

Algorithm 2.1 outlines the constructive algorithm. The
behavior instance link B contains all of the behavior
instances of the sequential behavior, which are saved in
the order of execution sequence of the sequential behavior.
Starting from the head of link B, an instance of B is inserted
into a ParGroup Hier_Struct at a time by function Insert.
Function Insert calls different inserting functions according
to the type of Hier_Struct. After all of the instances in B are
inserted, Hier_Struct represents the final hierarchical
parallel structure.

Algorithm 2.1: The Constructive Algorithm

B = {all the behavior instances}
Hier_Struct = {};

for each instance bi ∈ B do
Insert(Hier_Struct, bi);

endfor

Function Insert(Hier_Struct, b)
switch Type(Hier_Struct) do
case FLAT: Hier_Struct = InsertToFlat(Hier_Struct,
bi);
break;
case PAR: Hier_Struct = InsertToPar(Hier_Struct, bi);
break;
case SEQU: Hier_Struct = InsertToSequ(Hier_Struct,
bi);
endswitch

(c) case 3: x depends on b, c

a

b

c

(before)

(b) case 2: x does not depends on a, b, c

a

b

c

(before) (after)

a

b

c

x

x

(a) case 1: no instantiation in group(before)

(before) (after)

(d) case 4: x depends on a, b

(before) (after)

new_group = {x}
result = { {a, b, c}, {x} }

result = {x}

a

b

c

x

(after)
result = { a, b, c, x}

a

b

c

new_group1 = {x}
new_group2 = {c}
new_group3 = {a, b}
new_group4 ={ {x}, {c} }
result = { {a, b}, { {x}, {c} } }

a

b

xc

Figure 6: Four cases of inserting instance x to a Flat
ParGroup.

6

2.4.3.2.3 Insert to Flat ParGroup

Algorithm 2.2 outlines the function InsertToFlat that
inserts an instance b to a Flat ParGroup Hier_Struct.
InsertToFlat contains four different cases according to
different dependency relations between b and instances in
Hier_Struct’s instance links. The result records the
produced hierarchical parallel structure. The examples of
the four cases are displayed in Figure 6.

Algorithm 2.2: InsertToFlat(Hier_Struct, b)

// Case 1
if NoInstInGroup(Hier_Struct) = 1 do

result = AppendInst(Hier_Struct, b);

// Case 2
else if NotDependOnGroup(Hier_Strcut, b) = 1 do

new_group = Group(b, FLAT);
result = Group(Hier_Struct, new_group, PAR)

// Case 3
else if DependOnLastInst(Hier_Strcut, b) = 1 do

result = AppendInst(Hier_Struct, b);

// Case 4
else if

d1 = FindLastDependInst(Hier_Strcut, b);
new_group1 = Group(b, FLAT);
new_group2 = Group(AllSucc(Hier_Struct,d1),FLAT);
new_group3 = Group(AllPred(Hier_Struct,d1),FLAT);
new_group4 = Group(new_group1, new_group2, PAR);
result = Group(new_group3, new_group4, SEQU);

endif

return result;

In the first case, function NoInstInGroup finds whether
Hier_Struct’s instance link contains any instances. If not,
b is inserted in to the link by function AppendInst. In the
second case, if function NotDependOnGroup finds that b
does not depend on any instances in the link, then function
Group creates a new Flat ParGroup new_group
containing only b and creates a new Par ParGroup result
which contains Hier_Struct and new_group as its child
ParGroups. In the third case, function DependOnLastInst
finds whether b depends on the last instance in the link. If
so, AppendInst appends b to the end of the instance link of
Hier_Struct.

In the last case, function FindLastDependInst finds the
latest instance d1 on which b depends. The latest instance
refers to the instance that is most close to the tail of the
instance link of Hier_Struct. New_group1 is a new Flat
ParGroup containing b. New_group2 is another new Flat
ParGroup containing all the instances following d1 in the
instance link of Hier_Struct. The instances in New_group2
are stored in New_group2’s instance link in the same order
as that of Hier_Struct. New_group3 is the third new Flat
ParGroup that contains all the instances in front of d1
inclusively, saved in the same order as that of Hier_Sturt.

New_group4 is a Par ParGroup containing new_group1
and new_group2. The result is a new Sequ ParGroup
containing new_group3 followed by new_group4 in its
child ParGroup link.

2.4.3.2.4 Insert to Par ParGroup

Algorithm 2.3 outlines the function InsertToPar that
inserts an instance b to a Par ParGroup Hier_Struct.
InsertToPar contains three different cases according to
different dependency relations between b and child
ParGroups in Hier_Struct’s instance. We define that an
instance A depends on a ParaGroup B if and only if A
depends on at least one instance in ParaGroup B. The
result records the produced hierarchical parallel structure.
The examples of the three cases are displayed in Figure 7.

Algorithm 2.3: InsertToPar(Hier_Struct, b)

// Case 1
if NotDependOnChildGroup(Hier_Strcut, b) = 1 do

new_group = Group(b, FLAT);
result = AddChildGroup(Hier_Struct, new_group);

// Case 2
else if DependOnOneChildGroup(Hier_Struct, b) = 1 do

sub_group = FindDependChildGroup(Hier_Struct, b);
result = Insert(sub_group, b);

// Case 3
else if

new_group1 = Group(b, FLAT);
new_group2 = Group(DependChildGroup(Hier_Struct,d1)
 ,PAR);
new_group3 = Group(IndependChildGroup(Hier_Struct,d1)

,PAR);
new_group4 = Group(new_group2, new_group1, SEQU);
result = Group(new_group3, new_group4, PAR);

endif

In the first case, if function NotDependOnChildGroup
finds that b does not depend on any child ParGroups of
Hier_Struct, then function Group creates a new Flat
ParGroup new_group containing b. Function
AddChildGroup then adds new_group into Hier_Struct as
its child ParGroup.

In the second case, if function
DependOnOneChildGroup finds that b only depends on
one child ParGroup of Hier_struct denoted by sub_group,
then function Insert described in Algorithm 2.1 inserts b to
sub_group.

In the last case, if b depends on more than one child
ParGroups of Hier_struct, then five new ParGroups will be
produced. New_group1 is a Flat ParGroup containing b.
New_group2 is a Par ParGroup containing all the child
ParGroups of Hier_struct that b depends on. New_group3
is a Par ParGroup containing all the child ParGroups of

7

Hier_struct that b does not depend on. New_group4 is
Sequ ParGroup containing new_group2 followed by
new_group1 in this child ParGroup link. Finally, the result
is a Par ParGroup containing child ParGroup
new_group3 and new_group4 in its child ParGroup set.

(a) case 1: x does not depend on
a, b, and c.

(before)

a b c

a b c x

(b) case 2: x depends on b. x is
inserted to b's ParGroup by Insert

a cb

x

ab c

x

(c) case 3: x depends on a and b

new_group = {x}
result = { {a}, {b}, {c}, {x} }

result = { {a}, {b, x}, {c} }

new_group1 = {x}
new_group2 = { {a}, {b} }
new_group3 = {c}
new_group4 = { { {a}, {b} }, {x} }
result = { { { {a}, {b} }, {x} } , {c} }

a

Figure 7: Three cases of inserting instance x to a Par
ParGroup.

2.4.3.2.5 Insert to Sequ ParGroup

Algorithm 2.4 outlines the function InsertToSequ that
inserts an instance b to a Sequ ParGroup Hier_Struct.
InsertToSequ contains three different cases according to
different dependency relations between b and child

ParGroups in Hier_Struct. The examples of the three
cases are displayed in Figure 8.

Algorithm 2.4: InsertToSequ(Hier_Struct, b)

// Case 1
if NotDependOnChildGroup(Hier_Strcut, b) = 1 do
 new_group = Group(b, FLAT);
 result = result = AddChildGroup(Hier_Struct,

new_group);

// Case 2
else if DependOnLastChildGroup(Hier_Struct, b)
 = 1 do
 child_group = FindLastChildGroup(Hier_Struct);
 result = Insert(child_group, b);

// Case 3
else if

last_depend_child = FindLastDependChildGroup
 (Hier_Struct, b);
next_child = Next(last_depend_child);
solution1 = Insert(last_depend_child, b);
solution2 = Insert(next_child, b)
result = Best(solution1, solution2);

The first case of InsertToSequ is the same as the first
case of InsertToPar. In the second case, if function
DependOnLastChildGroup finds that b depends on the tail
ParGroup of child ParGroup link of Hier_struct, then
function Insert described in Algorithm 2.1 inserts b to this
child ParGroup child_group.

In the third case, function FindLastDependChildGroup
finds last_depend_group, which is the child ParGroup in
its child ParGroup link that is most closest to the tail of its
child ParGroup link, among the child ParGroups on which
b depends. Next_child is the immediate successive child
ParGroup of last_depend_group in the link. Then two
alternate solutions, inserting b in last_depend_group and
inserting b in next_child, are explored. The first solution
ensures that its amount of added dependencies are not
greater than that of the second solution, while the second
solution ensures that its length of critical path is not longer
than that of the first solution. Finally, function Best
chooses the solution1 in the case that the length of critical
path of solution1 is not longer than that of solution2.
Otherwise, Best chooses solution2 as the result.

8

a

b

x

(before) (a) case 1: c does
not depend on a

and b

(b) case 2: c
depends on b

a

b x

b

a

x

case 3: c depends on a.
Solution2 is the result

(c) case3 - solution1 (d) case3 - solution2

a

b

x

a

b

new_group = {x}
result = {{ {a}, {b} } , {x} }

result = { {a}, {b ,x} }

last_depend_child = {a}
next_child = {b}
result = { {a}, { {b} , {x} } }

Figure 8: Three cases of inserting instance x to a Sequ
ParGroup.

3 Specification Modeling Process
We introduce the process of specification modeling

using the spec profiler and the spec optimizer, which
contains three steps. First, designers write SpecC
specification model by referencing original C/C++ code.
Designers can specify top level parallelism among behavior
instances according to design algorithms/standards.
Second, designers use the spec profiler and the spec
optimizer. The tools read SpecC specification model and
generate hierarchical parallel structures in the format of
textural file for sequential behaviors. Third, designers
optimize the specification model based either on the result
of ASAP algorithm or on the result of the constructive
algorithm.

a

f

d

cb

e

(a) Dependencies
among instantiations (b) Solution1: ASAP

algorithm's result

a cb

d

e f

(c) Solution2:
constructive algorithm 's

result

b ca

d

e

f

(d) Solution3: improved
result

b ca

d

e f

Figure 9: An example of designers’ improvements on
the results of constructive algorithm

In the third step, designers can also change the result
of constructive algorithm by referencing ASAP algorithm
for shorter critical path, which is illustrated in Figure 9. By
referencing the result of ASAP algorithms shown in Figure
9(b), designers can change the result of constructive
algorithm shown in Figure 9(c), to parallel execute instance
e and f. As shown Figure 9(d), the improved solution has
the shorter critical path than the solution in Figure 9(c).
Table 1 gives overview of three solutions.

Table 1 : Overview of three solutions for the example in
Figure 9

Added Dependency Length of critical
path

ASAP 4 3
Constructive 1 4
Improved 2 3

9

4 Experimental results
We evaluate the efficiency of the spec profiler and the

spec optimizer in terms of design time, the length of the
critical path of the resulting hierarchical parallel structure,
and the added dependencies of the resulting structure.

We chose four sets of testing examples. First, we chose
three examples for comparing the manual parallelization
with the automatic parallelization. Second, we chose
behaviors with no more than 10 instances. Third, we chose
behaviors with more than 20 instances. Finally, we chose
real project examples.

4.1 Manual Parallelization vs. Automatic
Parallelization

First, we evaluate the efficiency of the spec profiler and
the spec optimizer in terms of design time. We randomly
generated three sequential behaviors, two of which
contains 10 behavior instances, the rest of which contains
20 behavior instances. The required design time for the
manual parallelization is listed in Table 2. Table 2 also
shows that the manual parallelization cannot analyze
dynamic dependency.

Table 2: Design time of the manual parallelization.

Design time (mins)

Manual design
tasks

Ex. 1
(10 inst.)

Ex. 2
(10 inst.)

Ex. 3
(20 inst.)

Analyze static
dependency

6 7 16

Analyze dynamic
dependency

Not aval. Not aval. Not aval.

ASAP 2 2 6
Constructive 3 2 17
Total 11 11 39

In contrast to 11/11/39 minutes required by the manual
parallelization in the examples, the automatic parallelization
took less than 3 seconds for each example, which is
220/220/780 times faster than the time for the manual
parallelization. As the complexity of a design increases,
designers can save more time by using the tools.

4.2 Results for 10 Instance Examples

Table 3: Results for 10 instance examples

 Ex1 Ex2 Ex3 Ex4 Ex5

Original
Num. instantiation 8 10 10 10 10
Num. depedency 14 34 13 22 36
Length. CP 8 10 10 10 10

Constructive Algorithm
Num. depedency 18 39 15 23 37
Length. CP 4 8 4 5 7
Added dependency (%) 28.57% 14.71% 15.38% 4.55% 2.78%
Reduced CP (%) 50.00% 20.00% 60.00% 50.00% 30.00%

ASAP Algorithm
Num. Dependency 24 42 32 38 40
Length. CP 4 7 4 5 6
Added Dependency (%) 71.43% 23.53% 146.15% 72.73% 11.11%
Reduced CP (%). 50.00% 30.00% 60.00% 50.00% 40.00%

We randomly generated 5 behaviors, each of which
contains no more than 10 instances. Table 3 shows the
results of parallelization optimization for the examples.
Length. CP represents the length of critical path. Num.
dependency represents the number of static dependencies
among instances of behavior. Added dependency (%) is
equal to the difference between Num. dependency(Original)
and Num. dependency(Constructive/ASAP algorithm)
divided by Num. dependency(Original). Reduced CP(%) is
equal to the difference between Length. CP (Original) and
Length. CP (Constructive/ASAP algorithm) divided by
Length. CP(Original).

Table 3 shows that the average Added dependency for
the constructive algorithm is 13.2%, while for ASAP
algorithm is 65.0%. Therefore, constructive algorithm is
much better than ASAP algorithm in terms of goal (a)
described in 2.4.2. On the other hand, the average Reduced
CP for the constructive algorithm is 42%, while for the
ASAP algorithm is 46%, both of which are similar. By
considering the number of dependency as well as the
length of the critical path, we conclude that the
constructive algorithm is better for 10 instance behaviors.

4.3 Results for 20 Instance Examples

We generated another five examples shown in Table 4,
each of which has no less than 20 instances. Ex6 and Ex9
do not have locality attribute, while Ex7, Ex8, and Ex10
have. For a behavior without locality attribute, the instance
has the same probability of having dependent relations
with any other instances. For a behavior with locality
attribute, the instance has larger probability of having
dependent relations with instances close to it than

10

instances not close to it. The closeness between two
instances is equal to the number of instances between them
during the execution of original sequential behavior.
Attribute locality exists in most designs. In this paper,
when the closeness of two instances is no more than 4, we
called them close instances. For Ex7, Ex8, and Ex10, each
instance can depend on any close instances, but can
depend on only one un-close instance.

Table 4: Results for 20-30 instance examples

 Ex. 6 Ex. 7 Ex. 8 Ex. 9 Ex. 10

Original
Atrribute random locality locality random locality
Num. Instantiation 20 20 21 30 30
Num. Dependency 98 95 79 193 109
Length. CP 20 20 21 30 30

Constructive Algorithm
Num. Depedency 158 135 126 328 239
Length. CP 11 8 7 12 7
Added Dependency (%) 61.22% 42.11% 59.49% 69.95% 119.27%

Reduced CP (%) 45.00% 60.00% 66.67% 60.00% 76.67%

ASAP Algorithm
Num. Depedency 169 173 185 400 375
Length. CP 7 8 7 10 7
Added Dependency (%) 72.45% 82.11% 134.18% 107.25% 244.04%

Reduced CP (%) 65.00% 60.00% 66.67% 66.67% 76.67%

Table 4 shows that the average Added dependency for
the constructive algorithm is 70%, while for ASAP
algorithm is 128%. Although Added dependency of
constructive algorithm is much better than ASAP
algorithm, they are much worse than the results for 10
instance behaviors. It is reasonable because later executed
instances will add more dependencies than the previous
ones. On the other hand, the average Reduced CP for the
constructive algorithm is 61%, while for ASAP algorithm is
67%, both of which are similar. Obviously, Reduced CPs of
20 instance behaviors are greater than the results of 10
instance behaviors.

Furthermore, we do more research on example 7, 8, and
10 for behaviors with locality attribute. We find that the
Reduced CPs of constructive algorithm and ASAP
algorithm are the same for these examples. Because of this
and the analysis on the constructive algorithm, we
conclude that the probability of having similar length of
critical path of the results of ASAP and constructive
algorithm for behaviors with locality attribute is larger than
the probability for behaviors without locality attribute.

Therefore, constructive algorithm is more suitable for
behaviors with locality attribute.

4.4 Real Project Examples

Table 5: Results for JPEG and Vocode Project Examples

JPEG_Init

(Jpeg)

Pre_
process

(vocoder)

Ex_syn_
upd_sh

(vocoder)

Lp_
Analysis
(vocoder)

Original
Num. Instantiation 3 3 5 9
Num. Dependency 2 2 8 30
Length. CP 3 3 5 9

Constructive Algorithm
Num. Depedency 2 2 8 30
Length. CP 2 2 3 6
Added Dependency (%) 0.00% 0.00% 0.00% 0.00%

Reduced CP (%) 33.33% 33.33% 40.00% 33.33%

ASAP Algorithm
Num. Depedency 2 2 8 32
Length. CP 2 2 3 6
Added Dependency (%) 0.00% 0.00% 0.00% 6.67%

Reduced CP (%) 33.33% 33.33% 40.00% 33.33%

 We use the spec profiler and the spec optimizer on
JPEG project[6] and Vocoder project[7]. Although
designers have implemented the parallelization optimization
manually for the projects, the tools still found
parallelization instances existing in four sequential
behaviors shown in Table 5. We updated the specification
based on the produced hierarchical parallel structures and
had the same simulation results with the original
specifications. It proves that using the tools are more
reliable than implementing parallelization optimization
manually.

In addition to sequential behaviors shown in Table 5,
the tools also found that sequential behavior Coder_12k2
of Vocoder contained behavior instances executed in
parallel. However, the simulation result of updated
specification according to the tools is different from the
simulation result of the original specification. The reason
for this difference is that an address of a Coder_12k2’s
port is assigned as a value to an address of another
Coder_12k2’s port. Since the task dependency analysis
could not treat read/write access of the second port as the
read/write access of the first port, the tools produced a
wrong result. To prevent this from happening, designers
need to avoid address transfer between ports in the
specification.

11

5 Conclusion
This paper introduces the parallelization optimization

for specification tuning. Parallelization optimization is a
critical optimization for design specification, which will be
used for the PE allocation and behavior binding.

We introduce two tools for parallelization optimization.
The spec profiler analyzes the static and dynamic
dependencies among behavior instances. The spec
optimizer produces the hierarchical parallel structure based
on ASAP algorithm and a constructive algorithm.

In comparison to the manual parallelization, the
automatic parallelization has three advantages.

First, it shortens the design time. The automatic
parallelization is 200 times faster than the manual
parallelization for 10-instance behaviors, 700 times faster for
20-instance behaviors. As the complexity of a design
increases, the automatic parallelization can save more time.

Second, it generates required hierarchical parallel
structures. ASAP algorithm produces the optimal
structures in terms of the length of the critical path.
Constructive algorithm produces the structures that have
the similar length of the critical path as that of the ASAP
algorithm and have the much smaller number of added
dependencies among behavior instances than that of
ASAP algorithm.

Third, it optimizes every possible parallelism in the
design.

We also find that with the increase in the number of
instances of behaviors, or with the loss of behavior’s
locality attribute, it is impossible to keep both the length of
the critical path and the amount of the added dependencies
to a minimum for generated structures. This is due to the
nature of the problem rather than the limitation of the tools.

Reference
[1] D. Gajski “Silicon compilers”, Addison-Wesley, 1987
[2] D. Gajski, J. Zhu et al. “SpecC: Specification lanugaeg and

Design methodology” Kluwer Academic Publishers, 2000
[3] A. Gerstlauer, R. Domer, et al. System Design: a practical guide

of with SpecC. Kluwer Academic Publishers 2001
[4] www.systemc.org
[5] Lukai Cai, Dan Gajski, Introduction of Design-Oriented Profiler

of SpecC Language, University of California, Irvine,
Technical Report ICS-00-47, June 2001

[6] Lukai Cai, Junyu Peng et al. Design of a JPEG Encoding
System, University of California, Irvine, Technical Report
ICS-99-54, Nov. 1999.

[7] Andreas Gerstlauer, Shuqing Zhao et al. Design of a GSM
Vocoder using SpeccC Methodology, University of California,
Irvine, Technique report ICS-99-11, Feb 1999.

