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Abstract

This report describes the RTL design and synthesis of Sequential Matrix Multiplication using accellera
RTL methodology. We first begin with the introduction of Sequential Matrix Multiplication. Then we give
the FSMD of Sequential Matrix Multiplication and critical path analysis to decide the clock cycle. Based
on different resource constraint, the synthesis results (scheduling, storage binding, functional unit binding
and interconnection binding) are given. The source codes are also included in the Appendix.
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RTL Design and Synthesis of Sequential Matrix
Multiplication

Pei Zhang, Daniel D. Gajski
Center for Embedded Computer Systems

University of California, Irvine
Irvine, CA 92697-3425, USA

Abstract
This report describes the RTL design and
synthesis of Sequential Matrix Multiplication
using accellera RTL methodology. We first begin
with the introduction of Sequential Matrix
Multiplication. Then we give the FSMD of
Sequential Matrix Multiplication and critical
path analysis to decide the clock cycle. Based on
different resource constraint, the synthesis
results (scheduling, storage binding, functional
unit binding and interconnection binding) are
given. The source codes are also included in the
Appendix.

1. Introduction
Matrix multiplication is the key part of Discrete
Cosine Transform (DCT) which is widely used
in image processing and compression. Matrix
multiplication is used twice in the DCT. There
are several ways to implement Matrix
multiplication. Here we use sequential method
which is called Sequential Matrix multiplication
(SMM).

The block of SMM is shown in figure 1. It
implement the function:

888888 ××× ×= BAC
Here:
Inport1/Input2/Outport are for A, B and C,
respectively. Start is the signal to let SMM begin
to execute. Done is the signal to notify that
SMM is finished.

SMM
Start Done

Inport1 Inport2

outport

Figure 1: Block diagram of SMM

The rest of this report is organized as follows:
first, the FSMD (behavioral model) of SMM is
given. This FSMD describes the detailed
functionality of SMM. Then the target
implementation (structural model) and critical
path analysis for SMM are discussed. Based on
different sources, the RTL synthesis for SMM is
made by running our RTL synthesis tools to
estimate the performance. At last the summary
and future works is included.

2. FSMD (Behavioral Model)
The finite-state machine with data (FSMD) is a
very popular design model for RTL behavioral
description. It describes the functionality of
design with several states. The state transition is
controlled by clock and control signal. We use
Moore machine to implement SMM.

The FSMD of SMM is given in Figure 2.

The FSMD of SMM includes three parts:
(1) Get input;
(2) Calculate matrix multiplication;
(3) Send output.

Since every matrix has a size of 8x8, we use
byte-serial wires to get/send data. For each
matrix, it need 64 times to finish all data transfer.

2.1 Get data (S0~S4)

After the SMM get the Start signal, it begins its
operation. First it need to get 88×A  and

88×B from its Inports. In this design, we have two

Inports to let SMM get two inputs
simultaneously. We add temporary variables
between port and memories. We use count to
count the times of iteration. After repeat 64
times, 88×A  and 88×B  get all data they need.
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S0

S6

S7

S8

S9

S10

S11

S13

count=0
Done=0

Start=0

Start=1

a=A[ii*8+k]
b=B[kk*8+jj]

P=a*b

kk=0

Sum=P

Sum=Sum+P

k=7

C[ii*9+jj]=Sum

count=511
count    511≠

Done=1
count=0

S1
in1=Inport1
in2=Inport2

S5 count=0

count=63

S14 out1=C[jj*8+kk]

Note:
ii = count[8...6]
jj = count[5...3]
kk = count[2...0]

count=count+1

S4

S12

S16

count=count+1

count     63≠

count=count+1S17

S3

count     63≠

count=63

kk     7≠

S2
A[jj*8+k]=in1
B[jj*8+k]=in2

S15 Outport = out1

kk    0≠

Figure 2: FSMD of SMM

• In State S0, SMM sets the count and Done
signal to 0. It also checks the Start signal. If
the Start is equal to 0, SMM remains in
State S0. Otherwise it transits to state S1.

• In State S1, SMM get inputs for in1/in2
from input1/inpout2. Remember in1/in2
and input1/inpout2 are all 8-bit long. Then
SMM transits to state S2.

• In State S2, the internal arrays (size 64) A,
B are set to in1 and in2 respectively. The
position of arrays is decided by count. Then
SMM transits to state S3.

• In State S3, SMM checks if count is equal
to 63 which means SMM has got all 64 pair
of inputs for A and B. if so, SMM transits to
state S5. Otherwise, SMM transits to state
S4.

• In State S4, we let count get increment by 1,
then let SMM transit to state S1 to get
another pair of inputs.

2.2 Execute matrix multiplication
(S5~S12)
This part is the main part of SMM. It performs

the ∑
=

××× ×=
7

0kk
jjkkkkiiiiii BAC operation. a and b

are temp orary variables to fetch data from 88×A

and 88×B . Sum and P are interim variable for

88×A . It uses the whole of part of count (9 bits)
to control the state transition. ii, jj, kk are the
most, middle and least significant 3 bits of count
respectively.

• In State S5, count  is reset to 0. Then SMM
transits to state S6.

• In State S6, temporary variables a and b get
values for A and B.  Similarly, the position
of arrays is decided by count. Then SMM
transit to state S7.

• In State S7, P  stores the product of a and b.
Then SMM checks the value of kk (the least
significant 3 bits of count). If kk is equal to
0, the next state is S8. Otherwise, SMM
transits to S9.

• In State S8, we let Sum be equal to P . Then
SMM transit to state S9.

• In State S9, Sum is set the sum of Sum  and
P. Then if kk is equal to 7, the next state is
S10. Otherwise, SMM transits to S11.

• In State S10, one position of array C is set
to Sum. The position of arrays is also
decided by count. Then SMM transit to state
S11.

• In State S11, if count is equal to 511, the
next state is S13. Otherwise, SMM transits
to S12.

• In State S12, count  increases by 1. Then
SMM transit to state S6 to start next
iteration to compute C.

2.3 Send output (S13~S17)
After the computation finishes, SMM generates
Done signal and send output to the Outport in
byte-serially.

• In State S13, SMM reset the count to 0 and
set Done signal to 1.Then SMM transits to
state S14 to start to send outputs.

• In State S14, variable out1 get a value from
array C. The position of arrays is also
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decided by count. Then SMM transits to
state S15.

• In State S15, out1 is set to the Outport as to
let other part fetch the value. Then SMM
transits to state S16.

• In State S16, if count is equal to 63 which
means SMM has finished all jobs, SMM
transits to state S0 to wait for Start signal to
start another computation. Otherwise, SMM
transits to state S17.

• In State S17, we let count get increment by
1, then let SMM transit to state S14 to send
another output.

3. Implementation
In this part, we give the possible target
implementation (structural model) for SMM.

(1) Datapath
The datapath part is a bus-based architecture
which means it uses busses and multiplexers
instead of multiplexers only as the
interconnection.

Figure 3 gives one possible structure of SMM
based on the given resource (1 register file, 3

memories, several dedicated registers, 1 ALU, 1
Multiplier and 3 busses). Here we put three
matrixes used in the SMM into separate memory.
If the memories have bigger size and more
input/output ports, some of these matrixes maybe
mapped into the same memory. When the SMM
goes through RTL synthesis tools, it will have
different result.

All component and tri-state drivers are controlled
by the control signals generated by control unit.
Also, the comparator generates 4 comparison
outputs (0/7/63/511) to the control unit for state
transition decision.

Also, there maybe have different architectures in
Figure 3. Then the synthesis results should be
different. Part 5 will give other synthesis results
based on different resources.

(2) Control Unit
The control unit implements the state transition
in its next-state logic and state register. It also
generates the control signals in its output logic
for the datapath.

Datapath

MEM2 MEM3

Bus 1

Bus 2

MULALU

RF

Bus 3

MEM1

Inport1 Inport2

Outport

Control Unit

Control
Signal

Start

Done

in1 in2

out1

Output logic

State
register

Next state
logic

a b

CMP

count

p1

mux mux

p3
ADDR_GEN

p2

p4

Figure 3: Possible architecture of SMM with critical path candidates

4. Critical path analysis
During the RTL synthesis, we need to know the
clock cycles to calculate the execution time for
the design performance purpose. The execution
time can be computed as:

execution_time = num_cycles ×  clock_cycle

Different resource allocation can cause different
clock cycle. Given the SMM design shown in
Figure 3 (1 ALU, 1MUL, 3 Bus and 1 RF with
special registers and memories), the minimum
reasonable clock cycle can be determined as the
maximum of the critical path candidates
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(including the control unit delay) as follows
based on the Table 1:

Component Operations Delay (ns)
ALU +, - 3.02

Multiplier * 4.09
Reg32 Count, in1, in2,

out1, a, b,
State register

.75

Reg32(setup) .59
MUX Choose data .66

ADDR_GEN Memory address
generation

1.94

MEM Memory access 4.20
Register file P, Sum 1.46

CMP Comparator 1.22
Output Logic Output logic 3.85

Next State Logic Next state logic 3.85
Tables 1: Resource delay

There are four critical path candidates that also
showed in the Figure 3. For each candidate, the
time delay are calculated in the following:

1pT  = delay(REG) + delay(CMP)

        + delay(NSL) + setup(SR)
        = 6.41ns

2pT  = delay(REG) + delay(MUX)

        + delay(MUL) + setup(REG)
        = 6.09ns

3pT  = delay(SR) + delay(OL) + delay(RF)

        + delay(MUX) + delay(ALU)
        + setup(REG)
        = 10.31ns

4pT  = delay(REG) + delay(AGEN)

        + delay(MRD) + setup(REG)
        = 7.48ns

Here:
• delay(SR) is the delay of reading state

register
• delay(OL) is the delay of output logic
• delay(NSL) is the delay of next state logic
• delay(REG) is the reading register
• delay(AGEN) is the delay of memory

address generation
• delay(MRD) is the delay of reading memory
• delay(RF) is the delay of reading RF
• delay(CMP) is the delay of comparator
• delay(MUX) is the delay of multiplexer

• delay(ALU) is the delay of ALU
• delay(MUL) is the delay of multiplier
• setup(REG) is the setup time of register
• setup(SR) is the setup time of state register

Hence, the minimum clock cycle is :
clock_cycle=max( 1pT , 2pT , 3pT )=10.31ns

and the execution time of SMM with 20 state is:
execution_time = 10.31 × 20=206.2ns

One thing to remember here is this calculation is
only for ideal case. In out implementation,
something maybe be changed, such as we do not
have memory address generation component. So,
in other resource allocation, we can do the
similar tasks to get clock cycle and execution
time, but will give different critical path
candidates.

5. RTL Synthesis and Results
In the [ACCE01], it defines five styles in the
RTL synthesis that includes behavioral RTL,
storage-mapped RTL, function-mapped RTL,
connection-mapped RTL and exposed-control
RTL. The exposed-control RTL is the
architecture description just like the Figure 5 that
includes the datapath and control unit.

The key points in [ACCE01] are:
(1) Five well-defined style to separate the

synthesis tasks;
(2) User-defined resource constraint on which

synthesis tasks are based
(3) Bus-based architecture;

There are three major synthesis tasks during the
RTL synthesis: allocation, scheduling, and
binding. Allocation determines the number of the
resources, such as storage units, busses, and
function units, which will be used in the
implementation. Scheduling partitions the
behavioral description into time intervals.
Binding assigns variables to storage units
(storage binding), assigns operations to function
units (function binding), and interconnections to
busses (connection binding). After these three
tasks, we get the RTL style 4 description that
does not include control unit part.

In our implementation, the resource allocation is
given by user.

In our experiments, we use the following cases:
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1. Bind all variables into register files and
arrays to memories ;

2. Assign some variables (in/out buffers etc.) to
special registers and bind others into register
files;

we use SpecC language [GZDG00] as our test
input/output language. We have developed the
synthesis tools, which include scheduling,
storage binding, function unit binding and
interconnection binding, based on [ACCE01].

We can also use the following cases:
1. Using multi-cycle register files and

memories (Not support now in scheduling
and storagind binding)

2. Using pipelined functional units
3. Use datapath pipelining
4. Control pipelining
5. Status pipelining

Unfortunately, till now, these features are not
supported by both SpecC and our tools. We will
test all supported cases to find the performance
difference of different architectures through our
tools . For other cases, we will test them in future
when they are available in SpecC and our tools.

5.1 RTL synthesis

5.1.1 Scheduling

In [SHGA01], there is a detail description and
implementation of scheduling based on the
[ACCE01].

Let SMM go through the scheduling tools, we
can see scheduler splits some states into several
sub-states. The number of sub-states and how
and where to split the state are depended on
different given resources.

Table 2 gives the total number of states after
scheduling task for different resources. There are
18 states before scheduling. Also, clock cycle
and execution time are given for different
resource.

Here we have to mention the address generation
of memories. To keep our architecture simple,
we use SpecC-only bit-vector concatenation
operation jj @ kk in the code as the index to
access array. As a result, we use a functional unit
CONCAT in our library that should be finish the
operation in one state.

In our implementation, we can not access the two
3-bit slices of the same port (count) at the same
time. So during the generation of the index of
memory, we have to use two read ports for the
count. This is also caused by RTL constraint. In
gate level, we can use two slices of the same port
simultaneously.

5.1.2 Binding
Binding task includes storage binding, functional
unit binding and interconnection busing.

For the storage binding, the arrays A, B and C
are assigned to the dedicated memories. For
other variables, in one case we assign all of them
into register files. In another case we assign
some dedicated registers for some special
variable. Some are connecting memory and port,
like in1, in2, out2. Some are for memory output
to the functional unit, like a and b. These
registers can not used by other variables. Also,
For other variables, we use register file as
storage unit.

Besides the original variables in the design, we
should also consider the temporary variables
generated during the scheduling. Some
temporary variables become wires during
synthesis if they are generated and used in one
state. For other temporary variables, they are
assigned to register files.

During the storage binding, the lifetime
overlapping and weight will be considered
[ZHGA01].

For functional unit binding and interconnection
binding, [XIGA01] and [YUGA01] give the
procedure and methods in detail.

5.2 Experiments Results

5.2.1 All in RF, Memory
We use 2 RFs, 3 memories, 1 ALU, 1 Multiplier,
1 Comparator, 2 Concatenations and 3 busses
this case. The Figure 4 gives the binding results
for this case.

5.2.2 RF with Dedicated Registers
In this case, we assign some dedicated registers
for some special variable. Some are connecting
memory and port, like in1, in2, out2. Some are
for memory output to the functional unit, like a
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and b. These registers can not used by other
variables. Also, For other variables, we use 1 RF
to store them. For functional unit, we still use 1

ALU, 1 Multiplier, 1 Comparator and 1
Concatenations. Also, 3 busses are allocated.

Datapath

RF1

MEM2 MEM3

Bus 0
Bus 1

Bus 2

MEM1

Inport1 Inport2

Control Unit

Control
Signal

Start

Done

Output logic

State
register

Next state
logic

RF0

p2
p1

Bus 1

mux mux

ALUMUL

Outport

CMP

mux mux mux

CONCAT

Figure 4: Architecture with RFs, Memories w/o dedicated registers

Datapath

MEM2 MEM3

Bus 0
Bus 1

ALUMUL

RF

Bus 2

MEM1

Inport1 Inport2

Outport

Control Unit

Control
Signal

Start

Done

in1 in2

out1

Output logic

State
register

Next state
logic

a b

CMP

count

p1

p2

mux mux mux

mux

Bus 2

AGEN

Bus 1

Figure 5: Architecture with RFs, Memories w/ dedicated registers
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Resource
1pT (ns) 2pT (ns) Clock

cycle(ns)
Total
states

Execution
time(ns)

RF and MEM only 11.38 10.82 11.38 28 318.64
RF, MEM and Reg. 6.41 10.85 10.85 29 314.65

Table 2: Different binding results

The Figure 5 gives the binding results for this
case.

The results are given in the Table 2. Due to the
different architectures, the performances are also
different. In the case 2, RF with Dedicated
Registers is the best architecture for SMM in our
testing.

Maybe with pipeline mechanism will have better
performance, we will test them later after we
improve our synthesis tools.

6. Summary
This report describes the procedure of RTL
design and synthesis based on the accellera RTL
semantics using the Sequential Matrix
multiplication. The test results show that we can
use this semantics as a main part during the RTL
synthesis.

In the future, we can improve both SMM design
or synthesis tools to get better performance.
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Appendix: SMM Behavioral Mode Source Code in SpecC
//////////////////////////////////////////////////////////////////////
// Design:  Sequential Matrix Multiplication
// Author:  Pei Zhang, University of California, Irvine
// Purpose: RTL C++ semantics experiment
// File:    smm.sc
// Date:    Apr. 1, 2001
//////////////////////////////////////////////////////////////////////

import "lib";

#define ii count[8:6]
#define jj count[5:3]
#define kk count[2:0]

behavior smm( in event clk,
in bit [0:0] rst,
in bit[31:0] Inport1,
in bit[31:0] Inport2,
out bit[31:0] Outport,
in bit[0:0] Start,
out bit[0:0] Done)

{
    note smm.scheduled = "0";
    note smm.fubind = "0";
    note smm.regbind = "0";
    note smm.busbind = "0";

    note smm.clk = "clk";
    note smm.rst = "rst";
    note smm.Inport1 = "data";
    note smm.Inport2 = "data";
    note smm.Outport = "data";
    note smm.Start = "ctrl";
    note smm.Done = "ctrl";

void main(void) {
bit[31:0] A[64], B[64], C[64];
bit[31:0] P, a, b;
bit[31:0] Sum;
bit[31:0] count;
bit[31:0] in1, in2, out1;

enum state { S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10,
S11, S12, S13, S14, S15, S16, S17 } state;

state = S0;

while (1) {
wait(clk);
if (rst) {

state = S0;
}
switch (state) {
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case S0:
Done = 0b;
Outport =0 ;
count = 0b;
if (Start == 1b)

state = S1;
else

state = S0;
break;

case S1:
in1 = Inport1;
in2 = Inport2;
state = S2;
break;

case S2:
A[jj @ kk] = in1;
B[jj @ kk] = in2;
state = S3;
break;

case S3:
if (count == 63)

state = S5;
else

state = S4;
break;

case S4:
count = count + 1;
state = S1;
break;

case S5:
count = 0;
state = S6;
break;

case S6:
a = A[ii @ kk];
b = B[kk @ jj];
state = S7;
break;

case S7:
P = a * b;
if (kk == 0)

state = S8;
else

state = S9;
break;

case S8:
Sum = P;
state = S9;
break;

case S9:
Sum = Sum + P;
if (kk == 7)

state = S10;
else

state = S11;
break;

case S10:
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C[ii @ jj] = Sum;
state = S11;
break;

case S11:
if (count != 511)

state = S12;
else

state = S13;
break;

case S12:
count = count + 1;
state = S6;
break;

case S13:
Done = 1b;
count = 0;
state = S16;
break;

case S14:
out1 = C[jj @ kk];
state = S15;
break;

case S15:
Outport = out1;
state = S16;
break;

case S16:
if (count == 63)

state = S0;
else

state = S17;
break;

case S17:
count = count + 1;
state = S14;
break;

}
}

}
};


