

SpecC Methodology applied to the Design of
Control systems for Power Electronics and Electric Drives

Slim Ben Saoud, Daniel D. Gajski

Technical Report ICS-01-45
July 25, 2001

Center for Embedded Computer Systems

Department of Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

Slim Ben Saoud
Fulbright Visitor @ CECS
INSAT-Tunis-TUNISIA

sbensaou@ics.uci.edu
http://www.cecs.uci.edu/~sbensaou

Daniel D. Gajski
CECS

UCI-California-USA
gajski@ics.uci.edu

http://www.cecs.uci.edu/~gajski

SpecC Methodology applied to the Design of
Control systems for Power Electronics and Electric Drives

Slim Ben Saoud, Daniel D. Gajski

Technical Report ICS-01-45
July 25, 2001

Center for Embedded Computer Systems

Department of Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

Slim Ben Saoud
Fulbright Visitor @ CECS
INSAT-Tunis-TUNISIA

sbensaou@ics.uci.edu
http://www.cecs.uci.edu/~sbensaou

Daniel D. Gajski
CECS

UCI-California-USA
gajski@ics.uci.edu

http://www.cecs.uci.edu/~gajski

Abstract
Today, control algorithms are being more and more sophisticated due to the customer and governments demands for lower cost,
greater reliability, greater accuracy and environment requirements (power consumption, emitted radiation,…). Then, real-time
implementation of these algorithms becomes a difficult task and needs more and more specific hardware systems with dedicated
processors and usually systems-on-chip (SOCs).
With the ever-increasing complexity and time-to-market pressures in the design of these specific control systems, a well design
methodology is more than even necessary.

In this report we describe the application of the SpecC system-level design methodology (developed at the CAD Lab, UC Irvine)
to the design of control systems for power electronics and electric drives. We first begin with an executable specification model
in SpecC and then discuss the refinement of this model into architecture model, which accurately reflects the system architecture.
At this stage, we discuss different solutions according to the application complexity and constraints. Based on the studied
architecture models, communication protocols between the system components are defined and communication models are
developed.
In this report, we discuss the case of a DC system Control and describe in details different stages undergone. Generalization to
others systems can be done easily using the same steps and transformations.

iii

Contents

1 Introduction___ 1

2 SpecC Methodology [1,2] __ 1

3 Specification___ 3

3.1 Control Device Specification ___ 3

3.2 Control Device Constraints __ 4

4 Architecture Exploration __ 4

4.1 Allocation__ 5

4.2 ARCH1 ___ 6
4.2.1 Variable Partitioning__ 6
4.2.2 Scheduling __ 7
4.2.3 Channel Partitioning__ 7

4.3 ARCH2 ___ 7
4.3.1 Variable Partitioning__ 7
4.3.2 Channel Partitioning__ 8

5 Communication Synthesis ___ 9

5.1 ARCH1 ___ 9
Protocol Insertion __ 9
5.1.2 Protocol Inlining __ 10

5.2 ARCH2 __ 10

6 Backend ___ 11

7 Conclusions __ 12

References ___ 13

A Specification Model for the DC System Control ______________________________ 14

B Architecture Model for the DC System Control (ARCH1)______________________ 19

C Communication Model for the DC System Control (ARCH1)___________________ 25

D Architecture Model for the DC System Control (ARCH2)______________________ 33

E Communication Model for the DC System Control (ARCH2)___________________ 41

iv

List of Figures

Figure 1: SpecC methodology__ 2
Figure 2: Specification model of the control device___________________________________ 4
Figure 3: Architecture models after behavior partitioning (a-arch1 & b-arch2) ____________ 6
Figure 4: Architecture model after variable partitioning (ARCH1) ______________________ 6
Figure 5: Architecture model after scheduling (ARCH1)_______________________________ 7
Figure 6: Modification of variable partitioning (ARCH1) ______________________________ 7
Figure 7: Architecture model after channel partitioning (ARCH1) _______________________ 7
Figure 8: Architecture model after variable partitioning (ARCH2) ______________________ 8
Figure 9: Solution 1 of Channel partitioning __ 8
Figure 10: Solution 2 of Channel partitioning _______________________________________ 8
Figure 11: Modification of variable partitioning _____________________________________ 8
Figure 12: Architecture refined model (ARCH2) _____________________________________ 9
Figure 13: Protocol insertion principle __ 9
Figure 14: HW/SW Synchronization diagrams_______________________________________ 9
Figure 15: Protocols of the DSP56600 external bus _________________________________ 10
Figure 16: Communication model after protocol insertion (ARCH1) ____________________ 10
Figure 17: Communication model after protocol inlining (ARCH1) _____________________ 10
Figure 18: HW Communication SFSMDs ___ 11
Figure 19: Communication model after protocol insertion (ARCH2) ____________________ 11
Figure 20: Communication model after protocol inlining (ARCH2) _____________________ 11
Figure 21: Components interconnections (ARCH2)__________________________________ 11

1

SpecC Methodology applied to the Design of
Control systems for Power Electronics and Electric Drives

Slim Ben Saoud, Daniel D. Gajski

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

ABSTRACT

Today, control algorithms are being more and more
sophisticated due to the customer and governments
demands for lower cost, greater reliability, greater
accuracy and environment requirements (power
consumption, emitted radiation,…). Then, real-time
implementation of these algorithms becomes a difficult
task and needs more and more specific hardware systems
with dedicated processors and usually systems-on-chip
(SOCs).
With the ever-increasing complexity and time-to-market
pressures in the design of these specific control systems, a
well design methodology is more than even necessary.

In this report we describe the application of the SpecC
system-level design methodology (developed at the CAD
Lab, UC Irvine) to the design of control systems for
power electronics and electric drives. We first begin with
an executable specification model in SpecC and then
discuss the refinement of this model into architecture
model, which accurately reflects the system architecture.
At this stage, we discuss different solutions according to
the application complexity and constraints. Based on the
studied architecture models, communication protocols
between the system components are defined and
communication models are developed.
In this report, we discuss the case of a DC system Control
and describe in details different stages undergone.
Generalization to others systems can be done easily using
the same steps and transformations.

1 Introduction

The goal of this work is to introduce the SpecC
methodology to the design of electric drives. In this
project, we present and discuss the case of a DC motor
control. The control algorithm used is very simple and can
be implemented using standard micro-controller. So, the
objective of this work is not really to design the control
device but to introduce the SpecC methodology and to
discuss its application to the electric drive controller
design. A generalization of this study to any other system
control can be done easily using the same steps discussed
in the following sections.

The control device was described in four models, which
represent four different levels of abstraction in the SpecC
methodology [1,2]. All these models are executable and
validated by simulation.

The rest of the report is organized as follows: We first
begin with a brief presentation of the SpecC
Methodology. Then we describe an executable
specification model (in SpecC) of the control system and
we discuss the refinement of this model into architecture
model, which accurately reflects the system architecture.
At this stage, we discuss different solutions according to
the application complexity and constraints. Based on the
studied architecture models, communication protocols
between the system components are defined and
communication models are developed.

2 SpecC Methodology [1,2]

With the ever increasing complexity and time-to-market
pressures in the design of systems-on-chip (SOCs) or
embedded systems in general, both industry and EDA
vendors are trying to move the design to higher levels of
abstraction, in order to increase productivity. At higher
levels, there is no difference between hardware and
software. An SOC is the combination of hardware and
software, and at the system-level the disciplines merge.
Great productivity gains can be achieved by starting
design from an executable system specification instead of
an RTL description as the golden reference model,
throwing away all system models developed earlier in the
process. However, we are still just at the beginning of
understanding the design process at the system level. No
tools and no well-defined design flows are available from
industry or EDA vendors.

Managing the complexity at higher levels of abstraction is
not possible without having a very well defined system-
level design flow. A well-defined design methodology is
the basis for all, synthesis, verification, design
automation, and so on. Only then can we find or create a
language that actually fits the desired flow, and not vice
versa.

SpecC System-level design methodology and SpecC
language are the result of decades of research done in the

2

area of SOC design at the Center for Embedded Computer
Systems (CECS) at the University of Irvine California
(UCI).

SpecC language was developed exactly for the purpose of
supporting a system-level design flow, and it therefore
satisfies all the requirements of synthesizability,
verifiability, and so on. SpecC is a superset of C and adds
a minimal, orthogonal set of concepts needed for system
design. It is currently in the process of being standardized.

The SpecC methodology is a set of models and
transformations on the models (Figure 1). The models
written in programming language (SpecC language) are
executables descriptions of the same system at different
levels of abstraction in the design process. The
transformations are a series of well-defined steps through
which the initial specification is gradually mapped onto a
detailed implementation description ready for
manufacturing.

The SpecC design methodology is based on 4 well-
defined models, namely a specification model, an
architecture model, a communication model, and finally,
an implementation model. In the following section, we
will give a brief description of each model and of the
refinement tasks leading from a functional specification
model all the way to a cycle-accurate implementation
model in SpecC.

Specification model: The SpecC system-level design
methodology starts with the capture of the intended
functionality in the form of an executable specification as
shown in figure 1. This initial specification model
describes the functionality as well as the performance,
power, cost and other constraints of the intended design.
It does not make any premature allusions to
implementation details.

During specification capture the designer may reuse
existing code segments, functions or procedures by
instantiating them out of an algorithm library.
Specification model is a purely functional model that
abstracts the system functionality. It is the starting point
of system design process and the input to architecture
exploration task.

Architecture exploration: It refines the specification into
an architecture model. It includes the design steps of
allocation, partitioning of behaviors, channels, and
variables, and scheduling.
Allocation determines the number and types of the system
components, such as general-purpose or custom
processors, memories, and busses, which will be used to
implement the system behavior. Allocation includes the

reuse of intellectual property (IP), when IP components
are selected from the component library.
Behavior partitioning distributes the behaviors (or
processes) that comprise the system functionality amongst
the allocated processing elements. Variable partitioning
assigns variables to memories, and channel partitioning
assigns communication channels to busses.
Scheduling determines the order of execution of the
behaviors assigned to either the standard or custom
processors after partitioning. In other words, scheduling is
used for software and hardware components.

Figure 1: SpecC methodology

Architecture exploration is an iterative process
culminating with an architecture model that represents a
refinement of the specification model. Estimators evaluate
each architecture candidate’s satisfaction of the design
constraints; until all constraints are satisfied, component
and connectivity reallocation is performed and a new
architecture with different components, connectivity,

Capture

Manufacturing

Specification
model

Architecture exploration

Allocation

Partitioning

Scheduling

Architecture
model

Communication
model

Implementation
model

Communication synthesis

Protocol insertion

Interface synthesis

Alg.
IP

Comp.
IP

Proto.
IP

RTOS
IP

RTL
IP

Implementation

Hardware
synthesis

Interface
synthesis

Software
compilatio

n

Back end

Synthesis flow Validation
flow

Simulation
model

Compilation

Validation
Analysis

Estimation

Compilation

Validation
Analysis

Estimation

Simulation
model

Compilation

Validation
Analysis

Estimation

Simulation
model

Compilation

Validation
Analysis

Estimation

Simulation
model

Protocol inlining

3

partitions, schedules or protocols is generated and
evaluated.

Architecture model: It describes the system functionality
as well as the overall structure of the final implementation
for the design. The communication in the architecture
model is through the abstract global channels.

Communication Synthesis: It refines the abstract
communication between behaviors in the architecture
model into an implementation. The task of
communication synthesis includes the insertion of
communication protocols, synthesis of interfaces and
transducers, and inlining of protocols into synthesizable
components. In the resulting communication model,
communication is described in terms of actual wires and
timing relationships are described by bus protocols.

Communication model: It is the final output of the
system-level design process which describes the system
structure as a set of components connected through the
wires of the set of buses.

Backend: The result of the synthesis flow is handed off to
the backend tools, as shown in the lower part of figure 1.
The software part of the hand-off model consists of C
code for compilation and the hardware part consists of
behavioral C (VHDL) code for high-level synthesis. The
backend tools include compilers and high-level synthesis
tool. The compilers are used to compile the software C
code for the chosen processor. The high-level synthesis
tool synthesizes the functionality assigned to custom
hardware and the functionality of transducers which are
necessary for connecting different processors, memories,
and IPs.
After software compilation and hardware synthesis, the
final implementation model is generated.

Implementation model: It represents a clock-cycle
accurate description of the whole system. This
description, in turn, then serves as the basis for
manufacturing of the system.

In each of the tasks the designer can make design
decisions manually by using an interactive graphical user
interface, for example, while transformations from one
model into another can be accomplished automatically by
following the refinement rules or model guidelines. After
each refinement step in the synthesis flow, a
corresponding SpecC model of the system is generated,
which means that design decisions made in each design
task are reflected in the generated models. Thus, in the
validation flow that is orthogonal to the synthesis flow in
the SpecC methodology, one can perform simulation,
analysis and estimation of the SpecC models generated
after each task.

After each design step, the design model is statically
analyzed to estimate certain quality metrics such as
performance, cost, and power consumption. Analysis and
estimation results are reported to the user and back-
annotated into the model for simulation and further
synthesis.
The design can be statically analyzed or simulated after
each step for validation of design correctness in terms of
functionality, performance, and other constraints. A
simulation model is compiled after each step which can
be run on the host computer to validate correctness for
simulation.
At any stage of the refinement process, a standard
software debugger can be used to locate and fix the errors
if verification fails. Such debuggers enable one to set
break points anywhere in the source code and to perform
detailed state inspection at any time.

3 Specification

The system design process starts with the specification
model written by the user to specify the desired system
functionality. It forms the input to architecture
exploration, the first step of the system design process,
and therefore defines the basis for all synthesis and
exploration. For example, the specification model defines
the granularity for exploration through the size of the leaf
behaviors, it exposes the available parallelism, uses
hierarchy to group related functionality and manage
complexity, separates communication from computation,
and so on.
The specification model is a purely functional, abstract
model that is free of any implementation details. The
hierarchy of behaviors in the specification model solely
reflects the system functionality without implying
anything about the system architecture to be implemented.
For example, parallel parts in the specification model
describes independent groups of functions that can run
concurrently but does not make any premature
assumptions about an implementation on concurrent
processing elements.
The specification model is free of any notion of time. The
model executes in zero logical (simulation) time. Events
in the specification model are used by the designer for
synchronization only in order to specify causality and thus
establish a partial ordering among these behaviors [2].

3.1 Control Device Specification

The DC control device has been specified using SpecC
language in previous work. The control algorithm and the
I/O modules composing the control device was
represented in a formal, executable, specification model
that has been validated by simulation. This obtained
model is shown on figure 2.

4

The used control algorithm is composed of two control
loops: an outer motion loop and an inner current loop.
Each of them is specified in a separate sub-behavior and
associated to a clock-behavior that generated the
synchronization event to activate the corresponding
control loop at the predefined periodic step. For the
current control loop, we used a period of 284µs and for
the motion one, we used a period of 20ms. However, in
the specification model, there’s no notion of time, so in all
our specification model, we consider that basic cycle of
time is 1µs and then we used for the Clki behavior the
waitfor statements: a waitfor(284) for the Clki behavior
and a waitfor(20000) for the ClkΩ� behavior.

The I/O modules necessary for the control device
functioning are specified in two behaviors: the PWM
behavior represents the PWM module functioning while
the ACQ behavior represents the information acquisition
modules. Each of these modules is specified by a specific
sub-behavior associated to a clock-behavior that generates
the synchronization event necessary for its activation.
These I/O modules are independent and they usually use
different clock periods.

Figure 2: Specification model of the control device

The PWM behavior generates two complementary signals
C0 and C1 with the same frequency as the current control
module clock and according to the pulse width value α
(for C0) obtained by the current control behavior.
The current acquisition behavior captures the current
value (Nim obtained from the used ADC component) and
computes its average value over the current control period
(im). While the speed acquisition behavior computes the
speed value (Ωm) from the two signals S0 and S1
generated by the optical incremental encoder (sensor used
on the process under control).

As shown on figure 2, the SpecC specification describes
the control device functionality in a clear and precise
manner.

3.2 Control Device Constraints

Usually, the main constraints of control devices are:

- Time: especially the time execution of the control
algorithm and the time needed for conversion of
analog information to digital form.

- Precision: especially the resolution of the I/O
modules like the resolution of the used ADC
components (number of bits), the resolution of
position/speed acquisition module (clock and number
of bits) and the resolution of the PWM module…
These characteristics are usually dependent on the
used processor data bus.

In our application, and since we use a simple control
algorithm, these constraints are not really severe. As an
example, we used the following specifications:

- a period Tc=284 µs for the current control loop;
- a period of Tm=20ms for the speed control loop;
- a resolution of 10 bits for the ADC component, and a

period of 5 µs for the current acquisition;
- a period of 1ms for the speed acquisition;
- a clock of 1µs for the PWM module ….

These values are only used as an example and then will be
adapted by the user according to his application.

4 Architecture Exploration

Architecture exploration is the first part of the system
synthesis process that develops a system architecture from
the specification model. The purpose of architecture
exploration is to map the computational parts of the
specification, represented by the behaviors in the
specification model, onto the components of a system
architecture. The steps involved in this process are:

CTL_AlgPWM ACQ

Ωref

Ωm

DC_CTL

CTL_Alg

C_Alg M_Alg ClkΩ Clk i

im

α

clki

Iref

clkΩ

Ωrefα im Ωm

ACQ

AcqΩ

Ωm

ClksΩ

ClksΩ

Acqi

im

Clksi

Clksi

PWM

PWM1

α

Clkc1

clkc1

C0 C1 S0 S1 N im

N im S0 S1

C0 C1

5

allocation of a set of system components (Processing
elements PEs and memories), partitioning of behaviors
onto the processing elements, mapping of variables into
memories and scheduling of behaviors on the inherently
sequential PEs. Through this process, the specification
model is gradually refined into the architecture model.

Note that in general, exploration is an iterative process.
The different tasks can be executed repeatedly and in each
iteration the task can be done generally in any order or
even simultaneously.
In order to perform architecture exploration, it is crucial
to obtain accurate information about the design in a short
amount of time. Therefore, the task of estimation is
central to the whole exploration process. Estimation tools
determine design metrics such as performance (execution
time) and memory requirements (code and data size) for
each part of the specification with respect to the allocated
components.

Usually, to get the better trade-off between the
performance and cost, HW/SW partition is performed,
which involves the estimation of the different partitions.
Based on the estimation the partition of the system can be
done [3].

Knowing the HW/SW performance of each block, we
could consider different partitioning solutions. For each
partition, we could compute the number of clock cycles
required for the HW block(s), the number of clock cycles
required for the SW block(s) and hence the total number
of clock cycles.

Naturally, the more the functionality was put into HW,
the less was the required number of clock cycles.
However each partition was associated with a
communication overhead in terms of the amount of data
transferred at the interface. Based on the communication
overhead, certains decisions regarding local HW memory
and shared memory will be made.

In our application, the motion control loop does not
present severe temporal constraints and it is usually used
as the main program in which, we integrate the
communication with the user for configuration and
monitoring. So this block is usually preferred as a
software one. On the other hand the main part of the I/O
modules require time management (timers) so they are
implemented on hardware.
Therefore, the study concerns in the most of cases the
current control loop because it presents the most severe
temporal constraint.

However, in this study, our objective is to introduce the
SpecC methodology to the case of control device design.
So we use a simple application for which constraints are

not severe. We present two architectures models
(according to the current control implementation), that
seem to be the most useful for our type of application. In
the following, we will show the step-by-step process
applied to the specification model developed in previous
section, in order to obtain two different architecture
models.

4.1 Allocation

The first task of the architectural exploration process is
the allocation of a system target architecture consisting of
a set of components and their connectivity. Allocation
selects the number and types of processing elements
(PEs), memories and busses in the architecture, and it
defines the way PEs and memories are connected over the
system busses. Components and protocols are taken out of
a library and can range from full-custom designs to fixed
IPs.
After an architecture has been allocated, the first step in
implementing the specification on the given architecture
is to map the SpecC behaviors onto the architecture’s
processing elements. In the refined model after behavior
partitioning an additional level of hierarchy is inserted
with top-level behaviors representing the components of
the architecture.

For the control device application, usually the I/O
modules are done by hardware modules (ADC, Timers,
…) while the control algorithm is implemented in a
standard processor. However, sometimes, this solution is
not adequate for sophisticated algorithm running in real
time. Than, usually we remove a part of the control
algorithm from the processor and we implemented it by
hardware. This part is usually the current loop because it
represents the most severe time constraints. In all these
cases, the specification of the retained architecture, its
validation and its design must be done using a
methodology. In this work, we propose to develop these
two architecture solutions using SpecC methodology.
Note that the I/O modules can be implemented on a
common component or on different components.

According to the previous considerations, we distinguish
two principles architectures that can be used for electric
drives. These architectures will be studied here as an
example. The first one (arch1) uses two components an
ASIC for the I/O modules and a processor for the control
algorithm. While the second one (arch2) uses a hardware
component for each I/O module, an ASIC for the current
control module and a processor for the speed control
module and the interface with the user.

The obtained models are shown in figure 3. Note that in
these architectures the clock generator behaviors used in

6

the specification model are not considered as a part of the
control device. These clock events are considered as
inputs to the control unit…

Figure 3: Architecture models after behavior
partitioning (a-arch1 & b-arch2)

In Arch1, the processor core (DSP56600 core) running
control algorithm is supported by a hardware component
for the I/O functions. However, in arch2, only the motion
control loop is implemented on the processor core while
the current control loop is implemented on a custom
coprocessor and each of the I/O function is implemented
on a specific hardware.

Formerly local variables used for communication between
behaviors mapped to different components now become
global, system-level variables. Synchronization between
behaviors mapped to different components is done by the
clock behaviors integrated in the testbench specification
as defined in the specification model. Other
synchronization behaviors can be added if necessary in
order to preserve the execution order as represented by
the specification model…

In arch1, variables exchanged between ASIC and DSP
are:

- Pulse width variable (α) computed by the current
control loop module and sent to the PWM block at
the beginning of each new current control period Tc;

- The current captured value (im: average value)
determined by the current acquisition module and
used by the current control module;

- The speed captured value (Ωm) determined by the
speed acquisition module and used by the motion
control module.

The variable Iref generates by the motion control module
and used by the current control module is a local variable
inside the DSP.

However, in arch2 we distinguish 5 PEs (PWM, ACQi,
ACQΩ, ASIC and DSP) and α, im, Ωm variables are
exchanged between respectively (ASIC-PWM), (ACQi-
ASIC) and (ACQΩ-DSP). In addition to these variables,
Iref become a global variable and it will be transmitted
from DSP to ASIC.

In the following sections, these two architectures will be
studied separately.

4.2 ARCH1

4.2.1 Variable Partitioning

After behavior partitioning, communication between
behaviors mapped to different PEs is performed via
global, shared variables. Global variables have to be
assigned to local memory in the PEs or to a dedicated
shared memory component. In the refined model after
variable partitioning, global variables are replaced with
abstract channels and code is inserted into the behaviors
to communicate variable values over those channels.

In our application, the number of exchanged variables is
very limited. So, our choice is to use local copies of these
variables in each PEs. Then, the behaviors inside the PEs
are connected to the corresponding local copy and operate
on the data in local memory instead of accessing a global
variable. Updated data values are communicated between
ASIC and DSP through 3 abstract channels (Cα, Cim and
CΩm). Synchronizations are done by appointment at each
current control period (284) for Cα and Cim and at each
speed control period (20000) for CΩm.

Figure 4: Architecture model after variable partitioning
(ARCH1)

Partitioning is immediately follwed by the task of
scheduling. Both are closely related since the quality of a
partition is revealed only once scheduling has been
performed.

C_Alg M_AlgIreAcqΩ

S0 S1

PE1

Acq

N im C0 C1

PWMc1

Ωref
DC_CTL

PE2CΩm

Cim

Cα

C_Alg M_AlgIref
AcqΩ

S0 S1

ASIC
(PE1)

Acqi

N im C0 C1

PWMc1

im

Ωm

α

Ωref DC_CTL

DSP
(PE2)

(a)

Current
Control

Motion
Control

DSP
AcqΩ

PE3

S0 S1

Acqi
PE4

N im

PE5

C0 C1

PWMc1

ΩrefDC_CTL

ASIC

Ωm

im

α

Iref

(b)

7

4.2.2 Scheduling

Scheduling determines the execution order of behaviors
that execute on inherently sequential PEs. Scheduling
may be done statically or dynamically [4]. In static
scheduling, each behavior is executed according to a fixed
schedule. In the refined model after scheduling, behaviors
inside each component are executed sequentially
according to the computed schedule. Redundant
synchronization between the behaviors is removed during
optimization. In dynamic scheduling, the execution of
behaviors on each component is determined at run-time.
An application-specific run-time scheduler is created
during refinement.
Figure 5 shows the scheduling of the parallel control
algorithm running on the DSP core. Due to the dynamic
timing relation between motion loop and current loop
tasks, a dynamic scheduling scheme is implemented. The
motion control represents the main program, which
executes in periodic manner. Whenever a new current
period arrives, the main task is interrupted in order to
execute the current control.

Figure 5: Architecture model after scheduling (ARCH1)

According to this scheduled model and in order to
simplify synchronization for communication, we choice
to do all exchanges at the beginning of each current
control loop which means at each period Tc. The Ωm
value will be then a local variable of the DSP as well as
Iref.
Exchanges synchronization can be done by an external
clock (as represented on figure 5) or by an event
generated by the ASIC and precisely by the PWM module
(since it will integrate a temporization function at the
period of Tc).

Figure 6: Modification of variable partitioning
(ARCH1)

4.2.3 Channel Partitioning

Channel partitioning is the process of mapping and
grouping the abstract, global communication channels
between components onto the busses of the target
architecture. In the refined model, additional top-level
channels are used to represent system busses. Then
channel partitioning is reflected by hierarchically
grouping and encapsulating the abstract, global channels
under the top-level bus channels.
Note that the bus is also a type of channel in SpecC, and it
implies that the future implementation would be the wired
buses. Channels connect the concurrent behaviors while
buses connect the corresponding components into which
these behaviors are mapped. Usually, only one bus is used
between two components.

For this architecture, we used only one bus, which
connects the processor to the custom hardware
component. Therefore all communication are mapped to
that bus. So, in the SpecC description of the refined
control device, a single channel representing the system
bus is inserted at the top level. The two components are
connected to this bus channel and all abstract channels for
communication between behaviors (Cα, Cim and CΩm) are
grouped under the top-level channel.

Figure 7: Architecture model after channel partitioning
(ARCH1)

As indicated in the previous section, exchanges will be
done at the beginning of each Tc period between the
PWM module and the current control module.

4.3 ARCH2

4.3.1 Variable Partitioning

The number of exchanged variable is very limited. So
local copies of global variables are added to the
correspondent PEs. Updated data values are
communicated between these PEs through 4 different
abstract channels: CΩm, Cim, Cα and CIref.

C_CTL

M_CTL

PE2

clk i

Clk i

AcqΩ

S0

S1

PE1

Acqi
N im

C0

C1 PWMc1

Ωref

C_CTL
M_CTL

Iref
AcqΩ

S0 S1

PE1

Acqi

N im C0 C1

PWMc1

Ωref
DC_CTL

PE2CΩm

Cim

Cα

Ωm

M_CTL

PE2

AcqΩ PE1

Acqi

Iref

Ωm

Ωm

Im

CΩm

Cim

Cα
ExchExch

PWM C_CTL

8

Figure 8: Architecture model after variable partitioning
(ARCH2)

According to this architecture, the I/O modules are
independent and their results are obtained in an
asynchronous manner. Indeed, the speed acquisition
module, for example, computes the period of a variable
frequency signal, so the new result is obtained in an
asynchronous manner (depends on the speed signal
frequency which is variable).

In order to not charge theses components by the
synchronization and the communication processes needed
for transmission, we choice to add elementary memory
blocks (one register) to these PEs (one block per PEs).
These memories will be integrated in the I/O hardware
module. So, obtained results are automatically loaded on
these memories and transfer will be done between them
and the control PEs (current PEs and motion PEs).
According to this architecture, no synchronization is
needed between the I/O modules and the control modules
since the exchange is done through memory blocks.
On the other hand, synchronization between the ASIC and
the DSP is done by interruption. Indeed, at each Tc
period, the ASIC interrupts the DSP and begins the
transfer of Iref within the channel CIref.

4.3.2 Channel Partitioning

According to the previous specification, we distinguish at
least two main possibilities of channel partitioning:

Ø As shown on figure 9, channels can be mapped

onto two buses:
- one bus between the ASIC and PE4/PE5: this

bus will be managed by the ASIC;
- one bus between the DSP and PE1/PE3: this bus

will be managed by the DSP.

Using this solution buses are managed easily since
each bus will have only one master that initiate
each transfer. However it presents a main
inconvenient, in fact the number of pin in the
coprocessor will be important since it used two
different busses

Figure 9: Solution 1 of Channel partitioning

Ø For that reason, we propose a second possibility on

which only one bus is used as a common bus to all
components as shown on figure 10. However, this
solution includes a major difficulty of the bus
management, in fact it will have two masters. So a
management protocol should be added to resolve
conflicts when these two masters tries to use the
bus at the same time.

Figure 10: Solution 2 of Channel partitioning

In order to simplify the communication process, we
choice to use another variables partition with only one bus
and one master. So, we introduce some modification to
our architecture model as shown on figure 11.

Figure 11: Modification of variable partitioning

Synchronization for the transfer is done by interruption.
At the beginning of each new Tc period, the ASIC
interrupts the DSP and both start the exchange process.
Inside this process, The ASIC sends α and waits for im
and iref while the DSP (the master) begins by reading the
α value, then it writes this data to PE5, and reads im value
from PE4 and finally it sends im and iref values to the
ASIC. Acquisition of Ωm value is done by the master at
the beginning of each Tm period..

The final architecture model using one bus is represented
by figure 12.

C_CTL M_CTL
DSP

AcqΩ

S0 S1

Acqi

N im C0 C1

PWMc1

Ωref DC_CTL

ASIC

CΩm

Cim

Cα

CIref

C_CTL M_CTL

AcqΩ

Acqi

PWMc1

Cim

Cα
CΩ

CIref

C_CTL M_CTL
DSP

AcqΩAcqi PWMc1

ASIC
CΩm

Cim

Cα

CIref

M_CTL

Iref

ExchExch

C_CTL

AcqΩ Acqi PWMc1 CΩm

C
im

C
2α

C1α

Cim

CIref

9

Figure 12: Architecture refined model (ARCH2)

5 Communication Synthesis

The purpose of communication synthesis is to refine the
abstract communication in the architecture model into an
actual implementation over the wires of the system
busses. This requires insertion of communication
protocols for the busses, synthesis of protocol transducers
to translate between incompatible protocols, and inlining
of protocols into hardware and software. These steps will
be discussed in the following sections for the two retained
architecture targets separately.

5.1 ARCH1

5.1.1 Protocol Insertion

During the protocol insertion, a description of the
protocol is taken out of the protocol library in the form of
a protocol channel and inserted into the corresponding
virtual system bus channel (figure 13).
The protocol channel encapsulates the bus wires and
implements the bus protocol by driving and sampling bus
wires according to the protocol timing. At its interface,
the protocol channel provides methods for all primitive
transactions supported by the protocol, e.g. read, write,
etc.
The abstract communication primitives provided of the
bus channel are rewritten into an implementation using
the primitives provided by the protocol layer. The outer
application layer of the bus channel implements the
required semantics over the actual bus protocol. This
includes tasks like synchronization, arbitration, bus
addressing, data slicing, and so on.
All the abstract bus channels in the model are replaced
with their equivalent hierarchical combinations of
protocol and application layers that implements the
abstract communication of each bus over the actual
protocol for that bus.

Figure 13: Protocol insertion principle

In this example, after protocol insertion, the processor is
the central component and the master of the system bus.
The software on the processor initiates all data transfers
on the processor bus from and to the hardware
component. However, these exchanges are initiated
(provoked) either by an external clock (at Tc period) or by
the hardware component that send an event at each Tc
period to the processor by triggering its interrupt in order
to execute the exchanges process (at the beginning of the
current control loop).
At this stage, the processor as a master of the bus initiates
and controls data transfers to and from the custom
hardware. It initiates the transfer by reading from or
writing to the memory location with the address of the
HW component. The HW, on the other hand, detects its
own address and answers DSP requests by supplying or
storing the requested data from and to their local registers
or memories.
So, at the beginning of each new Tc period, the custom
hardware signals its ready state for communication by
raising an interrupt. The corresponding interruption
software on the processor begins transferring the data one
word at a time by repeatedly executing instructions that
initiate read or write cycles on the external bus: beginning
by the send of α and then receive of im and Ωm.

Figure 14: HW/SW Synchronization diagrams

Note that the clear separation between communication
and computation enables replacement of a general
component with an IP model plus wrapper and transducer
at any stage of the design process. The wrapper specifies
how to interface the IP model with the rest of the design.
For simulation purposes, any model of the IP component
that provides a suitable programming interface can be
hooked into the SpecC simulator through the wrapper.

The protocol channel in the system bus and the wrapped
processor model describe and implement the DSP56600
bus protocol according to its timing diagram [5], shown in
figure 15. The protocol layer provides primitives for
performing read/write transfers and for raising interrupts
over the processor bus.
On top of the protocol layer, the application layer created
during protocol insertion implements the semantics of the
abstract communication of the bus channel, using the
primitives provided by the encapsulated protocol
channel…

M_CTL

DSP

AcqΩAcqi PWMc1

C_CTL
ASIC

CΩm

Cim

C1α
C2α

CIref

CΩm

Cim

Cα

Protocol

layer

Application

layer

C_CTL procedure (period
Te)

M_CTL procedure (period
Tm)

IT

Exchanges
Procedure

α im Ωm IT α im Ωm

HW
Component

SW
Component

10

Figure 15: Protocols of the DSP56600 external bus

Figure 16 shows the system model after insertion of the
DSP56600 bus protocol for the system bus. The bus
protocol is modeled as a SpecC channel in the protocol
library. The protocol channel is inserted into the top-level
bus channel and all communication over the system bus is
implemented using the primitives provided by the
protocol.

Figure 16: Communication model after protocol
insertion (ARCH1)

5.1.2 Protocol Inlining

Protocol inlining is the process of inlining the channel
functionality into the connected components and exposing
the actual wires of the busses. The communication code is
moved into the components where it is implemented in
software or hardware. On the hardware side, FSMDs that
implement the communication and bus protocol
functionality are synthesized. On the software side, bus
drivers and interrupt handlers that perform the
communication using the processor’s I/O instructions are
generated or customized.

The communication model obtained after protocol
inlining is shown in figure 17. In this case, all data
transfers on the processor bus are initiated by the DSP.
However the High-level handshaking and synchronization
between hardware and software is realized using
interrupt-based handshaking.

For the ASIC, communication primitives are inlined into
the exchanges sub-behavior that have been created inside
the PWM behavior, during partitioning, for
synchronization and communication of the ASIC with the
DSP. So, both application and potocol layers of the
communication primitives that had been created during
protocol insertion are inlined into the custom hardware
behavior.

Figure 17: Communication model after protocol
inlining (ARCH1)

During inlining, exchanges SFSMD model is created and
inserted into the ASIC SFSMD model. They will later be
synthesized into custom hardware together. Note that in
general there are many different ways of implementing
the transfer functionality, and a choice about the final
hardware design has to be made at this point.

The exchanges hardware module synchronizes with the
DSP by raising the processor’s interrupt line IRQC in its
first state S1 until a transfer with the address of the
custom hardware is recognized. Then the WR control
signal is sampled until a falling edge has been detected
that signals the beginning of a bus write cycle.
Communication continues at the same manner for two
read cycles.

Note that the studied architecture is just a fictive
discussed as an example to validate our approach.
Usually, different hardware components are used for each
I/O module, as we will see in next sections.

5.2 ARCH2

The DSP 56600 protocol is employed for ASIC and DSP
while another simple memory protocol is used for
memory blocks. We suppose that ASIC and DSP use the
same protocol and that timing constraints are compatible

A0-
A15
/MCS

/AT

/RD

/WR

D0-
D23

Data Out

(28.9,-)

(0.5,-) (19.3,-)

(0.4,-)

(8.8,-) (0.4,-)

DSP56600 - SRAM Write Access

A0-A15

/MCS

/AT

/RD

/WR

D0-D23 Data In

(28.9,-)

(4.3,-)

(-,16.5) (0.0,-)

(17.0,-)

(1.2,-)

DSP56600 - SRAM Read Access

Address[15:0]
Data[23:0

] /MCS

/RW
/RD IP

ro
to

co
lM

as
te

r

IP
ro

to
co

lS
la

v
e

IB
us

M
as

te
r

IB
us

Sl
av

e

DSP
(CTL_Alg)ASIC

(I/O Modules)

DSP
BusMaster

ASIC
BusSlave

n

IB
us

Sl
av

e

IP
ro

to
co

lS
la

ve

Sl
av

eP
ro

to
co

l n

IB
us

M
as

te
r

IP
ro

to
co

lM
as

te
r

M
as

te
rP

ro
to

co
lAddress[15:0

] Data[23:0
] /MCS

/RW
/RD

11

between these two protocols. Otherwise we have to insert
transducer.

Figure 18: HW Communication SFSMDs

Figure 19: Communication model after protocol
insertion (ARCH2)

The communication model is obtained as described in the
ARCH1 exploration, using two steps: the protocol
insertion (protocol of the DSP 56600) and the protocol
inlining. The obtained communication model is shown on
figure 20.

Figure 20: Communication model after protocol
inlining (ARCH2)

We note that connections are done between memories
(inside the I/O models) and PE1/PE2 according to the
figure 21.

Figure 21: Components interconnections (ARCH2)

In our application, only one side of the register control is
done by the master: for example for the Rα (register that
stored α), it is controlled by PE2 only in writing
operation, so the /WE signal is connected to the master
/WR signal while the /OE is active controlled in local by
the PWM hardware.
 In the FSMD of the I/O module, the register will be
controlled by the FSMD-controller only on one way
(partially). For example in the case of the PWM module
this register is only controlled for read by the FSMD-
controller while it is controlled for write for the Acq_i, by
its own FSMD-controller. The master (PE2) when
transferring data with the DSP does the other control side.

We note that in this application and for necessity we used
at the same time high and low levels design.

6 Backend

In the backend, the behavioral descriptions of the
components in the communication model are synthesized
into a structural view of all the components in the system
architecture. The functionality of each component is
implemented on top of the component’s RTL or
instruction-set microarchitecture. In the process, timing is
refined down to the level of individual clock cycles based
on each component’s clock period.

ASIC
C_CTL

DSP
M_CTL

ACQΩ

ACQi

PWMc1

A
D

/MCS
/RD
/WR

DSP
56600

A
D
/CS
/OE
/WE

Memory
block

A
D

/MCS
/RD
/WR

DSP
56600

A
D
/MCS
/RD
/WR

ASIC

MCS && (A=&x)

!(MCS && (A=&x)) S12

 EEnd

MCS && (A=&x)

S7

 S11

!MCS

MCS

Start

MCS && (A=&x)

IRQC=1

S2

S1

Estart

 S6

!MCS

MCS

!(MCS && (A=&x))

!(MCS && (A=&x))

WR

!WR

S8

!WR

WR

α=D;

Load_I/Oreg=1
;

Addr=&α;
rw=0; //write
Addr=Addr+1
;

S9

S10

RD

!RD

D=im;

En_I/Oreg=1
;

Addr=& im;
rw=1; //read
load_I/Oreg=1
;
Addr=Addr+1;

S6

S5

RD

!RD

D=Ωm;

En_I/Oreg=1
;

Addr=& Ωm;
rw=1; //read
load_I/Oreg=1
;
Addr=Addr+1;

S6

S5

D
SP

 5
66

00
P

ro
to

co
l

Bus

C_CTL

M_CTL

DSP

AcqΩ

Acqi

PWMc1

ASIC

12

The backend process encompasses three parallel tasks for
different parts of the communication model [2]:

- High-level/behavioral synthesis for custom hardware
components: The behavioral PE description in the
form of straight-line code is synthesized into a netlist
of register-transfer level (RTL) components.

- Software synthesis: The SpecC model of the
behaviors mapped onto a programmable processor is
converted into a C model, compiled into the
processor’s instruction set and possibly linked against
an RTOS.

- Synthesis of bus interfaces and bus drivers: The
application and protocol layer functionality is
synthesized into a cycle-true implementation of the
bus protocols on each component. This requires
generation of bus interface FSMDs on the hardware
side and generation of assembly code for the bus
drivers on the software side.

The result of the backend process is the cycle-accurate
implementation model.

In the communication model, components were modeled
by PE behaviors containing a purely behavioral
description of the component functionalities. In the
implementation model, the PE behaviors are refined into
cycle-true descriptions based on the component’s
RTL/instruction-set microarchitectures.

The implementation model is the result of the backend
process and as such the final end-result of the whole
system design flow. It is a structural description of both
system and component architectures.
At the top-level, the system architecture is a set of non-
terminating, concurrent components communicating via
wires of system busses. At the component level,
computation and communication functionalities are based
on each component’s microarchitecture: FSMD models
for custom hardware and instruction-set models for
software on programmable processors.
The implementation model is a cycle-accurate system
description. The order and timing of computation and
computation in the system is described in terms of
component clocks. A global order is imposed among the
system’s components via the order of events on the
common bus wires, generated and watched by the
components connecting to the busses.
The implementation model is further processed and
refined through traditional design flows down to
manufacturing. For example, logic synthesis of custom
hardware RTL descriptions is followed by “place &
route” to generate the final chip layout.

7 Conclusions

In this report we introduce the SpecC system-level design
methodology to the design of control systems for Power
Electronics and Electric drives processes. We presented
the study of a DC motor drive, which can be easily
generalized to any other process control.

We have shown the various steps in the SpecC
methodology that gradually refines the initial
specification down to an actual communication model
ready for implementation and manufacturing.
Starting with the executable SpecC specification,
architecture exploration creates an architecture model of
the control system through the steps of allocation,
partitioning and scheduling. Communication synthesis
then transforms the abstract communication of the
architecture model into an implementation. After protocol
selection, transducer synthesis and protocol inlining, the
final communication model is obtained. This model is the
result of the design process and will be handed off to the
backend process for synthesis of the software and
hardware parts.

The retained architecture target is usually obtained after
estimations and analyzes of different modules in the
specification model. However, in this report we presented
two main architecture solutions that seems to be the most
useful in Electric drive systems. The choice between them
will be done according to the application constraints.

This project has shown that the SpecC methodology will
result in significant productivity gains in the design of
control systems. In fact:

Ø The SpecC methodology is based on the SpecC

language which presents major advantages such as:

- The SpecC language is a superset of C allows for
drawing from the large body of existing
algorithms. Therefore all control algorithms
written in C language can be used and easily
implemented through the SpecC methodology.
On the other hand the control algorithm
developers can be converted easily to the SpecC
language and use it for the specification and
validation of their new algorithms. Then, no
rewritten of these programs will be needed
between algorithm developers and control
system designers since they use the same
language. In general, communication among
designers and customers will be largely
minimized.

- The SpecC language explicitly supports all the
features necessary for system-level design

13

including hierarchy, timing, concurrency,
communication and synchronization, exceptions,
state transitions, and so on.

- The clear separation of communication and
computation in SpecC facilitates reuse of system
components and enables easy integration of IP

Ø The SpecC methodology presents a simplified

design process based on well-defined, clear and
structured models at each exploration step. This
enables quick exploration and synthesis.

Ø At every point, a model in SpecC language

represents the design. This allows performing
equivalence checking and simulation on each
model to validate the transformations.

Ø The well-defined nature of the models and
transformations provides the basis for design
automation tools and in general enables application
of formal methods for verification. These
automation tools will cover a large part of the
tedious and error-prone synthesis tasks and then
reduce even further the time-to-silicon. To these
tools some libraries specific to control systems
design will be added in order to reduce the amount
of resources and the man power required to
complete a System-On-Chip design. A steep
learning curve and the low designer expertise
required, reduce the training overhead and limit the
demand for highly qualified designers.

In future works, we will develop some libraries specific to
the control system design and apply the SpecC
methodology to the design of new sophisticated
algorithms.

Acknowledgments

The authors would like to thank the Fulbright Scholar
Program for supporting this project. We would also like to
thank Andreas Gerstlauer and Rainer Doemer for their
interesting comments and ideas.

References

[1] D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, S. Zhao,
“SpecC: Specification Language and Methodology”,
Kluwer Academic Publishers, 2000

[2] A. Gerstlauer, R. Dömer, Junyu Peng, D. Gajski,
“System Design: A Practical Guide with SpecC”, Kluwer
Academic Publishers, 2001

[3] H. Yin, H. Du, T. Lee, D. Gajski, “Design of a JPEG
Encoder using SpecC Methodology”, University of
California, Irvine, Technical Report ICS-TR-00-23, July
2000

[4] A. Gerstlauer, S. Zhao, D. Gajski, A. Horak, “Design
of a GSM Vocoder using SpecC Methodology”,
University of California, Irvine, Technical Report ICS-
TR-99-11, February 1999

[5] Motorola, Inc., Semiconductor Products Sector, DSP
Division, DSP 56600 16-bit Digital Signal Processor
Family Manual, DSP56600FM/AD, 1996

14

A Specification Model for the DC System Control

B Architecture Model for the DC System Control (ARCH1)

C Communication Model for the DC System Control (ARCH1)

D Architecture Model for the DC System Control (ARCH2)

E Communication Model for the DC System Control (ARCH2)

