SpecC Methodology applied to the Design of
Control systemsfor Power Electronicsand Electric Drives

Sim Ben Saoud, Danid D. Ggski

Technical Report ICS-01-45
July 25, 2001

Center for Embedded Computer Systems
Department of Information and Computer Science
Universty of Cdifornia, Irvine
Irvine, CA 92697-3425, USA
(949) 824-8059

Sim Ben Saoud Danid D. Ggski
Fulbright Visitor @ CECS CECS
INSAT-Tuniss TUNISIA UCI-CdiforniaUSA
shensaou@ics.uci.edu gaski@ics.uci.edu

http://ww.cecs.uci .edu/~shensaou http://www.cecs.uci.edu/~gajski

SpecC Methodology applied to the Design of
Control systemsfor Power Electronics and Electric Drives

Sim Ben Seoud, Daniel D. Ggki

Technical Report ICS-01-45
July 25, 2001

Center for Embedded Computer Systems
Department of Information and Computer Science
Universty of Cdifornia, Irvine
Irving, CA 92697-3425, USA
(949) 824-8059

Sim Ben Saoud Danid D. Ggki
Fulbright Visitor @ CECS CECS
INSAT-Tuniss TUNISIA UCI-Cdifornia-USA
shensaou@ics.uci.edu gaski@ics.uci.edu
http://www.cecs.uci .edu/~gensaou http:/Amww.cecs.uci .edu/~gajski
Abstract

Today, control agorithms are being more and more sophisticated due to the customer and governments demands for lower cost,
greater reliability, greater accuracy and environment requirements (power consumption, emitted radiation,...). Then, rea-time
implementation of these agorithms becomes a difficult task and needs more and more specific hardware systems with dedicated
processors and usually sy stems-on-chip (SOCs).

With the ever-increasing complexity and time-to-market pressures in the design of these specific control systems, a well design
methodol ogy is more than even necessary.

In this report we describe the application of the SpecC system-level design methodology (developed at the CAD Lab, UC Irvine)
to the design of control systems for power electronics and electric drives. We first begin with an executable specification model
in SpecC and then discuss the refinement of this model into architecture model, which accurately reflects the system architecture.
At this stage, we discuss different solutions according to the application complexity and constraints. Based on the studied
architecture models, communication protocols between the system ©mponents are defined and communication models are
developed.

In this report, we discuss the case of a DC system Control and describe in details different stages undergone. Generalization to
others systems can be done easily using the same steps and transformations.

Contents

1 Introduction

2 SpecC Methodology [1,2]

3 Specification

3.1 Control Device Specification

3.2 Control Device Constraints
4 Architecture Exploration

4.1 Allocation

4.2 ARCH1

421 Variable Partitioning

422 Scheduling

423 Channel Partitioning

4.3 ARCH2

431 Variable Partitioning

432 Channel Partitioning

5 Communication Synthesis

5.1 ARCH1

Protocol Insertion

512 Protocol Inlining

Bo©® © o~w~N w~wo® 00 N D W W P R

5.2 ARCH2

6 Backend

7 Conclusions

Refer ences

A Specification Model for the DC System Control
Architecture Model for the DC System Control (ARCH1)
Communication Model for the DC System Control (ARCH1)
Architecture Model for the DC System Control (ARCH2)
Communication Model for the DC System Control (ARCH2)

m O O @

A W NRER R R R B P
R W U0 © M W N B O

List of Figures

Figure 1: SpecC methodology

Figure 2: Specification model of the control device

Figure 3: Architecture models after behavior partitioning (a-archl & b-arch2)
Figure 4: Architecture model after variable partitioning (ARCH1)

Figure 5: Architecture model after scheduling (ARCH1)

Figure 6: Modification of variable partitioning (ARCH1)

Figure 7: Architecture model after channel partitioning (ARCH1)

Figure 8: Architecture model after variable partitioning (ARCH2)

Figure 9: Solution 1 of Channel partitioning

Figure 10: Solution 2 of Channel partitioning

Figure 11: Modification of variable partitioning

Figure 12: Architecture refined model (ARCH?2)

Figure 13: Protocol insertion principle

Figure 14: HW/SW Synchronization diagrams

OO OO NNNOOO AN

Figure 15: Protocols of the DSP56600 external bus

Figure 16: Communication model after protocol insertion (ARCH1)

Figure 17: Communication model after protocol inlining (ARCH1)

Figure 18: HW Communication SFSMDs

Figure 19: Communication model after protocol insertion (ARCH2)

Figure 20: Communication model after protocol inlining (ARCH2)

Figure 21: Components interconnections (ARCH?2)

SpecC Methodology applied to the Design of
Control systemsfor Power Electronics and Electric Drives

Slim Ben Saoud, Daniel D. Gajski
Center for Embedded Computer Systems
Univergty of Cdifornia, Irvine
Irving, CA 92697-3425, USA

ABSTRACT

Today, control dgorithms ae being more and more
sophigticated due to the customer and governments
demands for lower cod, grester rdiability, grester
accuracy and environment requirements (power
consumption, emitted radiation,...). Then, red-time
implementation of these dgorithms becomes a difficult
task and needs more and more pecific hardware systems
with dedicated processors and usudly systems-on-chip
(SOCs).

With the ever-increesng complexity and time-to-market
pressures in the design of these specific control systems, a
well design methodology is more than even necessary.

In this report we describe the agpplication of the SpecC
system-level design methodology (developed a the CAD
Lab, UC Irvine) to the design of control systems for
power eectronics and dectric drives. We first begin with
an executable gecification modd in SpecC and then
discuss the refinement of this modd into architecture
model, which accurately reflects the system architecture.
At this stage, we discuss different solutions according to
the gpplication complexity and condraints. Based on the
dudied architecture modds, communication protocols
between the sydem components ae defined and
communication models are developed.

In this report, we discuss the case of a DC system Control
and dexcribe in deals diffeeent Stages undergone.
Generdization to others systems can be done easily using
the same steps and transformations.

1 Introduction

The god of this work is to introduce the SpecC
methodology to the desgn of dectric drives. In this
project, we present and discuss the case of a DC motor
control. The control dgorithm used is very smple and can
be implemented usng dandard micro-controller. So, the
objective of this work is not redly to design the control
device but to introduce the SpecC methodology and to
discuss its application to the dectric drive controller
design. A generdization of this sudy to any other system
control can be done eesly usng the same steps discussed
inthefollowing sections.

The control device was described in four modds, which
represent four different levels of abdraction in the SpecC
methodology [1,2]. All these modds ae executable and
vaidated by smulation.

The rest of the report is organized as follows We first
begin with a brief presentation of the SpecC
Methodology. Then we dexribe an executable
specification model (in SpecC) of the control system and
we discuss the refinement of this modd into architecture
modd, which accurately reflects the system architecture.
At this stage we discuss different solutions according to
the gpplication complexity and condraints. Based on the
dudied architecture modds, communication protocols
between the sydem components ae defined and
communication models are devel oped.

2 SpecC Methodology [1,2]

With the ever increesing complexity and time-to-market
pressures in the design of sysems-on-chip (SOCs) or
embedded systems in generd, both industry and EDA
vendors are trying to move the design to higher leves of
abdraction, in order to increase productivity. At higher
levds, there is no difference between hardware and
software. An SOC is the combingtion of hardware and
software, and a the sysem-levd the disciplines merge.
Gregt productivity gains can be achieved by darting
desgn from an executable sysem specification ingead of
an RTL dexription a the golden reference modd,
throwing away dl sysem modds developed ealier in the
process. However, we ae ill just a the beginning of
understanding the design process at the system levd. No
tools and no wel-defined design flows are avalable from
industry or EDA vendors.

Managing the complexity a higher levels of abdtraction is
not posshle without having a very well defined system-
level desgn flow. A wedl-defined design methodology is
the bass for dl, syntheds veification, desgn
automation, and so on. Only then can we find or creste a
language that actudly fits the desired flow, and not vice
versa,

SpecC Sysem-levd desgn methodology and SpecC
language are the result of decades of research done in the

aea of SOC design a the Center for Embedded Computer
Sydems (CECS) a the Universty of Irvine Cdifornia
uai.

SpecC language wes devedoped exactly for the purpose of
supporting a system-levd design flow, and it therefore
stisfies dl the requirements of synthesizability,
verifiability, and so on. SpecC is a superset of C and adds
a minimal, orthogona set of concepts needed for system
design. It is currently in the process of being standardized.

The SpecC methodology is a s of modds and
trandformations on the modds (Figure 1). The modes
written in programming language (SpecC language) are
executables descriptions of the same sysem a different
levdls of abdraction in the desgn process. The
transformations are a series of well-defined steps through
which the initid gpecification is gradudly mapped onto a
detailed implementation description ready for
manufacturing.

The SpecC design methodology is besed on 4 wdl-
defined modds, namdy a gpecficaion modd, an
architecture modd, a communication modd, and findly,
an implementation modd. In the following section, we
will give a brief description of each modd and of the
refinement tasks leading from a functiond specification
modd dl the way to a cycdeaccurate implementation

modd in SpecC.

Specification model: The SpecC system-levd design
methodology starts with the capture of the intended
functiondity in the form of an executable specification as
shown in figure 1. This initid specification model
describes the functiondity as wel as the performance,
power, cost and other congraints of the intended design.
It does not meke aty premaure dlusons to
implementation details.

During specification cepture the designer may reuse
exiging code sgmentts, functions or procedures by
instantiating them out of an algorithm library.

Specification modd is a purdy functiond mode that
abstracts the system functiondity. It is the starting point
of system design process and the input to architecture
exploration task.

Architecture exploration: It refines the specification into
an architecture modd. It includes the design seps of
dlocation, partitioning of behaviors chands, and
variables, and scheduling.

Allocation determines the number and types of the system
components, such a generd-purpose or custom
processors, memories, and busses, which will be used to
implement the sysem behavior. Allocation includes the

reuse of intellectua property (IP), when IP components
are sdected from the component library.

Behavior partitioning didributes the behaviors (or
processes) that comprise the system functionality amongst
the alocated processng eements. Variable partitioning
assigns variables to memories, and channel partitioning
assigns communication channels to busses.

Scheduling determines the order of execution of the
behaviors assigned to ethe the sandad or custom
processors after patitioning. In other words, scheduling is
used for software and hardware components.

Synthesisflow

Validation

model

Specification
model L[vaidaion
< Analysis
* Estimation
Architecture exploration
Allocation -
Partitioning m
Scheduling
Architecture model
model L[vaidaion
€ Analysis
Estimation
Communication synthesis

Protocol insertion
Proto.
Interface synthesis IP

Protocal inlining

Compilation Simulation
model

Validation
Analysis
Estimation

Communication
model -~

<

=

Back end

RTL RTOS
1P P

A

Implementation

Hardware Interface Software
synthesis synthesis compilatio

— imulation
Compilation
Validation
Analysis

[f Estimation
Manufacturing

Implementation
model

=

Figure 1: SpecC methodol ogy

Architecture exploretion is an iteraive process
culminating with an architecture modd that represents a
refinement of the gpecification modd. Estimators evauate
eech architecture candidate's sdisfaction of the design
condraints, until al condraints are sdtisfied, component
and connectivity redlocation is peformed and a new
architecture with different components, connectivity,

patitions, schedules or protocols is generaed and
evaluaed.

Architecture model: It describes the system functiondity
as well as the overdl gructure of the fina implementation
for the desgn. The communication in the architecture
mode isthrough the abgiract globa channels.

Communication Synthesis. It refines the abstract
communication between behaviors in the architecture
modd into an implementation. The task of
communication synthesis includes the insetion of
communication protocols, synthesis of interfaces and
transducers, and inlining of protocols into synthesizable
components. In the resulting communication modd,
communication is described in terms of actud wires and
timing relationships are described by bus protocols.

Communication model: It is the final output of the
system-level design process which describes the system
sructure as a set of components connected through the
wires of the set of buses.

Backend: Theresult of the synthesisflow is handed off to
the backend toals, as shown in the lower part of figure 1.
The software part of the hand-off model consistsof C

code for compilation and the hardware part consists of
behaviord C (VHDL) codefor high-level synthesis. The
backend toolsincdude compilers and high-level synthesis
tool. The compilers are used to compile the software C
code for the chosen processor. The high-level synthesis

tool synthesizesthe functionality assigned to custom
hardware and the functiondlity of transducerswhich are
necessary for connecting different processors, memories,
and IPs.

After software compilation and hardware synthesis, the
find implementation modd is generated.

Implementation model: It represents a clock-cyde
accurate description of the whole sysem. This
description, in turn, then serves as the bads for
manufacturing of the system.

In each of the tasks the desgner can make design
decisons manudly by using an interactive graphica user
interface, for example, while tranformations from one
modd into another can be accomplished automaticaly by
folowing the refinement rules or modd guiddines After
eech refinement sep in the syntheds flow, a
corresponding SpecC modd of the sysem is generated,
which means that design decisons made in each design
task are reflected in the generated modes. Thus in the
velidation flow that is orthogona to the synthesis flow in
the SpecC methodology, one can peform dmulétion,
andyds and edimaion of the SpecC modds generated
after each task.

After each dedgn dep, the design modd is daticdly
andyzed to edimate cetain quaity metrics such as
performance, codt, and power consumption. Anayss and
edimation results are reported to the user and back-
annotated into the modd for sSmulation and further
synthesis.

The design can be ddicdly andyzed or smulated after
eech dep for vdidaion of desgn correctness in terms of
functionaity, peformance, and other condraints A
smulation mode is compiled after eech sep which can
be run on the host computer to validate correctness for
smuldion.

At ay dage of the refinement process a dandad
software debugger can be used to locate and fix the errors
if verification fals. Such debuggers enable one to st
bresk points anywhere in the source code and to perform
detailed state ingpection a any time.

3 Specification

The sysem design process darts with the specification
model written by the user to specify the desired system
functiondity. It forms the input to architecture
exploration, the first step of the system design process,
and thaefore defines the basis for dl synthess and
exploration. For example, the specification modd defines
the granularity for exploration through the size of the lesf
behaviors, it exposes the avalable padldism, uses
hierarchy to group rdaed functiondity and manage
complexity, separates communication from computaion,
and soon.

The specification modd is a purdy functiond, abdract
modd tha is free of any implementation details. The
hierarchy of behaviors in the gpecification modd soldy
reflects the sysem functiondity without implying
anything about the system architecture to be implemented.
For example, padld pats in the specification modd
describes independent groups of functions that can run
concurrently but does not make any premature
assumptions about an implementation on concurrent
processing lements.

The specification modd is free of any notion of time. The
modd executes in zero logicd (Smulation) time Events
in the gpecification mode ae used by the designer for
synchronization only in order to specify causdity and thus
establish apartid ordering among these behaviors[2].

3.1 Control Device Specification

The DC control device has been specified usng SpecC
language in previous work. The control dgorithm and the
/O modules composing the control device was
represented in a formd, executable, pecification model
that has been vdidaed by Smulaion. This obtained
modd is shown on figure 2.

The used control agorithm is composed of two control
loops: an outer motion loop and an inner current loop.
Each of them is specified in a separate sub-behavior and

asociated to a cock-behavior that generated the
synchronization event to activate the corresponding
control loop a the predefined periodic step. For the

current control loop, we used a period of 284ns and for
the motion one, we used a period of 20ms. However, in
the specification modd, there€'s no notion of time, so in al
our specification modd, we consder tha basc cycle of
time is 1ns and then we used for the Clk; behavior the
waitfor statements. a waitfor(284) for the Clk; behavior
andawaitfor (20000) for the Clky behavior.

The 1/O0 modules necessty for the control device
functioning ae pecified in two behaviors the PWM
behavior represents the PWM module functioning while
the ACQ behavior represents the informaion acquisition
modules. Each of these modules is specified by a specific
sub-behavior asxociated to a dock-behavior that generates
the synchronization event necessary for its activation.
These 1/0O modules are independent and they usudly use
different clock periods.

(" bcem

Figure2: Specification model of the control device

The PWM behavior generates two complementary signds
CO and C1 with the same frequency as the current control
module clock and according to the puse width vaue a
(for CO) obtained by the current control behavior.

The current acquisition behavior ceaptures the current
vaue (N, obtained from the used ADC component) and
computes its average vaue over the current control period
(i). While the speed acquisition behavior computes the
geed vaue (W,) from the two dgnds 0 and S1
generated by the opticd incrementa encoder (sensor used
on the process under contral).

As shown on figure 2, the SpecC gpecification describes
the control device functiondity in a clear and precise
manner.

3.2 Control Device Constraints

Usudly, the main congtraints of control devices are:

- Time egpecidly the time execution of the control
dgorithm and the time needed for converson of
andog information to digita form.

- Precison: exgpecidly the rexolution of the 1/O
modules like the resolution of the used ADC
components (number of bits), the resolution of
postion/speed acquisition module (clock and number
of bits) and the resolution of the PWM module...
These characteridics are usudly dependent on the
used processor data bus.

In our gpplication, and since we use a smple control
agorithm, these condraints are not redly severe. As an
example, we used the following specifications.

- aperiod Tc=284 nsfor the current control loop;

- aperiod of Tm=20msfor the speed control loop;

- areolution of 10 bits for the ADC component, and a
period of 5 nsfor the current acquisition;

- aperiod of Imsfor the speed acquisition;

- adock of 1nsfor the PWM module ...

Thexe vaues are only used as an example and then will be
adapted by the user according to his application.

4 Architecture Exploration

Architecture exploration is the first pat of the system
synthesis process that develops a system architecture from
the gpecificstion modd. The purpose of architecture
exploration is to mgp the computationa pats of the
specification, represented by the behaviors in the
specification modd, onto the components of a system
architecture. The seps involved in this process ae

dlocation of a set of sysem components (Processing
edements PEs and memories), patitioning of behaviors
onto the processng eements, mapping of variables into
memories and scheduling of behaviors on the inherently
sequential PES. Through this process, the gpecification
modd is gradudly refined into the architecture modd.

Note that in generd, exploration is an iterative process.
The different tasks can be executed repeatedly and in each
iteretion the task can be done genegdly in any order or
even Smultaneoudly.

In order to perform architecture exploration, it is crucid
to obtain accurate information aout the design in a short
amount of time Therefore, the task of edimation is
centrd to the whole exploration process. Estimation tools
determine design metrics such as peformance (execution
time) and memory requirements (code and data Sze) for
each pat of the specification with respect to the alocated
components.

Usuadly, to get the beter tradeoff between the
performance and codst, HW/SW partition is peformed,
which involves the egimaion of the different partitions.
Based on the estimation the partition of the sysem can be
done[3].

Knowing the HW/SW peformance of eech block, we
could condder different partitioning solutions. For each
partition, we could compute the number of dock cydes
required for the HW block(s), the number of dock cyces
required for the SW block(s) and hence the totd number
of clock cycles.

Naturdly, the more the functiondity was put into HW,
the less was the required number of cdock cyces
However each patition was aswociaged with a
communication overhead in terms of the amount of data
trandferred a the interface. Based on the communication
overhead, certains decisons regarding locd HW memory
and shared memory will be made.

In our application, the motion control loop does not
present severe tempora condraints and it is usualy used
a the man program in which, we integrate the
communication with the usx for configuration and
monitoring. So this block is usudly prefared as a
software one. On the other hand the main part of the I/O
modules require time management (timers) so they ae
implemented on hardware.

Therefore, the study concerns in the most of cases the
current control loop because it presents the most severe
tempora congtraint.

However, in this study, our objective is to introduce the
SpecC methodology to the case of control device design.
So we use a smple application for which condraints are

not severee We present two architectures modds
(according to the current control implementation), that
seem to be the most useful for our type of application. In
the following, we will show the <ep-by-step process
applied to the gpecification modd developed in previous
section, in order to obtan two different architecture
modds.

4.1 Allocation

The first tak of the architecturd exploration process is
the dlocation of a sysem target architecture consisting of
a st of components and their connectivity. Allocation
sdects the number and types of processng dements
(PES), memories and busses in the architecture, and it
defines the way PEs and memories are connected over the
system busses. Components and protocols are taken out of
a libray and can range from full-cusom designs to fixed
IPs.

After an architecture has been dlocated, the first step in
implementing the gpecification on the given architecture
is to map the SpecC behaviors onto the architecture's
processing eements. In the refined modd &fter behavior
patitioning an additiond level of hierarchy is inserted
with top-levdl behaviors representing the components of
the architecture.

For the control device application, usudly the 1/O
modules are done by hardware modules (ADC, Timers,
...) while the control agorithm is implemented in a
standard processor. However, sometimes, this solution is
not adequate for sophidticated dgorithm running in red
time. Than, usudly we remove a pat of the control
dgorithm from the processor and we implemented it by
hardware. This part is usualy the current loop lecause it
represents the most severe time condraints. In dl these
casss, the gpecification of the retained architecture, its
vdidation and its desgn mus be done usng a
methodology. In this work, we propose to develop these
two architecture solutions using SpecC methodol ogy.

Note tha the 1/O modules can be implemented on a
common component or on different components.

According to the previous consderaions, we digtinguish
two principles architectures that can be used for dectric
drives. These architectures will be dudied here as an
example. The firgd one (archl) uses two components an
ASIC for the 1/O modules and a processor for the control
dgorithm. While the second one (arch?) uses a hardware
component for esch 1/0 module, an ASIC for the current
control module and a processor for the speed control
module and the interface with the user.

The obtained models are shown in figure 3. Note that in
these architectures the clock generator behaviors used in

the specification modd are not considered as a part of the
control device These dock events are conddeed &s
inputs to the control unit...

/DC CTL W)

(ASIC > w, | DSP
(PE1)

|

| — |

Acow Acqg

So[S Nin'\J_|

(bc cTL

P
—T — — —J
PE3 E4 ES5 ASIC
Acaw | | Acg | PWMa Current 1 [Motion
Control Control
S S| St Nim Col C (b))

Figure 3: Architecture models after behavior
partitioning (a-archl & b-arch?2)

In Archl, the processor core (DSP56600 core) running
control agorithm is supported by a hardware component
for the I/O functions. However, in arch2, only the motion
control loop is implemented on the processor core while
the current control loop is implemented on a custom
coprocessor and eech of the 1/0O function is implemented
on aspecific hardware.

Formerly locd varidbles used for communication between
behaviors mapped to different components now become
globd, sysem-levd vaidbles Synchronization between
behaviors mapped to different components is done by the
clock behaviors integrated in the testhench specification
& defined in the gpecfication modd. Other
synchronization behaviors can be added if necessary in
order to preserve the execution order as represented by
the specification modd...

In achl, vaiables exchanged between ASIC and DSP
ae

- Pulse width variable (a) computed by the current
control loop module and sent to the PWM block at
the beginning of each new current control period Tc;

- The current captured vaue (i, aveage vaue)
determined by the current acquisition module and
used by the current control module;

- The speed captured vaue (W) determined by the
speed acquistion module and used by the motion
control module.

The vaidde |« generates by the motion control module
and used by the current control module is a loca varigble
inside the DSP.

However, in ach2 we diginguish 5 PEs (PWM, ACQ,
ACQy ASC ad DSP) ad a,inm W, vaidles ae
exchanged between respectivdy (ASIC-PWM), (ACQ-
ASC) and (ACQwDSP). In addition to these varigbles,
I become a globd vaiddle and it will be tranamitted
fromDSPto ASIC.

In the following sections, these two architectures will be
studied separately.

4.2 ARCH1
42.1 Variable Partitioning

After behavior patitioning, communication between
behaviors mapped to different PEs is peformed via
globa, shared vaiables. Globad vaidbles have to be
assigned to locd memory in the PES or to a dedicaed
shared memory component. In the refined modd after
vaidble patitioning, globd varidbles ae replaced with
abgract channds and code is insarted into the behaviors
to communicate variable vaues over those channels.

In our application, the number of exchanged variables is
very limited. So, our choice is to use loca copies of these
vaiables in each PEs. Then, the behaviors indde the PEs
are connected to the corresponding loca copy and operate
on the data in locd memory indead of accessng a globd
vaiadble. Updated data vaues are communicated between
ASIC and DSP through 3 abdtract channds (C;, G, and
Cwm). Synchronizations are done by appointment a each
current control period (284) for C; and Gy, and a each
speed contral period (20000) for Ci

(DC_CTL \N'-—' N\

g
> PE2

[C. | 1 v v
C_Alg M_Alc

Figure 4. Architecture model after variable partitioning
(ARCH1)

Patitioning is immediady folwed by the task of
scheduling. Both are closdy related since the qudity of a
patition is reveded only once scheduling has been
performed.

422 Scheduling

Scheduling determines the execution order of behaviors
that execute on inherently sequentid PEs Scheduling
may be done daticdly or dynamicdly [4]. In ddic
scheduling, each behavior is executed according to a fixed
schedule. In the refined modd after scheduling, behaviors
indde eaxch ocomponent ae executed —sequentidly
according to the computed schedule Redundant
synchronization between the behaviors is removed during
optimization. In dynamic scheduling, the execution of
behaviors on each component is determined a run-time.
An gpplication-specific run-time scheduler is created
during refinement.

Figure 5 shows the stheduling of the padld control
agorithm running on the DSP core. Due to the dynamic
timing relation between motion loop and current loop
tasks, a dynamic scheduling scheme is implemented. The
motion control represents the main program, which
executes in periodic manner. Whenever a new current
period arives, the main task is interrupted in order to
execute the current control.

S We
PE2
SR ACO
~ M_CTL
Nim
P E;JSTL v

Co ;@
C1EPWM o1
- —J

Figure5: Architecture model after scheduling (ARCH1)

According to this scheduled modd and in order to
samplify synchronization for communication, we choice
to do dl exchanges a the beginning of esch current
control loop which means a each period Tc. The Wy,
vaue will be then a locd vaiable of the DSP as wel as
Iref.

Exchanges synchronization can be done by an extend
clock (as represented on figure 5) or by an event
generated by the ASIC and precisdy by the PWM module
(snce it will integrate a tempaization function at the
period of Tc).

/DC CTL =\

Lot

Figure 6: Modification of variable partitioning
(ARCH1)

423 Channd Partitioning

Channd patitioning is the process of mapping and
grouping the abdract, globd communication channes
between components onto the busses of the target
architecture. In the refined modd, additiond top-leve
chanels ae used to represent system busses. Then
channd patitioning is reflected by hierarchicaly
grouping and encapaulating the abdract, globa channds
under the top-leve bus channds.

Note that the bus is ds0 a type of channd in SpecC, and it
implies that the future implementation would be the wired
buses. Channes connect the concurrent behaviors while
buses connect the corresponding components into which
these behaviors are mapped. Usudly, only one bus is used
between two components.

For this architecture, we used only one bus, which
connects the processor to the custom hardware
component. Therefore al communication are mapped to
that bus So, in the SpecC destription of the refined
control device, a sngle channd representing the system
bus is inserted at the top level. The two components are
connected to this bus channd and al abdract channds for
communication between behaviors (C;, G and Cpuy) ae
grouped under the top-level channdl.

Figure 7: Architecture model after channel partitioning
(ARCH1)

As indicated in the previous section, exchanges will be
done a the beginning of each Tc period between the
PWM module and the current control module.

43 ARCH2
43.1 Variable Partitioning

The number of exchanged vaidble is vey limited So
locd copies of globd vaiables ae added to the
correspondent PEs. Updaed daa vdues ae
communicated between these PEs through 4 different
abdtract channds. Gy, G, Ca ad Gy

Figure 8: Architecture model after variable partitioning
(ARCH2)

According to this architecture, the I/O modules are
independent and their results ae obtaned in an
asynchronous manner. Indeed, the gpeed acquistion
module, for example, computes the period of a varigdle
frequency sgnd, so the new result is obtained in an
asynchronous manner (depends on the speed <Sgnd
frequency whichisvarigble).

In order to not charge theses components by the
synchronization and the communication processes needed
for trangmisson, we choice to add dementay memory
blocks (one register) to these PEs (one block per PES).
These memories will be integrated in the 1/0 hardware
module. So, obtained results are automdicaly loaded on
these memories and trandfer will be done between them
and the control PEs (current PEs and motion PES).

According to this architecture, no synchronization is
needed between the I/O modules and the control modules
snce the exchange is done through memory blocks.

On the other hand, synchronization between the ASIC and
the DSP is done by interruption. Indeed, a esch Tc
period, the ASIC interrupts the DSP and begins the
transfer of Iref within the channd C¢r.

432 Channd Partitioning

According to the previous specification, we disinguish at
least two main possibilities of channdl partitioning:

> As shown on figure 9, chanes can be mapped
onto two buses:
- one bus between the ASIC and PE4/PES: this
buswill be managed by the ASIC;
- one bus between the DSP and PE1/PE3: this bus

will be managed by the DSP.

Usng this solution buses are managed essly since
each bus will have only one meder that initiate
each trander. However it presents a man
inconvenient, in fact the number of pin in the
coprocessor will be important since it used two
different busses

Figure 9: Solution 1 of Channel partitioning

> For tha reason, we propose a second possibility on
which only one bus is used as a common hbus to dl
components as shown on figure 10. However, this
solution includes a magor difficulty of the bus
management, in fact it will have two magters. So a
management protocol should be added to resolve
conflicts when these two masters tries to use the
bus at the sametime

Figure 10: Solution 2 of Channel partitioning

In order to dmplify the communication process, we
choice to use another variables partition with only one bus
and one mager. So, we introduce some modification to
our architecture modedl as shown on figure 11.

Figure 11: Modification of variable partitioning

Synchronization for the transfer is done by interruption.
At the beginning of esch new Tc period, the ASIC
interrupts the DSP and both dat the exchange process.
Insgde this process, The ASIC sends a and waits for |,
and i While the DSP (the master) begins by reading the
a vaue, then it writes this data to PE5, and reads i, vdue
from PE4 and findly it sends i, and i vaues to the
ASIC. Acquistion of W, vaue is done by the master at
the beginning of each Tm period..

The find architecture mode using one bus is represented
by figure 12.

Figure 12: Architecturerefined model (ARCH2)

5 Communication Synthesis

The purpose of communication synthess is to refine the
abgract communication in the architecture modd into an
actud implementation over the wires of the system
busses. This requires insation of communication
protocols for the busses, synthesis of protocol transducers
to trandate between incompatible protocols, and inlining
of protocols into hardware and software. These steps will
be discussed in the following sections for the two retained
architecture targets separately.

5.1 ARCH1

511 Protocol I nsertion

During the protocol insattion, a description of the
protocol is taken out of the protocol library in the form of
a protocol channd and inserted into the corresponding
virtua system bus channd (figure 13).

The protocol channe encgpsulates the bus wires and
implements the bus protocol by driving and sampling bus
wires according to the protocol timing. At its interfece,
the protocol channd provides methods for dl primitive
transactions supported by the protocol, eg. read, write,
etc.

The abdract communication primitives provided of the
bus channd ae rewritten into an implementation usng
the primitives provided by the protocol layer. The outer
gpplication layer of the bus channd implements the
required semantics over the actua bus protocol. This
includes tasks like synchronization, ahitration, bus
addressing, datadicing, and so on.

All the abgtract bus channds in the modd are replaced
with thdr equivdent hierarcchicd combinations of
protocol and application layers that implements the
absract communication of each bus over the actud
protocol for that bus.

@ Application
< =)
ayer

Figure 13: Protocol insertion principle

Component

Component| =-y—y Procedure __X, ——

In this example, after protocol insertion, the processor is
the centra component and the megter of the system bus.
The software on the processor initistes dl data transfers
on the processor bus from and to the hardware
component. However, these exchanges ae initiated
(provoked) either by an external clock (at Tc period) or by
the hardware component that send an event a each Tc
period to the processor by triggering its interrupt in order
to execute the exchanges process (at the beginning of the
current control loop).

At this stage, the processor as a master of the bus initiates
and controls data tranfers to and from the custom
hardware. It initiates the trandfer by reading from or
writing to the memory location with the address of the
HW component. The HW, on the other hand, detects its
own address and answers DSP requests by supplying or
doring the requested data from and to their loca registers
or memories.

So, a the beginmning of each new Tc period, the custom
hardware sgnas its ready date for communication by
rasng an interrupt. The corresponding interruption
software on the processor begins trandferring the data one
word a a time by repeatedly executing instructions that
initiate read or write cycles on the externa bus beginning
by the send of a and then receive of i, and Wy,

C_CTL procedure (period
HW r= ~
|

AR o/,

SN \‘fExchangés \ 7

>

g
>

M_CTL procedure (period

Figure 14: HW/SW Synchronization diagrams

Note that the clear separation between communication
and computation endbles replacement of a gened
component with an IP modd plus wrapper and tansducer
a any dsage of the design process. The wrapper specifies
how to interface the IP modd with the rest of the design.
For smulation purposes, any modd of the IP component
that provides a suitable programming interface can be
hooked into the SpecC simulator through the wrapper.

The protocol channd in the system bus and the wrapped
processor modd describe and implement the DSPS6600
bus protocol according to its timing diagram [5], shown in
figure 15. The protocol layer provides primitives for
peforming read/write transfers and for raising interrupts
over the processor bus.

On top of the protocol layer, the application layer crested
during protocol insertion implements the semantics of the
abdract communication of the bus channd, usng the
primtives provided by the encapsulated protocol
channd...

(28.95)

AO-ALE & X

Mcs 7 (2] AN

(17.05)
JRD 7 @3 I\‘ <
IWF 7 - (0 N
e8| 22

DO-D2 (Dataln

AT __/ N/ N\

DSP56600 - SRAM Read Access

(28.95)

AO- NG X
Mes —7 S e
RD __/ (0.5,) (19.35) N\
€

MWE 7T oo 03

o} ——— —
DO- £ Data Ou
AT __/ N/ N\

DSP56600 - SRAM Write Access

Figure 15: Protocols of the DSP56600 external bus

Figure 16 shows the system modd &fter insertion of the
DSP56600 bus protocol for the system bus. The bus
protocol is modded as a SpecC channd in the protocol
library. The protocol channel is inserted into the top-leved
bus channd and dl communication over the sysem hus is

implemented usng the primitives provided by the
protocoal.
by & Address[15:0
& [Data] 23:0, @ DSP
8
Ble 3| cTL_Alg
@l \& @

Figure 16: Communication model after protocol
insertion (ARCH1)

5.1.2 Protocal Inlining

Protocal inlining is the process of inlining the channd
functiondlity into the connected components and exposing
the actua wires of the busses. The communication code is
moved into the components where it is implemented in
software or hardware. On the hardware side, FSMDs that
implement the communication and bus protocol
functiondity are synthesized. On the software side, bus
drivees and interrupt handlers thet perform the
communication using the processor's 1/O indructions are
generated or customized.

10

The communication mode obtaned after protocol
inlining is shown in figure 17. In this case, dl daa
transfers on the processor bus are initigted by the DSP.
However the High-level handsheking and synchronization
between hardware and software is redized using
interrupt-based handshaking.

For the ASIC, communication primitives are inlined into
the exchanges sub-behavior that have been crested inside
the PWM behavior, during partitioning, for
synchronization and communication of the ASIC with the
DSP. So, both application and potocol layers of the
communication primitives that had been crested during
protocol insertion are inlined into the custom hardware
behavior.

ASIC DSP
BusSave
Address[15:0

% g O) : % o]
3 8 I Tmics = | [8
4 ! JRW 5 | B
£ & [/RD £/ B

o =y

Figure 17: Communication model after protocol
inlining (ARCH1)

During inlining, exchanges SFSMD modd is crested and
inserted into the ASIC SFSMD modd. They will later be
synthesized into custom hardware together. Note that in
gengd thee ae may different ways of implementing
the trandfer functiondity, and a choice about the find
hardware design has to be made a this point.

The exchanges hardware module synchronizes with the
DSP by raising the processor's interrupt line IRQC in its
fird date S1 until a transfer with the address of the
custom hardware is recognized. Then the WR control
sgnd is sampled until a fdling edge has been detected
that dgnds the beginning of a bus write cyce
Communicetion continues a the same manner for two
reed cycles.

Note that the sudied architecture is just a fictive
discussed as an example to vdidate our goproach.
Usudly, different hardware components are used for each
I/0 module, aswe will seein next sections.

5.2 ARCH2

The DSP 56600 protocol is employed for ASIC and DSP
while another simple memory protocol is used for
memory blocks. We suppose tha ASIC and DSP use the
same protocol and that timing congtraints are competible

between these two protocols. Otherwise we have to insert
transducer.

Load |/Oreg=1

Addr=¢& a;
rw=0; //write
Addr=Addr+1

Addr=& im;
rw=1; //read

En_|/Oreg=1

load_I/Oreg=1

Addr=& Wi,
rw=1; //read

En_|/Oreg=1

Figure 18: HW Communication SFSMDs

> Acq
@
<[] Actw

Figure 19: Communication model after protocol
insertion (ARCH?2)

DSP5660C (R
Protocol

load_|/Oreg=1

11

The communication modd is obtained as described in the
ARCH1 exploration, usng two dseps the protocol
insertion (protocol of the DSP 56600) and the protocol
inlining. The obtained communication modd is shown on
figure 20.

DS >

ACQ
v_cri\f<)

<> [PWM

ASIC

c_cTL|{pe>{])ACQu

Figure 20: Communication model after protocol
inlining (ARCH2)

We note that connections ae done between memories
(indde the 1/0 modds) and PELPE2 according to the
figure 21.

DSP A A Meamoy DSP A A AgC
56600 D D block 56600 D D
/MCS ICS /MCS /IMCS
/RD /OE /RD /RD
IWF IWE IWR IWFR

Figure 21: Componentsinterconnections (ARCH2)

In our gpplication, only one side of the register control is
done by the magter: for example for the R (register that
sored a), it is controlled by PE2 only in writing
operdtion, s0 the /WE dgnd is connected to the master
/WR dgnd while the /OE is active controlled in locd by
the PWM hardware,

In the FSMD of the I/O module the regiger will be
controlled by the FSMD-controller only on one way
(patidly). For example in the case of the PWM module
this register is only controlled for read by the FSMD-
controller while it § controlled for write for the Acq i, by
its own FSMD-controller. The master (PE2) when
transferring data with the DSP does the other control side.

We note that in this gpplication and for necessty we used
at the sametime high and low levels design.

6 Backend

In the backend, the behaviord descriptions of the
components in the communication modd are synthesized
into a structural view of dl the components in the system
arcchitecture. The functiondity of each component is
implenented on top of the components RTL or
ingruction-set microarchitecture. In the process, timing is
refined down to the level of individud cock cycles based
on each component’s clock period.

The backend process encompasses three pardld tasks for
different parts of the communication mode [2]:

- High-level/behavioral synthess for cusom hardware
components The behaviord PE description in the
form of draight-line code is synthesized into a netlist
of regigter-transfer level (RTL) components.

- Software syntheds The SpecC modd of the
behaviors mapped onto a programmable processor is
conveted into a C modd, compiled into the
processor’s ingruction set and possibly linked againgt
anRTOS

- Synthesis of bus intefaces and bus drivers The
gpplication and protocol layer functiondity is
synthesized into a cycetrue implementation of the
bus protocols on each component. This reguires
generation of bus interface FSMDs on the hardware
dde and genegation of assembly code for the bus
drivers on the software Sde.

The result of the backend process is the cycle-accurae
implementation modd.

In the communication modd, components were modeled
by PE behaviors contaning a purdy behaviord
description of the component functiondities. In the
implementaetion modd, the PE behaviors are refined into
cycletrue descriptions based on the component's
RTL/instruction-set microarchitectures.

The implementation modd is the result of the backend
process and as such the find end-result of the whole
system design flow. It is a structural description of both
system and component architectures.

At the top-level, the system architecture is a s&t of non-
termingting, concurrent components communicating via
wires of sysem busses At the component leve,
computation and communication functiondities are based
on esch component's microarchitecture FSMD modes
for cusom hardware and indruction-st modds for
software on programmable processors.

The implementation modd is a cydeaccurate system
dexcription. The order and timing of computation and
compuation in the sysem is described in terms of
component clocks. A globa order is imposed among the
system’'s components via the order of events on the
common bus wires generated and wached by the
components connecting to the busses.

The implementation mode is further processed and
refined through traditiond desgn flows down to
manufacturing. For example, logic synthess of custom
hardware RTL descriptions is followed by “place &
route” to generatethefina chip layout.

7 Conclusons

In this report we introduce the SpecC system-level design
methodology to the design of control systems for Power
Electronics and Electric drives processes. We presented
the sudy of a DC motor drive, which can be eesly
generalized to any other process contral.

We have shown the various deps in the SpecC
methodology tha gradudly refines the initid
Specification down to an actud communication moddl
ready for implementation and manufacturing.

Sating with the executable SpecC gpecification,
architecture exploration crestes an architecture modd of
the control system through the seps of dlocation,
patitioning and scheduling. Communication synthess
then trandforms the abdract communication of the
architecture modd into an implementation. After protocol
selection, transducer synthesis and protocol inlining, the
find communication mode is obtained. This modd is the
result of the design process and will be handed off to the
backend process for synthesis of the software and
hardware parts.

The retained architecture target is usudly obtained after
edimations and andyzes of different modules in the
specification modd. However, in this report we presented
two main architecture solutions that seems to be the most
useful in Electric drive systems. The choice between tham
will be done according to the application congtraints.

This project has shown that the SpecC methodology will
result in dgnificant productivity gains in the design of
control systems. In fact:

» The SpecC methodology is based on the SpecC
language which presents major advantages such as:

- The SpecC language is a supersst of C dlows for
drawing from the lage body of exiding
dgorithms. Therefore dl control agorithms
written in C language can be used and essly
implemented through the SpecC methodology.
On the other hand the control dgorithm
developers can be converted eesly to the SpecC
language and use it for the specification and
vdidation of ther new dgorithms. Then, no
rewritten of these prograns will be needed
between dgorithm devdopers and control
system dedgners dnce they use the same
languege. In generd, communicdtion among
dedgners and cusomers will be largdy
minimized.

- The SpecC language explicitly supports dl the
features necessary for sysem-levd design

including hierarchy, timing, concurrency,
communication and synchronization, exceptions,
State transitions, and so on.

- The dear sepaation of communication and
computation in SpecC facilitates reuse of system
components and enables easy integration of 1P

» The SpecC methodology presents a smplified
design process based on wel-defined, dear and
structured models a each exploration step. This
enables quick exploration and synthesis.

> At every point, a modd in SpecC languege
represents the design. This dlows performing
equivdence checking and dmulaion on esch
modd to validate the transformations.

» The wedl-defined nature of the modds and
transformations provides the bads for design
automation tools and in genera enables gpplication
of forma mehods for veification. These
automation tools will cover a lage pat of the
tedious and error-prone synthesis tasks and then
reduce even further the timeto-slicon. To these
tools some libraries specific to control systems
design will be added in order to reduce the amount
of resources and the man power required to
complete a Sysem-On-Chip desgn. A deep
leaning curve and the low dedgner expatise
required, reduce the training overhead and limit the
demand for highly qudified designers.

In future works, we will develop some libraries specific to

the control sysem design and apply the SpecC
methodology to the desgn of new sophigticated
agorithms.

Acknowledgments

The authors would like to thank the Fulbright Scholar
Program for supporting this project. We would dso like to
thank Andrees Gerdlauer and Rainer Doemer for their
interesting comments and idess.

References

[1] D. Ggski, J. Zhu, R. Domer, A. Gerstlauer, S. Zheo,

“SpecC:. Specification Language and Methodology”,
Kluwer Academic Publishers, 2000

[2] A. Gerdlauer, R. Domer, Junyu Peng, D. Ggi,
“Sydem Design: A Practicd Guide with SpecC’, Kluwer
Academic Publishers, 2001

13

[3] H. Yin, H. Du, T. Lee, D. Ggski, “Dedign of a JPEG
Encoder usng SpecC Methodology”, Universty of
Cdifornia, Irvine, Technicad Report ICSTR-00-23, July
2000

[4 A. Gedlauer, S. Zhao, D. Ggski, A. Horak, “Design
of a GSM Vocoder usng SpecC Methodology”,
Universty of Cdifornia, Irvine, Technicd Report ICS
TR-99-11, February 1999

[5] Motorola, Inc., Semiconductor Products Sector, DSP
Divison, DSP 56600 16-bit Digitd Sgnd Processor
Family Manud, DSP56600FM/AD, 1996

A Specification Modd for the DC System Control
B Architecture Modd for the DC System Control (ARCH1)
C Communication Model for the DC System Control (ARCH1)
D Architecture Modd for the DC System Control (ARCH?2)

E Communication Modd for the DC System Control (ARCH?2)

14

