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Abstract 
Today, control algorithms are being more and more sophisticated due to the customer and governments demands for lower cost, 
greater reliability, greater accuracy and environment requirements (power consumption, emitted radiation,…). Then, real-time 
implementation of these algorithms becomes a difficult task and needs more and more specific hardware systems with dedicated 
processors and usually systems-on-chip (SOCs). 
With the ever-increasing complexity and time-to-market pressures in the design of these specific control systems, a well design 
methodology is more than even necessary. 
 
In this report we describe the application of the SpecC system-level design methodology (developed at the CAD Lab, UC Irvine) 
to the design of control systems for power electronics and electric drives. We first begin with an executable specification model 
in SpecC and then discuss the refinement of this model into architecture model, which accurately reflects the system architecture. 
At this stage, we discuss different solutions according to the application complexity and constraints. Based on the studied 
architecture models, communication protocols between the system components are defined and communication models are 
developed. 
In this report, we discuss the case of a DC system Control and describe in details different stages undergone. Generalization to 
others systems can be done easily using the same steps and transformations. 
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ABSTRACT 
 
Today, control algorithms are being more and more 
sophisticated due to the customer and governments 
demands for lower cost, greater reliability, greater 
accuracy and environment requirements (power 
consumption, emitted radiation,…). Then, real-time 
implementation of these algorithms becomes a difficult 
task and needs more and more specific hardware systems 
with dedicated processors and usually systems-on-chip 
(SOCs). 
With the ever-increasing complexity and time-to-market 
pressures in the design of these specific control systems, a 
well design methodology is more than even necessary. 
 
In this report we describe the application of the SpecC 
system-level design methodology (developed at the CAD 
Lab, UC Irvine) to the design of control systems for 
power electronics and electric drives. We first begin with 
an executable specification model in SpecC and then 
discuss the refinement of this model into architecture 
model, which accurately reflects the system architecture. 
At this stage, we discuss different solutions according to 
the application complexity and constraints. Based on the 
studied architecture models, communication protocols 
between the system components are defined and 
communication models are developed. 
In this report, we discuss the case of a DC system Control 
and describe in details different stages undergone. 
Generalization to others systems can be done easily using 
the same steps and transformations.  
 
1 Introduction 
 
The goal of this work is to introduce the SpecC 
methodology to the design of electric drives. In this 
project, we present and discuss the case of a DC motor 
control. The control algorithm used is very simple and can 
be implemented using standard micro-controller. So, the 
objective of this work is not really to design the control 
device but to introduce the SpecC methodology and to 
discuss its application to the electric drive controller 
design. A generalization of this study to any other system 
control can be done easily using the same steps discussed 
in the following sections. 
 

The control device was described in four models, which 
represent four different levels of abstraction in the SpecC 
methodology [1,2]. All these models are executable and 
validated by simulation. 
 
The rest of the report is organized as follows: We first 
begin with a brief presentation of the SpecC 
Methodology. Then we describe an executable 
specification model (in SpecC) of the control system and 
we discuss the refinement of this model into architecture 
model, which accurately reflects the system architecture. 
At this stage, we discuss different solutions according to 
the application complexity and constraints. Based on the 
studied architecture models, communication protocols 
between the system components are defined and 
communication models are developed. 
 
2 SpecC Methodology [1,2] 
 
With the ever increasing complexity and time-to-market 
pressures in the design of systems-on-chip (SOCs) or 
embedded systems in general, both industry and EDA 
vendors are trying to move the design to higher levels of 
abstraction, in order to increase productivity. At higher 
levels, there is no difference between hardware and 
software. An SOC is the combination of hardware and 
software, and at the system-level the disciplines merge. 
Great productivity gains can be achieved by starting 
design from an executable system specification instead of 
an RTL description as the golden reference model, 
throwing away all system models developed earlier in the 
process. However, we are still just at the beginning of 
understanding the design process at the system level. No 
tools and no well-defined design flows are available from 
industry or EDA vendors. 
 
Managing the complexity at higher levels of abstraction is 
not possible without having a very well defined system-
level design flow. A well-defined design methodology is 
the basis for all, synthesis, verification, design 
automation, and so on. Only then can we find or create a 
language that actually fits the desired flow, and not vice 
versa. 
 
SpecC System-level design methodology and SpecC 
language are the result of decades of research done in the 



2 

area of SOC design at the Center for Embedded Computer 
Systems (CECS) at the University of Irvine California 
(UCI). 
 
SpecC language was developed exactly for the purpose of 
supporting a system-level design flow, and it therefore 
satisfies all the requirements of synthesizability, 
verifiability, and so on. SpecC is a superset of C and adds 
a minimal, orthogonal set of concepts needed for system 
design. It is currently in the process of being standardized. 
 
The SpecC methodology is a set of models and 
transformations on the models (Figure 1). The models 
written in programming language (SpecC language) are 
executables descriptions of the same system at different 
levels of abstraction in the design process. The 
transformations are a series of well-defined steps through 
which the initial specification is gradually mapped onto a 
detailed implementation description ready for 
manufacturing. 
 
The SpecC design methodology is based on 4 well-
defined models, namely a specification model, an 
architecture model, a communication model, and finally, 
an implementation model. In the following section, we 
will give a brief description of each model and of the 
refinement tasks leading from a functional specification 
model all the way to a cycle-accurate implementation 
model in SpecC. 
 
Specification model: The SpecC system-level design 
methodology starts with the capture of the intended 
functionality in the form of an executable specification as 
shown in figure 1. This initial specification model 
describes the functionality as well as the performance, 
power, cost and other constraints of the intended design. 
It does not make any premature allusions to 
implementation details.  
 
During specification capture the designer may reuse 
existing code segments, functions or procedures by 
instantiating them out of an algorithm library. 
Specification model is a purely functional model that 
abstracts the system functionality. It is the starting point 
of system design process and the input to architecture 
exploration task. 
 
Architecture exploration: It refines the specification into 
an architecture model. It includes the design steps of 
allocation, partitioning of behaviors, channels, and 
variables, and scheduling.  
Allocation determines the number and types of the system 
components, such as general-purpose or custom 
processors, memories, and busses, which will be used to 
implement the system behavior. Allocation includes the 

reuse of intellectual property (IP), when IP components 
are selected from the component library. 
Behavior partitioning distributes the behaviors (or 
processes) that comprise the system functionality amongst 
the allocated processing elements. Variable partitioning 
assigns variables to memories, and channel partitioning 
assigns communication channels to busses.  
Scheduling determines the order of execution of the 
behaviors assigned to either the standard or custom 
processors after partitioning. In other words, scheduling is 
used for software and hardware components. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: SpecC methodology 

Architecture exploration is an iterative process 
culminating with an architecture model that represents a 
refinement of the specification model. Estimators evaluate 
each architecture candidate’s satisfaction of the design 
constraints; until all constraints are satisfied, component 
and connectivity reallocation is performed and a new 
architecture with different components, connectivity, 
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partitions, schedules or protocols is generated and 
evaluated. 
 
Architecture model: It describes the system functionality 
as well as the overall structure of the final implementation 
for the design. The communication in the architecture 
model is through the abstract global channels. 
 
Communication Synthesis: It refines the abstract 
communication between behaviors in the architecture 
model into an implementation. The task of 
communication synthesis includes the insertion of 
communication protocols, synthesis of interfaces and 
transducers, and inlining of protocols into synthesizable 
components. In the resulting communication model, 
communication is described in terms of actual wires and 
timing relationships are described by bus protocols. 
 
Communication model: It is the final output of the 
system-level design process which describes the system 
structure as a set of components connected through the 
wires of the set of buses. 
 
Backend: The result of the synthesis flow is handed off to 
the backend tools, as shown in the lower part of figure 1. 
The software part of the hand-off model consists of C 
code for compilation and the hardware part consists of 
behavioral C (VHDL) code for high-level synthesis. The 
backend tools include compilers and high-level synthesis 
tool. The compilers are used to compile the software C 
code for the chosen processor. The high-level synthesis 
tool synthesizes the functionality assigned to custom 
hardware and the functionality of transducers which are 
necessary for connecting different processors, memories, 
and IPs. 
After software compilation and hardware synthesis, the 
final implementation model is generated. 
 
Implementation model: It represents a clock-cycle 
accurate description of the whole system. This 
description, in turn, then serves as the basis for 
manufacturing of the system. 
 
In each of the tasks the designer can make design 
decisions manually by using an interactive graphical user 
interface, for example, while transformations from one 
model into another can be accomplished automatically by 
following the refinement rules or model guidelines. After 
each refinement step in the synthesis flow, a 
corresponding SpecC model of the system is generated, 
which means that design decisions made in each design 
task are reflected in the generated models. Thus, in the 
validation flow that is orthogonal to the synthesis flow in 
the SpecC methodology, one can perform simulation, 
analysis and estimation of the SpecC models generated 
after each task. 

After each design step, the design model is statically 
analyzed to estimate certain quality metrics such as 
performance, cost, and power consumption. Analysis and 
estimation results are reported to the user and back-
annotated into the model for simulation and further 
synthesis. 
The design can be statically analyzed or simulated after 
each step for validation of design correctness in terms of 
functionality, performance, and other constraints. A 
simulation model is compiled after each step which can 
be run on the host computer to validate correctness for 
simulation. 
At any stage of the refinement process, a standard 
software debugger can be used to locate and fix the errors 
if verification fails. Such debuggers enable one to set 
break points anywhere in the source code and to perform 
detailed state inspection at any time. 
 
3 Specification 
 
The system design process starts with the specification 
model written by the user to specify the desired system 
functionality. It forms the input to architecture 
exploration, the first step of the system design process, 
and therefore defines the basis for all synthesis and 
exploration. For example, the specification model defines 
the granularity for exploration through the size of the leaf 
behaviors, it exposes the available parallelism, uses 
hierarchy to group related functionality and manage 
complexity, separates communication from computation, 
and so on. 
The specification model is a purely functional, abstract 
model that is free of any implementation details. The 
hierarchy of behaviors in the specification model solely 
reflects the system functionality without implying 
anything about the system architecture to be implemented. 
For example, parallel parts in the specification model 
describes independent groups of functions that can run 
concurrently but does not make any premature 
assumptions about an implementation on concurrent 
processing elements. 
The specification model is free of any notion of time. The 
model executes in zero logical (simulation) time. Events 
in the specification model are used by the designer for 
synchronization only in order to specify causality and thus 
establish a partial ordering among these behaviors [2]. 
 
3.1 Control Device Specification 
 
The DC control device has been specified using SpecC 
language in previous work. The control algorithm and the 
I/O modules composing the control device was 
represented in a formal, executable, specification model 
that has been validated by simulation. This obtained 
model is shown on figure 2. 
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The used control algorithm is composed of two control 
loops: an outer motion loop and an inner current loop. 
Each of them is specified in a separate sub-behavior and 
associated to a clock-behavior that generated the 
synchronization event to activate the corresponding 
control loop at the predefined periodic step. For the 
current control loop, we used a period of 284µs and for 
the motion one, we used a period of 20ms. However, in 
the specification model, there’s no notion of time, so in all 
our specification model, we consider that basic cycle of 
time is 1µs and then we used for the Clki behavior the 
waitfor statements: a waitfor(284) for the Clki behavior 
and a waitfor(20000) for the ClkΩ� behavior. 
 
The I/O modules necessary for the control device 
functioning are specified in two behaviors: the PWM 
behavior represents the PWM module functioning while 
the ACQ behavior represents the information acquisition 
modules. Each of these modules is specified by a specific 
sub-behavior associated to a clock-behavior that generates 
the synchronization event necessary for its activation. 
These I/O modules are independent and they usually use 
different clock periods. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Specification model of the control device 

 
The PWM behavior generates two complementary signals 
C0 and C1 with the same frequency as the current control 
module clock and according to the pulse width value α 
(for C0) obtained by the current control behavior. 
The current acquisition behavior captures the current 
value (Nim obtained from the used ADC component) and 
computes its average value over the current control period 
(im). While the speed acquisition behavior computes the 
speed value (Ωm) from the two signals S0 and S1 
generated by the optical incremental encoder (sensor used 
on the process under control). 
 
As shown on figure 2, the SpecC specification describes 
the control device functionality in a clear and precise 
manner. 
 
3.2 Control Device Constraints 
 
Usually, the main constraints of control devices are: 
 

- Time: especially the time execution of the control 
algorithm and the time needed for conversion of 
analog information to digital form. 

- Precision: especially the resolution of the I/O 
modules like the resolution of the used ADC 
components (number of bits), the resolution of 
position/speed acquisition module (clock and number 
of bits) and the resolution of the PWM module… 
These characteristics are usually dependent on the 
used processor data bus. 

 
In our application, and since we use a simple control 
algorithm, these constraints are not really severe. As an 
example, we used the following specifications: 
 

- a period Tc=284 µs for the current control loop; 
- a period of Tm=20ms for the speed control loop;  
- a resolution of 10 bits for the ADC component, and a 

period of 5 µs for the current acquisition; 
- a period of 1ms for the speed acquisition; 
- a clock of  1µs for the PWM module …. 

 
These values are only used as an example and then will be 
adapted by the user according to his application. 
 
4 Architecture Exploration 
 
Architecture exploration is the first part of the system 
synthesis process that develops a system architecture from 
the specification model. The purpose of architecture 
exploration is to map the computational parts of the 
specification, represented by the behaviors in the 
specification model, onto the components of a system 
architecture. The steps involved in this process are: 
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allocation of a set of system components (Processing 
elements PEs and memories), partitioning of behaviors 
onto the processing elements, mapping of variables into 
memories and scheduling of behaviors on the inherently 
sequential PEs. Through this process, the specification 
model is gradually refined into the architecture model.  
 
Note that in general, exploration is an iterative process. 
The different tasks can be executed repeatedly and in each 
iteration the task can be done generally in any order or 
even simultaneously.  
In order to perform architecture exploration, it is crucial 
to obtain accurate information about the design in a short 
amount of time. Therefore, the task of estimation is 
central to the whole exploration process. Estimation tools 
determine design metrics such as performance (execution 
time) and memory requirements (code and data size) for 
each part of the specification with respect to the allocated 
components. 
 
Usually, to get the better trade-off between the 
performance and cost, HW/SW partition is performed, 
which involves the estimation of the different partitions. 
Based on the estimation the partition of the system can be 
done [3]. 
 
Knowing the HW/SW performance of each block, we 
could consider different partitioning solutions. For each 
partition, we could compute the number of clock cycles 
required for the HW block(s), the number of clock cycles 
required for the SW block(s) and hence the total number 
of clock cycles. 
 
Naturally, the more the functionality was put into HW, 
the less was the required number of clock cycles. 
However each partition was associated with a 
communication overhead in terms of the amount of data 
transferred at the interface. Based on the communication 
overhead, certains decisions regarding local HW memory 
and shared memory will be made. 
 
In our application, the motion control loop does not 
present severe temporal constraints and it is usually used 
as the main program in which, we integrate the 
communication with the user for configuration and 
monitoring. So this block is usually preferred as a 
software one. On the other hand the main part of the I/O 
modules require time management (timers) so they are 
implemented on hardware. 
Therefore, the study concerns in the most of cases the 
current control loop because it presents the most severe 
temporal constraint. 
 
However, in this study, our objective is to introduce the 
SpecC methodology to the case of control device design. 
So we use a simple application for which constraints are 

not severe. We present two architectures models 
(according to the current control implementation), that 
seem to be the most useful for our type of application. In 
the following, we will show the step-by-step process 
applied to the specification model developed in previous 
section, in order to obtain two different architecture 
models. 
 
4.1 Allocation 
 
The first task of the architectural exploration process is 
the allocation of a system target architecture consisting of 
a set of components and their connectivity. Allocation 
selects the number and types of processing elements 
(PEs), memories and busses in the architecture, and it 
defines the way PEs and memories are connected over the 
system busses. Components and protocols are taken out of 
a library and can range from full-custom designs to fixed 
IPs. 
After an architecture has been allocated, the first step in 
implementing the specification on the given architecture 
is to map the SpecC behaviors onto the architecture’s 
processing elements. In the refined model after behavior 
partitioning an additional level of hierarchy is inserted 
with top-level behaviors representing the components of 
the architecture. 
 
For the control device application, usually the I/O 
modules are done by hardware modules (ADC, Timers, 
…) while the control algorithm is implemented in a 
standard  processor. However, sometimes, this solution is 
not adequate for sophisticated algorithm running in real 
time. Than, usually we remove a part of the control 
algorithm from the processor and we implemented it by 
hardware. This part is usually the current loop because it 
represents the most severe time constraints. In all these 
cases, the specification of the retained architecture, its 
validation and its design must be done using a 
methodology. In this work, we propose to develop these 
two architecture solutions using SpecC methodology. 
Note that the I/O modules can be implemented on a 
common component or on different components. 
 
According to the previous considerations, we distinguish 
two principles architectures that can be used for electric 
drives. These architectures will be studied here as an 
example. The first one (arch1) uses two components an 
ASIC for the I/O modules and a processor for the control 
algorithm. While the second one (arch2) uses a hardware 
component for each I/O module, an ASIC for the current 
control module and a processor for the speed control 
module and the interface with the user. 
 
The obtained models are shown in figure 3. Note that in 
these architectures the clock generator behaviors used in 
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the specification model are not considered as a part of the 
control device. These clock events are considered as 
inputs to the control unit… 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 3: Architecture models after behavior 
partitioning (a-arch1 & b-arch2) 

 
In Arch1, the processor core (DSP56600 core) running 
control algorithm is supported by a hardware component 
for the I/O functions. However, in arch2, only the motion 
control loop is implemented on the processor core while 
the current control loop is implemented on a custom 
coprocessor and each of the I/O function is implemented 
on a specific hardware. 
 
Formerly local variables used for communication between 
behaviors mapped to different components now become 
global, system-level variables. Synchronization between 
behaviors mapped to different components is done by the 
clock behaviors integrated in the testbench specification 
as defined in the specification model. Other 
synchronization behaviors can be added if necessary in 
order to preserve the execution order as represented by 
the specification model… 
 
In arch1, variables exchanged between ASIC and DSP 
are: 
 

- Pulse width variable (α) computed by the current 
control loop module and sent to the PWM block at 
the beginning of each new current control period Tc; 

- The current captured value (im: average value) 
determined by the current acquisition module and 
used by the current control module; 

- The speed captured value (Ωm) determined by the 
speed acquisition module and used by the motion 
control module. 

 
The variable Iref generates by the motion control module 
and used by the current control module is a local variable 
inside the DSP. 
 
However, in arch2 we distinguish 5 PEs (PWM, ACQi, 
ACQΩ, ASIC and DSP) and α, im, Ωm variables are 
exchanged between respectively (ASIC-PWM), (ACQi-
ASIC) and (ACQΩ-DSP). In addition to these variables, 
Iref become a global variable and it will be transmitted 
from DSP to ASIC. 
 
In the following sections, these two architectures will be 
studied separately. 
 
4.2 ARCH1 
 
4.2.1 Variable Partitioning 
 
After behavior partitioning, communication between 
behaviors mapped to different PEs is performed via 
global, shared variables. Global variables have to be 
assigned to local memory in the PEs or to a dedicated 
shared memory component. In the refined model after 
variable partitioning, global variables are replaced with 
abstract channels and code is inserted into the behaviors 
to communicate variable values over those channels. 
 
In our application, the number of exchanged variables is 
very limited. So, our choice is to use local copies of these 
variables in each PEs. Then, the behaviors inside the PEs 
are connected to the corresponding local copy and operate 
on the data in local memory instead of accessing a global 
variable. Updated data values are communicated between 
ASIC and DSP through 3 abstract channels (Cα,  Cim and 
CΩm). Synchronizations are done by appointment at each 
current control period (284) for Cα and Cim and at each 
speed control period (20000) for CΩm. 
 
 
 
 
 
 
 
 
 

Figure 4: Architecture model after variable partitioning 
(ARCH1) 
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4.2.2 Scheduling 
 
Scheduling determines the execution order of behaviors 
that execute on inherently sequential PEs. Scheduling 
may be done statically or dynamically [4]. In static 
scheduling, each behavior is executed according to a fixed 
schedule. In the refined model after scheduling, behaviors 
inside each component are executed sequentially 
according to the computed schedule. Redundant 
synchronization between the behaviors is removed during 
optimization. In dynamic scheduling, the execution of 
behaviors on each component is determined at run-time. 
An application-specific run-time scheduler is created 
during refinement. 
Figure 5 shows the scheduling of the parallel control 
algorithm running on the DSP core. Due to the dynamic 
timing relation between motion loop and current loop 
tasks, a dynamic scheduling scheme is implemented. The 
motion control represents the main program, which 
executes in periodic manner. Whenever a new current 
period arrives, the main task is interrupted in order to 
execute the current control. 
 
 
 
 
 
 
 
 
 
 

Figure 5: Architecture model after scheduling (ARCH1) 

According to this scheduled model and in order to 
simplify synchronization for communication, we choice 
to do all exchanges at the beginning of each current 
control loop which means at each period Tc. The Ωm 
value will be then a local variable of the DSP as well as 
Iref. 
Exchanges synchronization can be done by an external 
clock (as represented on figure 5) or by an event 
generated by the ASIC and precisely by the PWM module 
(since it will integrate a temporization function at the 
period of Tc). 
 
 
 
 
 
 
 
 

Figure 6: Modification of variable partitioning 
(ARCH1) 

4.2.3 Channel Partitioning 
 
Channel partitioning is the process of mapping and 
grouping the abstract, global communication channels 
between components onto the busses of the target 
architecture. In the refined model, additional top-level 
channels are used to represent system busses. Then 
channel partitioning is reflected by hierarchically 
grouping and encapsulating the abstract, global channels 
under the top-level bus channels. 
Note that the bus is also a type of channel in SpecC, and it 
implies that the future implementation would be the wired 
buses. Channels connect the concurrent behaviors while 
buses connect the corresponding components into which 
these behaviors are mapped. Usually, only one bus is used 
between two components. 
 
For this architecture, we used only one bus, which 
connects the processor to the custom hardware 
component. Therefore all communication are mapped to 
that bus. So, in the SpecC description of the refined 
control device, a single channel representing the system 
bus is inserted at the top level. The two components are 
connected to this bus channel and all abstract channels for 
communication between behaviors (Cα, Cim and CΩm) are 
grouped under the top-level channel. 
 
 
 
 
 
 
 
 
 
 

Figure 7: Architecture model after channel partitioning 
(ARCH1) 

As indicated in the previous section, exchanges will be 
done at the beginning of each Tc period between the 
PWM module and the current control module. 
 
4.3 ARCH2 
 
4.3.1 Variable Partitioning 
 
The number of exchanged variable is very limited. So 
local copies of global variables are added to the 
correspondent PEs. Updated data values are 
communicated between these PEs through 4 different 
abstract channels: CΩm, Cim, Cα and CIref. 
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Figure 8: Architecture model after variable partitioning 
(ARCH2) 

According to this architecture, the I/O modules are 
independent and their results are obtained in an 
asynchronous manner. Indeed, the speed acquisition 
module, for example, computes the period of a variable 
frequency signal, so the new result is obtained in an 
asynchronous manner (depends on the speed signal 
frequency which is variable). 
 
In order to not charge theses components by the 
synchronization and the communication processes needed 
for transmission, we choice to add elementary memory 
blocks (one register) to these PEs (one block per PEs). 
These memories will be integrated in the I/O hardware 
module. So, obtained results are automatically loaded on 
these memories and transfer will be done between them 
and the control PEs (current PEs and motion PEs). 
According to this architecture, no synchronization is 
needed between the I/O modules and the control modules 
since the exchange is done through memory blocks. 
On the other hand, synchronization between the ASIC and 
the DSP is done by interruption. Indeed, at each Tc 
period, the ASIC interrupts the DSP and begins the 
transfer of Iref within the channel CIref. 
 
4.3.2 Channel Partitioning 
 
According to the previous specification, we distinguish at 
least two main possibilities of channel partitioning: 
 
Ø As shown on figure 9, channels can be mapped 

onto two buses:  
- one bus between the ASIC and PE4/PE5: this 

bus will be managed by the ASIC; 
- one bus between the DSP and PE1/PE3: this bus 

will be managed by the DSP. 
 

Using this solution buses are managed easily since 
each bus will have only one master that initiate 
each transfer. However it presents a main 
inconvenient, in fact the number of pin in the 
coprocessor will be important since it used two 
different busses 

 
 
 

 
 
 
 
 
 
 

Figure 9: Solution 1 of Channel partitioning 

 
Ø For that reason, we propose a second possibility on 

which only one bus is used as a common bus to all 
components as shown on figure 10. However, this 
solution includes a major difficulty of the bus 
management, in fact it will have two masters. So a 
management protocol should be added to resolve 
conflicts when these two masters tries to use the 
bus at the same time. 

 
 
 
 
 
 
 
 

Figure 10: Solution 2 of Channel partitioning 

In order to simplify the communication process, we 
choice to use another variables partition with only one bus 
and one master. So, we introduce some modification to 
our architecture model as shown on figure 11. 
 
 
 
 
 
 
 
 
 
 

Figure 11: Modification of variable partitioning 

Synchronization for the transfer is done by interruption. 
At the beginning of each new Tc period, the ASIC 
interrupts the DSP and both start the exchange process. 
Inside this process, The ASIC sends α and waits for im 
and iref while the DSP (the master) begins by reading the 
α value, then it writes this data to PE5, and reads im value 
from PE4 and finally it sends im and iref values to the 
ASIC. Acquisition of Ωm value is done by the master at 
the beginning of each Tm period.. 
 
The final architecture model using one bus is represented 
by figure 12. 
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Figure 12: Architecture refined model (ARCH2) 

 
5 Communication Synthesis 
 
The purpose of communication synthesis is to refine the 
abstract communication in the architecture model into an 
actual implementation over the wires of the system 
busses. This requires insertion of communication 
protocols for the busses, synthesis of protocol transducers 
to translate between incompatible protocols, and inlining 
of protocols into hardware and software. These steps will 
be discussed in the following sections for the two retained 
architecture targets separately. 
 
5.1 ARCH1 
 
5.1.1 Protocol Insertion 
 
During the protocol insertion, a description of the 
protocol is taken out of the protocol library in the form of 
a protocol channel and inserted into the corresponding 
virtual system bus channel (figure 13).  
The protocol channel encapsulates the bus wires and 
implements the bus protocol by driving and sampling bus 
wires according to the protocol timing. At its interface, 
the protocol channel provides methods for all primitive 
transactions supported by the protocol, e.g. read, write, 
etc. 
The abstract communication primitives provided of the 
bus channel are rewritten into an implementation using 
the primitives provided by the protocol layer. The outer 
application layer of the bus channel implements the 
required semantics over the actual bus protocol. This 
includes tasks like synchronization, arbitration, bus 
addressing, data slicing, and so on.  
All the abstract bus channels in the model are replaced 
with their equivalent hierarchical combinations of 
protocol and application layers that implements the 
abstract communication of each bus over the actual 
protocol for that bus. 
 
 
 
 

Figure 13: Protocol insertion principle 

In this example, after protocol insertion, the processor is 
the central component and the master of the system bus. 
The software on the processor initiates all data transfers 
on the processor bus from and to the hardware 
component. However, these exchanges are initiated 
(provoked) either by an external clock (at Tc period) or by 
the hardware component that send an event at each Tc 
period to the processor by triggering its interrupt in order 
to execute the exchanges process (at the beginning of the 
current control loop). 
At this stage, the processor as a master of the bus initiates 
and controls data transfers to and from the custom 
hardware. It initiates the transfer by reading from or 
writing to the memory location with the address of the 
HW component. The HW, on the other hand, detects its 
own address and answers DSP requests by supplying or 
storing the requested data from and to their local registers 
or memories. 
So, at the beginning of each new Tc period, the custom 
hardware signals its ready state for communication by 
raising an interrupt. The corresponding interruption 
software on the processor begins transferring the data one 
word at a time by repeatedly executing instructions that 
initiate read or write cycles on the external bus: beginning 
by the send of α and then receive of im and Ωm. 
 
 
 
 
 
 
 
 
 

Figure 14: HW/SW Synchronization diagrams 

Note that the clear separation between communication 
and computation enables replacement of a general 
component with an IP model plus wrapper and transducer 
at any stage of the design process. The wrapper specifies 
how to interface the IP model with the rest of the design. 
For simulation purposes, any model of the IP component 
that provides a suitable programming interface can be 
hooked into the SpecC simulator through the wrapper. 
 
The protocol channel in the system bus and the wrapped 
processor model describe and implement the DSP56600 
bus protocol according to its timing diagram [5], shown in 
figure 15. The protocol layer provides primitives for 
performing read/write transfers and for raising interrupts 
over the processor bus. 
On top of the protocol layer, the application layer created 
during protocol insertion implements the semantics of the 
abstract communication of the bus channel, using the 
primitives provided by the encapsulated protocol 
channel… 
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Figure 15: Protocols of the DSP56600 external bus 

 
Figure 16 shows the system model after insertion of the 
DSP56600 bus protocol for the system bus. The bus 
protocol is modeled as a SpecC channel in the protocol 
library. The protocol channel is inserted into the top-level 
bus channel and all communication over the system bus is 
implemented using the primitives provided by the 
protocol. 

 
 
 
 
 
 

Figure 16: Communication model after protocol 
insertion (ARCH1) 

5.1.2 Protocol Inlining 
 
Protocol inlining is the process of inlining the channel 
functionality into the connected components and exposing 
the actual wires of the busses. The communication code is 
moved into the components where it is implemented in 
software or hardware. On the hardware side, FSMDs that 
implement the communication and bus protocol 
functionality are synthesized. On the software side, bus 
drivers and interrupt handlers that perform the 
communication using the processor’s I/O instructions are 
generated or customized. 

The communication model obtained after protocol 
inlining is shown in figure 17. In this case, all data 
transfers on the processor bus are initiated by the DSP. 
However the High-level handshaking and synchronization 
between hardware and software is realized using 
interrupt-based handshaking. 
 
For the ASIC, communication primitives are inlined into 
the exchanges sub-behavior that have been created inside 
the PWM behavior, during partitioning, for 
synchronization and communication of the ASIC with the 
DSP. So, both application and potocol layers of the 
communication primitives that had been created during 
protocol insertion are inlined into the custom hardware 
behavior. 
 
 
 
 
 
 
 
 
 

Figure 17: Communication model after protocol 
inlining (ARCH1) 

 
During inlining, exchanges SFSMD model is created and 
inserted into the ASIC SFSMD model. They will later be 
synthesized into custom hardware together. Note that in 
general there are many different ways of implementing 
the transfer functionality, and a choice about the final 
hardware design has to be made at this point. 
 
The exchanges hardware module synchronizes with the 
DSP by raising the processor’s interrupt line IRQC in its 
first state S1 until a transfer with the address of the 
custom hardware is recognized. Then the WR control 
signal is sampled until a falling edge has been detected 
that signals the beginning of a bus write cycle. 
Communication continues at the same manner for two 
read cycles. 
 
Note that the studied architecture is just a fictive 
discussed as an example to validate our approach. 
Usually, different hardware components are used for each 
I/O module, as we will see in next sections. 
 
5.2 ARCH2 
 
The DSP 56600 protocol is employed for ASIC and DSP 
while another simple memory protocol is used for 
memory blocks. We suppose that ASIC and DSP use the 
same protocol and that timing constraints are compatible 
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between these two protocols. Otherwise we have to insert 
transducer.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18: HW Communication SFSMDs 

 
 
 
 
 
 
 
 
 

Figure 19: Communication model after protocol 
insertion (ARCH2) 

The communication model is obtained as described in the 
ARCH1 exploration, using two steps: the protocol 
insertion (protocol of the DSP 56600) and the protocol 
inlining. The obtained communication model is shown on 
figure 20. 
 
 
 
 
 
 
 
 

Figure 20: Communication model after protocol 
inlining (ARCH2) 

We note that connections are done between memories 
(inside the I/O models) and PE1/PE2 according to the 
figure 21. 
 
 
 
 
 
 

Figure 21: Components interconnections (ARCH2) 

In our application, only one side of the register control is 
done by the master: for example for the Rα (register that 
stored α), it is controlled by PE2 only in writing 
operation, so the /WE signal is connected to the master 
/WR signal while the /OE is active controlled in local by 
the PWM hardware. 
 In the FSMD of the I/O module, the register will be 
controlled by the FSMD-controller only on one way 
(partially). For example in the case of the PWM module 
this register is only controlled for read by the FSMD-
controller while it is controlled for write for the Acq_i, by 
its own FSMD-controller. The master (PE2) when 
transferring data with the DSP does the other control side. 
 
We note that in this application and for necessity we used 
at the same time high and low levels design. 
 
6 Backend 
 
In the backend, the behavioral descriptions of the 
components in the communication model are synthesized 
into a structural view of all the components in the system 
architecture. The functionality of each component is 
implemented on top of the component’s RTL or 
instruction-set microarchitecture. In the process, timing is 
refined down to the level of individual clock cycles based 
on each component’s clock period. 
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The backend process encompasses three parallel tasks for 
different parts of the communication model [2]: 
 

- High-level/behavioral synthesis for custom hardware 
components: The behavioral PE description in the 
form of straight-line code is synthesized into a netlist 
of register-transfer level (RTL) components. 

- Software synthesis: The SpecC model of the 
behaviors mapped onto a programmable processor is 
converted into a C model, compiled into the 
processor’s instruction set and possibly linked against 
an RTOS. 

- Synthesis of bus interfaces and bus drivers: The 
application and protocol layer functionality is 
synthesized into a cycle-true implementation of the 
bus protocols on each component. This requires 
generation of bus interface FSMDs on the hardware 
side and generation of assembly code for the bus 
drivers on the software side. 

 
The result of the backend process is the cycle-accurate 
implementation model. 
 
In the communication model, components were modeled 
by PE behaviors containing a purely behavioral 
description of the component functionalities. In the 
implementation model, the PE behaviors are refined into 
cycle-true descriptions based on the component’s 
RTL/instruction-set microarchitectures. 
 
The implementation model is the result of the backend 
process and as such the final end-result of the whole 
system design flow. It is a structural description of both 
system and component architectures. 
At the top-level, the system architecture is a set of non-
terminating, concurrent components communicating via 
wires of system busses. At the component level, 
computation and communication functionalities are based 
on each component’s microarchitecture: FSMD models 
for custom hardware and instruction-set models for 
software on programmable processors. 
The implementation model is a cycle-accurate system 
description. The order and timing of computation and 
computation in the system is described in terms of 
component clocks. A global order is imposed among the 
system’s components via the order of events on the 
common bus wires, generated and watched by the 
components connecting to the busses. 
The implementation model is further processed and 
refined through traditional design flows down to 
manufacturing. For example, logic synthesis of custom 
hardware RTL descriptions is followed by “place & 
route” to generate the final chip layout. 
 

7 Conclusions 
 
In this report we introduce the SpecC system-level design 
methodology to the design of control systems for Power 
Electronics and Electric drives processes. We presented 
the study of a DC motor drive, which can be easily 
generalized to any other process control. 
 
We have shown the various steps in the SpecC 
methodology that gradually refines the initial 
specification down to an actual communication model 
ready for implementation and manufacturing.  
Starting with the executable SpecC specification, 
architecture exploration creates an architecture model of 
the control system through the steps of allocation, 
partitioning and scheduling. Communication synthesis 
then transforms the abstract communication of the 
architecture model into an implementation. After protocol 
selection, transducer synthesis and protocol inlining, the 
final communication model is obtained. This model is the 
result of the design process and will be handed off to the 
backend process for synthesis of the software and 
hardware parts. 
 
The retained architecture target is usually obtained after 
estimations and analyzes of different modules in the 
specification model. However, in this report we presented 
two main architecture solutions that seems to be the most 
useful in Electric drive systems. The choice between them 
will be done according to the application constraints. 
 
This project has shown that the SpecC methodology will 
result in significant productivity gains in the design of 
control systems. In fact: 
  
Ø The SpecC methodology is based on the SpecC 

language which presents major advantages such as: 
 

- The SpecC language is a superset of C allows for 
drawing from the large body of existing 
algorithms. Therefore all control algorithms 
written in C language can be used and easily 
implemented through the SpecC methodology. 
On the other hand the control algorithm 
developers can be converted easily to the SpecC 
language and use it for the specification and 
validation of their new algorithms. Then, no 
rewritten of these programs will be needed 
between algorithm developers and control 
system designers since they use the same 
language. In general, communication among 
designers and customers will be largely 
minimized. 

- The SpecC language explicitly supports all the 
features necessary for system-level design 
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including hierarchy, timing, concurrency, 
communication and synchronization, exceptions, 
state transitions, and so on. 

- The clear separation of communication and 
computation in SpecC facilitates reuse of system 
components and enables easy integration of IP 

 
Ø The SpecC methodology presents a simplified 

design process based on well-defined, clear and 
structured models at each exploration step. This 
enables quick exploration and synthesis. 

 
Ø At every point, a model in SpecC language 

represents the design. This allows performing 
equivalence checking and simulation on each 
model to validate the transformations. 
 

Ø The well-defined nature of the models and 
transformations provides the basis for design 
automation tools and in general enables application 
of formal methods for verification. These 
automation tools will cover a large part of the 
tedious and error-prone synthesis tasks and then 
reduce even further the time-to-silicon. To these 
tools some libraries specific to control systems 
design will be added in order to reduce the amount 
of resources and the man power required to 
complete a System-On-Chip design. A steep 
learning curve and the low designer expertise 
required, reduce the training overhead and limit the 
demand for highly qualified designers. 

 
In future works, we will develop some libraries specific to 
the control system design and apply the SpecC 
methodology to the design of new sophisticated 
algorithms.  
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