

Specification and Validation of New Control Algorithms for Electric Drives
using SpecC Language

Slim Ben Saoud, Daniel D. Gajski

Technical Report ICS-01-44
July 25, 2001

Center for Embedded Computer Systems

Department of Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

Slim Ben Saoud
Fulbright Visitor @ CECS
INSAT-Tunis-TUNISIA

sbensaou@ics.uci.edu
http://www.cecs.uci.edu/~sbensaou

Daniel D. Gajski
CECS

UCI-California-USA
gajski@ics.uci.edu

http://www.cecs.uci.edu/~gajski

Specification and Validation of New Control Algorithms for Electric Drives
using SpecC Language

Slim Ben Saoud, Daniel D. Gajski

Technical Report ICS-01-44
July 25, 2001

Center for Embedded Computer Systems

Department of Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

Slim Ben Saoud
Fulbright Visitor @ CECS
INSAT-Tunis-TUNISIA

sbensaou@ics.uci.edu
http://www.cecs.uci.edu/~sbensaou

Daniel D. Gajski
CECS

UCI-California-USA
gajski@ics.uci.edu

http://www.cecs.uci.edu/~gajski

Abstract
Today, the shortest time-to-market in the electric drives industries is being a pressing requirement, consequently development
time of new algorithms and new control systems and debugging them must be minimized. This requirement can be satisfied only
by using a well-defined System-level design methodology and by reducing the migration time between the algorithm
development language and the hardware specification language.
In this report, we propose to use the SpecC language for the development (specification and validation) of new control
algorithms. This includes the specification of the control systems (algorithms and I/O interfaces) in SpecC and its validation by
simulation using a SpecC specification model of the process under control.
This new approach will allow designers to implement easily the retained specification according to the SpecC methodology.
Indeed, the same language (SpecC) is used for the study of new control systems and their design and implementation.
We first begin with a brief presentation of the electric drives and of the SpecC language. Then, we discuss the specification
models in SpecC of the whole system including the control unit and the process under control. We illustrate this approach by an
application example of a DC system. Finally, we present the main advantages of the SpecC language in the development of new
control systems.

iii

Contents

1 Introduction__1

2 Electrical Drives __2

3 SpecC Language __2

3.1 Design Consideration for System Level Design Language __________________________2

3.2 Traditional Languages___3

3.3 SpecC Language ___3
3.3.1 Structural Hierarchy ___3
3.3.2 Behavioral Hierarchy __3
3.3.3 Communication ___4
3.3.4 Synchronization ___4
3.3.5 Exception Handling ___4
3.3.6 Timing___4
3.3.7 Additional Features__5

4 Electrical Drives Specification Using SpecC ___________________________________5

4.1 Overview___5

4.2 Process Specification __5

4.3 Control Device Specification __6

4.4 Case of D.C. System___7
4.4.1 DC Process___7
4.4.2 Digital Control Device ___8
4.4.3 Results ___8

5 SpecC Language Advantages__9

6 Conclusion ___9

References __10

Appendix: SpecC code for the DC system __11

List of Figures

Figure 1: Electrical drive structure __ 2
Figure 2: Language Comparison___ 3
Figure 3: Basic structure of SpecC program__ 4
Figure 4: Behavioral hierarchy ___ 4
Figure 5: Top-level specification model of electrical drive system _____________________________________ 5
Figure 6: Detailed specification model of electric drives systems ______________________________________ 6
Figure 7: Specification model of the control device __ 7
Figure 8: Specification model of a DC system __ 7
Figure 9: OIE sensor Specifications__ 7
Figure 10: Control device specification – case of DC system ___ 8
Figure 11: Specification model results __ 8

1

Specification and Validation of New Control Algorithms for Electric Drives
Using SpecC Language

Slim Ben Saoud, Daniel D. Gajski

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

ABSTRACT

Today, the shortest time-to-market in the electric drives
industries is being a pressing requirement, consequently
development time of new algorithms and new control
systems and debugging them must be minimized. This
requirement can be satisfied only by using a well-defined
System-level design methodology and by reducing the
migration time between the algorithm development
language and the hardware specification language.

In this report, we propose to use the SpecC language for
the development (specification and validation) of new
control algorithms. This includes the specification of the
control systems (algorithms and I/O interfaces) in SpecC
and its validation by simulation using a SpecC
specification model of the process under control.
This new approach will allow designers to implement
easily the retained specification according to the SpecC
methodology. Indeed, the same language (SpecC) is used
for the study of new control systems and their design and
implementation.

We first begin with a brief presentation of the electric
drives and of the SpecC language. Then, we discuss the
specification models in SpecC of the whole system
including the control unit and the process under control.
We illustrate this approach by an application example of a
DC system. Finally, we present the main advantages of
the SpecC language in the development of new control
systems.

1 Introduction

Today, variable speed motor control systems have a wide
range of applications from industrial robotics to domestic
washing machines, each with a specific set of
requirements. Therefore, Motor control is being a vast
market (estimated to be $5 billion annually for motors and
motor controllers [1]) and the motor control industry is
being a strong aggressive sector. Each industry to remain
competitive has to answer the customer and governments
demands for lower cost, greater reliability, environmental
concerns regarding power consumption, emitted radiation
and requirements for greater accuracy achievable only by

the use of sophisticated control algorithms. Developments
are usually done according to two fields:

- Control algorithms: Motor control researchers are
increasingly developing new sophisticated control
algorithms to increase performances: i.e. Sensorless
control, self-adaptive control, Neural network
control, Fuzzy logic control… These developments
are always characterized by a growth of complexity
and needs more performance devices.

- Control device: Motor control circuit designers are

increasingly developing new hardware systems with
new dedicated processors in order to obtain real-time
implementation of these sophisticated control
algorithms [2,3]. Some ASM (Application Specific
Microprocessor) for motion control applications are
developed [4,5,6]. These processors include both
high performance core (usually DSP core [7]) and
almost all the required peripherals and memory
(analog input channels, encoder interface, PWM
outputs, serial communication channels, Timers, …).
Today, industries are working on developing fully
integrated solutions for motor control [1](ASSPs :
Application Specific Standard Products) which will
allow inherent benefits like lower cost, greater
reliability, greater flexibility, lower power
consumption and greater precision. These solutions
are becoming a key market for IC manufacturers like
Analog Devices, Hitachi and Texas Instruments.

The shortest time-to-market is a pressing requirement,
consequently development time of new algorithms and
new control device and debugging them must be
minimized. This requirement can be satisfied only by
using a well-defined System-level design methodology
and by reducing the migration time between the algorithm
development language and the hardware specification
language.

In this report, we use the SpecC language for the
development and validation of new control algorithms.
This will allow designers to implement easily this
algorithm according to the SpecC methodology [8].
Indeed, the same language (SpecC) is used for validation
of the algorithm and specification of the device.

2

We first begin with a brief presentation of the electrical
drives and of the SpecC language. Then, we present the
specification model of the electric drive system in SpecC
(control unit and process under control). Finally, we
illustrate this approach by an application example of a DC
system and we present the main advantages of the SpecC
language in the development of new control systems.

2 Electrical Drives

The electrical machine control is performed following the
diagram of figure 1. Such a system is composed of two
main parts:

- The process to control (CMS: Converter / Motor /
Sensors);

- The control unit.

The control unit receives process state information from
the sensors and generates control signals to the converter
switches.

Figure 1: Electrical drive structure

As shown in figure 1, electrical drives have the following
basic I/O requirements:

- currents/voltages measurements;
- position/speed measurements;
- pulse width modulation for power converter

switching.

Today, modern applications mostly employ A.C. motors:
PMSM (permanent magnet synchronous motors), IM
(Induction motors), SyncRel (Synchronous reluctance
motors). In fact, if the complete life of the drive is
considered A.C. drives performance and cost are better
than those of D.C. drives since their higher initial cost is
quickly balanced by the reduced energy consumption and
the lower or absent maintenance.
So in most of systems, two phase currents (generally
measured by Hall sensors) are sufficient since the third
one can be easily computed. Position signals, needed by
speed/position control and field oriented control are
measured either by using optical encoders (generally

incremental encoders) or resolvers. Pulse width
modulation (PWM) is achieved in several ways either
hardware or software, using either the single
microprocessor or external ASIC.

According to the previous description, all motor control
systems require, besides the powerful processor core, a
significant array of additional circuits for correct
operation, including such functions as:

- Analog to Digital conversion for current or voltage
feedback: requires both high accuracy and fast
conversion rate: usually 10-12 bit analog to digital
converters with a few µs conversion times are
needed;

- Pulse width modulation (PWM) blocks for generation
of the inverter switching commands: PWM
generation represents one of the most interesting part
in drive design and the chosen modulation technique
affect both performance and system complexity.
Simple modulations do not require complex
calculation, so they can be easily implemented either
by HW and SW without any external component;
more complex algorithms often present high
computational load, then they require external ASIC
or dedicated microprocessors;

- Position/sensor interfaces for higher-performance
applications: Encoder outputs are two quadrature
square wave signals which frequency is up to some
MHz.;

- Serial ports for host communications: Because
modern drives cannot neglect communications, high
speed serial channels and or specific interfaces (e.g.
CAN bus) are often highly desired;

- General-purpose digital input/output ports.

3 SpecC Language [8,9,10]

3.1 Design Consideration for System Level

Design Language

A system can be described at any one of several distinct
levels of abstraction (logic level, architecture level,
conceptual level, …). Each of them serves a particular
purpose.
In particular, at the conceptual level, it is possible to
describe the system’s functionality without any notion of
its components. Description of such level can serves as
specification of the system for designers to work on.
Indeed, increasingly designers need to conceptualize the
system using an executable specification language, in
order to verify the correctness of the system’s intended
functionality.
According to the Co-Design methodologies, it is desirable
that the specification language be used for all models at

Power Converter Motor Load

DIGITAL CONTROL
UNIT

CMS PROCESS
Converter/ Machine / Sensors

Sensors

3

all stages of the design process (homogeneous
methodology). Therefore, this methodology does not
suffer from simulator interfacing problems or
cumbersome translations between languages with
different semantics. Instead, one set of tools can be used
for all models and synthesis tasks are merely
transformations from one program into a more detailed
one using the same language. This is also important for
reuse, because design models in the library can be used in
the system without modification (“plug-and-play”), and a
new design can be used directly as a library component.

Such specification and modeling language must be
executable, modular and complete. Furthermore, these
concepts should be organized orthogonally (independent
from each other) so that the language can be minimal. In
addition to these requirements, the language should be
easy to understand and easy to learn.

3.2 Traditional Languages

Most of traditional languages lack one or more of the
requirements discussed in the previous section and
therefore cannot be used for system modeling without
problems arising. Figure 2 lists examples of current
languages and shows which requirements they support
and which are missing.

Behavioral

hierarchy
Structural
hierarchy

Concurrency

Synchronization

Exception
handling

Timing

State

transitions
Composite

data types

SpecCharts

Statecharts

Hardw
areC

Verilog

VHDL
Java

C
++

C
SpecC

not supported partially supported supported

Figure 2: Language Comparison

3.3 SpecC Language

The SpecC language is built on top of the ANSI-C
programming language, the defacto standard for software
development. It is a true superset, such that every C
program is also a SpecC program. C was selected because
of its high use in software development and its large
library of already existing code.

The SpecC language is based upon the program state
machine (PSM) model of computation. The SpecC model
clearly separates communication from computation. It
consists of a hierarchical network of behaviors and
channels and supports “plug-and-play” for easy IP reuse.

In addition, the SpecC language has extensions for
hardware design. It supports all the concepts that have
been identified as requirements for embedded systems
design, such as structural and behavioral hierarchy,
concurrency, explicit state transitions, communication,
synchronization, exception handling, and timing. Some of
these special constructs are described in the next sections.

3.3.1 Structural Hierarchy

Semantically, the functionality of a system is captured as
a hierarchical network of behaviors interconnected by
hierarchical channels. Syntactically, a SpecC program
consists of a set of behavior, channel and interface
declarations:

- A behavior is a class consisting of a set of ports, a set
of component instantiations, a set of private variables
and functions, and a public main function. In order to
communicate, a behavior can be connected to other
behaviors or channels through its ports. The
functionality of a behavior is specified by its
functions starting with the main function.

- A channel is a class that encapsulates
communication. It consists of a set of variables and
functions, called methods, which define a
communication protocol.

- An interface represents a flexible link between
behaviors and channels. It consists of declarations of
communication methods, which will be defined, in a
channel.

For example, the SpecC description in figure 3-b specifies
the system shown in figure 3-a. The example system
specifies a behavior B consisting of two sub-behaviors b1
and b2, which execute in parallel and communicate via
integer v1 and channel c1. Thus structural hierarchy is
specified by the tree of child behavior instantiations and
the interconnection of their ports through variables and
channels. Behaviors define functionality and the time of
communication, whereas channels define how the
communication is performed.

3.3.2 Behavioral Hierarchy

The composition of child behaviors in time is called
behavioral hierarchy in SpecC. Child behaviors can either
be executed sequentially or concurrently. Sequential
execution is specified by standard imperative statements
or as a finite state machine with explicit state transitions.
Concurrent execution is either parallel or pipelined
(Figure 4).
Syntactically, behavioral hierarchy is specified in the
main function of a composite behavior.

4

Figure 3: Basic structure of SpecC program

Sequential execution

behavior B_seq
{
 B b1, b2, b3;

 void main(void)
 { b1.main();
 b2.main();
 b3.main();
 }
};

FSM execution

behavior B_fsm
{
 B b1, b2, b3,
 b4, b5, b6;
 void main(void)
 { fsm { b1:{…}
 b2:{…}
 …}
 }

};

Concurrent execution

behavior B_par
{
 B b1, b2, b3;

 void main(void)
 { par{b1.main();
 b2.main();
 b3.main();
 } }
};

Pipelined execution

behavior B_pipe
{
 B b1, b2, b3;

 void main(void)
 {pipe{b1.main();
 b2.main();
 b3.main();
 } }
};

Figure 4: Behavioral hierarchy

3.3.3 Communication

The clear separation of communication from computation
is one of the strengths of the SpecC language.
Communication can be modeled by use of variables or
channels between behaviors (Figure 3). Variables are used
to represent a shared memory communication model in
SpecC. However, channels are used to represent more
complex communication including protocols, which
invlove synchronization, timing, buffering, error
correction, etc.
The specification of the channel is separated in the
interface declaration and the channel definition. The
interface defines a set of function prototype declarations
without the actual function body. The channel
encapsulates the communication media and provides a set
of function implementations.

3.3.4 Synchronization

Concurrent behaviors usually need to be synchronized in
order to be cooperative. In SpecC, a built-in type event
serves as the basic unit of synchronization. Events can be
used only as arguments to wait and notify statements.
A wait statement suspends the current behavior from
execution until one of the specified events is notified by
another behavior. The notify statement triggers all
specified events so that all behaviors waiting on one of
these events can resume their execution.

3.3.5 Exception Handling

SpecC provides support for two types of exceptions,
namely abortion (or trap) and interrupt.
For abortion, the execution of the initial behavior is
aborted immediately and will not be resumed. This
exception is usually used to model the reset of a system.
In contrast to this, an interrupt exception will resume the
execution of the initial behavior.

3.3.6 Timing

In the design of embedded systems, the notion of real
time is an important issue.
SpecC differentiates between two types of timing
information, exact timing and timing ranges.
Exact timing is used when the timing is known, as in the
execution delay of an already synthesized component.
Timing ranges are used to specify timing constraints at
the specification level. SpecC supports timing information
in terms of timing diagrams with minimum and
maximum time constraints. Timing ranges are specified as
4-tuples T={l1; l2; 10; 20} with the range statement. This
specifies that at least min but not more than max time
units spent between labels l1 and l2.

interface I1
{
 bit[63:0] Read(void);
 void Write(bit[63:0]);
};

channel C1 implements I1;

behavior B1(in int, I1, out int);

behavior B(in int p1, out int p2)
{
 int v1;
 C1 c1;
 B1 b1(p1, c1, v1),
 b2(v1, c1, p2);

 void main(void)
 { par { b1.main();
 b2.main();
 }
 }
};

(b)

(a)

 B
p1 p2

v1

c1

b1 b2

5

Timing ranges allows avoiding the over-specification
problem often obtained with the hardware description
languages such as VHDL.

3.3.7 Additional Features

In addition to the concepts explained so far in this
chapter, the SpecC language supports other constructs that
are necessary for system-level design. It provides explicit
support for Boolean (bool) and bitvector (bit[:]) types,
in addition to all types provided by ANSI-C. SpecC also
provides constructs for binary import of precompiled
SpecC code and support of persistent annotation for
objects in the language.

It is very important that the advantage of SpecC lies in its
orthogonal constructs, which implements orthogonal
concepts. The SpecC language covers the complete set of
system concepts with a minimal set of constructs. It is
therefore easy to learn and easy to understand.

4 Electrical Drives Specification Using

SpecC

In the traditional way, developers of new control
algorithms validate their studies by simulation using
standard language (C, C++, MATLAB, …). The control
algorithm is tested using mathematical models of the
process written in the same program, with the same
language. Therefore, designers of the control devices have
to translate this specification from the original language
(standard language) to the co-design methodology
language. This introduces a time/schedule delay.

In this work, we propose to use the SpecC language to
specify the whole motor drive system that includes
control algorithms, I/O modules and Process to control. In
contrast to other language, the SpecC allows to specify
the system functionality in a clear and precise manner and
the obtained specification, used for simulation, will
serves, without the need for tedious rewrites, as the input
to the synthesis and exploration stages in the SpecC
design methodology.

In this section we present the general case of electrical
drives then we describe the case of a DC system as an
example. This approach can be generalized to all of
Power Electronics and Electrical drives system.

4.1 Overview

Figure 5 shows the top level of the electric drive
specification in SpecC, consisting of process and control
device sub-behaviors running in parallel. The process sub-
behavior is specified using mathematical models of the

electric device in order to validate the control algorithm.
It receives control signals and generates information
about the electric process state. Control device on the
other hand, captures this information and generates
control signals according to the used algorithm and to the
user orders.

The highest behavior in the hierarchy (Process_CTL) is
the “Main” behavior similar to the main()-function in
each C program. This main-behavior contains the
testbench including the process specification (Process)
and the control system under Test (CTL).

In the following sections we describe these modules in
more details.

Figure 5: Top-level specification model of electrical
drive system

4.2 Process Specification

The electric drive is composed of three module
categories: Converter, Motor/Load, and Sensors. On the
physical process these modules operate in parallel. Then
in our specification we reproduce this structure by using
three parallel behaviors (Figure 6). Each of these
behaviors will be decomposed on child-behaviors
according to the following considerations:

- In the motor/load model, we usually distinguish two
modes: electric mode and mechanical mode. So,
when digitized, the model is composed of two
equation systems: one for the electric mode and one
for the mechanical mode. Then the motor behavior is
decomposed of two child-behaviors (Electric
behavior and Mechanic behavior).

- On the physical process, we usually use several
different sensors. Each of them is specified in a child-
behavior (sensor1, sensor2, …).

- According to the fact that these modules don’t have
the same temporal constraints and rates, we propose
to add to each behavior a clock (represented by
another sub-behavior Clk x) that generates its
corresponding computing step for the simulation.
These clocks must be defined according to the user
specification.

Ci: Control Signals / Di: State process information

Process
(Process

under

Control)

CTL
(Control
Device)

Ci Di

Ci

Di

Process_CTL

6

Usually, we use the same clock for the simulation of
electrical device, and different clocks for different
sensors.

The final specification model of the process under control
is then represented by figure 6.

Figure 6: Detailed specification model of electric drives
systems

This specification model present several advantages:

- The SpecC specification describes the process in a
clear, modular and precise manner. Available
parallelism and behavior dependencies are explicitly
shown. This greatly eases the understanding and
therefore supports quick exploration of different
design alternatives at the system level in the first
place.

- According to this principle, we have a modular
structure that is easy for use and configure with a
library of components. User has just to make his

choice of modules from this library according to his
application.

- Manipulation of time is very useful since we define
for each module or sub-module (for the sensors) a
clock behavior that specifies the computing time of
corresponding behaviors.

- Using the sensor modules we obtain a good
representation of the physical system and then a good
validation of the control device. So, some phenomena
can be studied like resolution of the converter and the
encoder sensors, influence of delays and noises,…

4.3 Control Device Specification

Besides the algorithm implementation, all motor control
systems require a significant array of additional circuits
for correct operation, including such functions as:

- Analog to digital conversion for capture of electric
magnitudes (current and voltage);

- Position sensor interfaces for capture of mechanical
magnitudes (position and speed);

- Pulse width modulation (PWM) blocks for the
generation of the converter switching commands;

- Serial ports for host communication;
- General-purpose digital input/output ports;
- Watchdog timer and event timers, …required for real

time embedded control systems.

According to the user application some or all of these
blocks are integrated in the control device. So in our
specification we reserve for each of them a sub-behavior
that can be decomposed of some child-behavior… These
sub-behaviors will be specified inside two principle
behaviors, which are the ACQ behavior for the
information capture and the PWM behavior for the
generation of control signals.

On the other hand, in the electric drive, we usually
distinguish two control loops: an outer motion loop and
an inner current loop. The motion loop handles the
mechanical load and maintains rotary position and
velocity. It has typically bandwidths of the order of 20 to
30 Hz with sample rates of 500Hz to 3 kHz. The current
loop handles the dynamics of the motor electrical system
and controls torque production. It has typically
bandwidths of the order of 1 to 2 kHz with sample rates of
up to 20 kHz.
Then, a behavior CTL_Alg including two sub-behaviors
one for the motion control (M_Alg) and one for the
current control (C_Alg) can specify the control algorithm.

Each of these behaviors is associated to a clock generator
behavior (Clk x).

Motor/Load

Electric Mechanic
ClkmClke

clke

En

clkm

V1 V2 V3 Ep E1 En

Ep

E1

Motor/LoadConverter Sensors

E1

Process

E2

En

V1

V2

V3

O1 O2 OnC1 C2 Cm

Sensors

sensorn

En

Clksn

clksn

sensor2

E2

Clks2

clks2

sensor1

E1

Clks1

clks1 O1 O2 On

Converter

Cv_ModelClkcv

ckcv

V1 V2 V3

C1 C2 Cm

7

The Figure 7 represents the specification model of the
control device.

Figure 7: Specification model of the control device

4.4 Case of D.C. System

To validate this new approach used in the development
(specification and validation) of new control algorithms
for electric drives, and based on the SpecC language, we
describe in this section, the case of a DC system. This
process is composed of a DC motor fed by a four-
quadrant chopper and associated to current and speed
sensors.

4.4.1 DC Process

The DC system is composed of a DC motor, a four-
quadrant chopper, a Hall sensor for the current capture
and an Optical incremental encoder for the speed.
The SpecC model of this system is represented by figure
8, where each module has its own clock generator.

Figure 8: Specification model of a DC system

The Hall sensor output is a voltage magnitude that
represents the current value. This output voltage depends
on the Hall sensor characteristics and the current value. In
our case this dependency is represented in the behavior
Sensori by the equation1: Vout=im*5/15 volts. A more
sophisticated model (including influence of noises,
temperature, wear,…) can be specified in this behavior in
order to reproduce more precisely the Hall sensor output.
The optical incremental encoder generates two quadrature
square wave signals (S0 and S1) with the same frequency
(proportional to the motor frequency) as represented by
figure 9.

Figure 9: OIE sensor Specifications

These signals are reproduced by the behavior SensorΩ.
More complex models can be added to this behavior

CTL_Alg

C_Alg M_Alg ClkΩClk i

clk i

Iref

ckΩ

Xref T1 T2 Tm Sp S1 Sn

ACQ

Acqsn

Sn

Clksn

clk sn

Acqs2

S2

Clks2

clk s2

Acqs1

S1

Clks1

clk s1

PWM

PWMm

Sn

Clkm

clkm

PWM2

S2

Clk2

clk2

PWM1

S1

Clk1

clk1

CTL_AlgPWM ACQ

Xref

S1

CTL

S2

Sn

T1

T2

Tm

C1 C2 Cm O1 O2 On

Motor/LoadChopper Sensors

Ωm

DC_Process

Motor/Load

im

Vh

Current Motion ClkΩClk i

clki

Ωm

clkΩ

Vh im Ωm

im

S0 S1 N imC0 C1

Sensors

sensorΩ

Ωm

ClksΩ

clksΩ

sensori

im

Clksi

clksi
N im S0 S1

Chopper

Ch_modelClkc1

clkc1

Vh

C0 C1
















Π= ω.cioN

6.1e4.(int) T

S0

S1
T

Rotation sense
+

S0
S1

S0
S1

-

8

specification in order to reproduce more precisely the
optical incremental encoder outputs.

4.4.2 Digital Control Device

This device includes three main parallel behaviors that
describe respectively the PWM modules, the control
algorithms and the different used sensors. Each of them is
distributed in different child-behaviors according to figure
10.

Figure 10: Control device specification – case of DC
system

The Control Algorithm behavior is composed of two sub-
behaviors: one for the motion control and one for the
current control. The current loop period is 284µs while
the motion loop period is 20ms.

The current is measured by Hall sensor and the
information is obtained in a voltage form. So, the control
device has to include an ADC module. The current
capture requires both high accuracy and fast conversion
rate: usually a 10-12 bits ADC with a few µs conversion
times are needed. In order to have a precise specification
of this module, the description of the ADC is done using
two parameters: resolution (number of bits) and delay

(time necessary for conversion). More specifications can
be added to this behavior in order to represent more
precisely the ADC component functioning.
The current control module uses the average value of the
current (at the scale of the current control period). So, we
add to the current capture behavior a module to compute
this average value.

For the speed control, the rotation direction and the speed
absolute value are obtained from the optical incremental
encoder signals S0 and S1.

To control the four-quadrant chopper, at least, two control
signals are required. These signals (C0 and C1) are
generated by the PWM behavior according to the current
control order. This behavior can be defined with three
configurable parameters: clock, period, pulse width.

4.4.3 Results

Figure 11: Specification model results

Using the specification model of the DC system, user can
test the control algorithm and the influence of its different
parameters (regulators parameters, control periods,…). He
can also test the impact of the I/O circuits like the
resolution of the CAN and it’s delay and the precision of
the speed capture module according to the used clock…

Figure 11 shows results obtained with two different speed
control parameters.

More sophisticated models can be used in order to
represent others complex phenomena like the influence of
the temperature, of the wear, of the noise,… The user will
be able to add these specification in very easy way and he
will be then able to validate his control device under
specific conditions…

CTL_AlgPWM ACQ

Ωref

Ωm

DC_CTL

CTL_Alg

C_Alg M_Alg ClkΩ Clk i

im

α

clki

Iref

clkΩ

Ωref α im Ωm

ACQ

AcqΩ

Ωm

ClksΩ

ClksΩ

Acqi

im

Clksi

Clksi

PWM

PWM1

α

Clkc1

clkc1

C0 C1 S0 S1 N im

N im S0 S1

C0 C1

9

The use of SpecC language in the development of new
control systems present several advantages that are
developed in the following section.

5 SpecC Language Advantages

During this project, we use the SpecC language for the
specification and validation of new control systems.
According to this work we note several main advantages
of this language that can be described as follows:

- The obtained specification model is executable and
validation by simulation is done easily. Indeed,
results storage, restitution and manipulation for
verification can be performed clearly in the testbench
module.

- The SpecC language offers modularity in form of
structural and behavioral hierarchy, allowing the
hierarchical decomposition of the specified system.
The electric drives systems are then described in a
clear, modular and precise manner. Available
parallelism, behaviors dependencies and temporal
constraints are explicitly shown. This greatly eases
the understanding and the modification of the
specification model.

- The SpecC language supports the inclusion of
precompiled design libraries into the specification
description. This simplifies the handling of
component libraries and also allows a speedy
compilation. The modular specification model of
electric drives can be obtained easily by the
association of specific component libraries to the
SpecC language. Therefore, user has just to make
her/his choice of modules from these libraries
according to his application.

- The SpecC language has extensions for hardware
design. It supports all the required concepts for
embedded systems design, such as structural and
behavioral hierarchy, concurrency, explicit state
transitions, communication, synchronization,
exception handling and timing.
Figure 2 compares some traditional language against
a set of these requirements. The SpecC language,
shown in the last column of this table, has been
specifically designed to support all the required
concepts. Moreover, SpecC precisely covers these
requirements in an orthogonal manner.

- The obtained specification model will serves, without
the need for tedious rewrites, as the input to the
synthesis and exploration stages in the SpecC design
methodology for the final control device design.

On the other hand, the SpecC language is built on top of
the ANSI-C programming language, the de-facto standard
for software development. It is a true superset, such that

every C program is also a SpecC program. This implies
two main additional advantages of the SpecC languages:

- The major works in the control of Power Electronics
and Electromechanical Systems are done in C
language. Then, the large amount of already existing
codes and libraries can be re-used easily with SpecC
language. Conversion of these C programs to SpecC
programs can be done rapidly and we estimate the
manually conversion time to be between few minutes
and one hour according to the complexity of the
program.

- The ANSI-C is well known by the control systems
developers. Then, the adaptation of these developers
to the SpecC language is very easy and can be done
in a short time. A 4 hours tutorial seems to be
sufficient for C language programmers to be able to
develop specification models in SpecC.

6 Conclusion

In this report, we described the use of the SpecC language
to the specification and validation of new control systems
for power electronics and electric drives.

The SpecC specification of electrical drives is captured in
a natural, clear and precise manner showing explicitly
available parallelism and behavior hierarchy and
dependencies. This greatly eases the understanding and
the use of this specification model in order to validate
control devices.

The modular structure used in this specification allows
facilitating the validation of new control algorithms.
Indeed, the SpecC can integrate a library of electrical
modules including different motor models, different
converters and different sensors. So the user can select
among these modules those corresponding to his/her
application process. He will be able, also to choice the
control device modules like PWM generators, Speed
acquisition module,… and configure them according his
control constraints.
Only the modules corresponding to the chosen
configuration will be selected in the library of modules.
This allows to have optimized running programs at the
simulation stage.

The SpecC language is built on top of the ANSI-C
programming language. This allows the re-use of the
large amount of already existing C codes and libraries and
facilitates the adaptation of the control developers to the
SpecC language.

The main advantage of the use of SpecC language is that
the obtained specification, used for simulation, will

10

serves, without the need for tedious rewrites, as the input
to the synthesis and exploration stages in the SpecC
design methodology for the final control device design.
This will reduce significantly the time-to-market by
minimizing largely communication among designers and
customers.

Acknowledgments

The authors would like to thank the Fulbright Scholar
Program for supporting this project. We would also like to
thank Andreas Gerstlauer and Rainer Doemer for their
interesting comments and ideas.

References

[1] Analog Devices, Products and Datasheets,
Whitepapers, “ASSPs for Motion Control Applications
Use Embedded Digital Signal Processing Technology”,
http://www.analog.com/publications/whitepapers/product
s/motion2.html , 2001

[2] D. Krakauer, “Single chip DSP Motor Control
Systems Catching on in Home Appliances”, Appliance
magazine, October 2000

[3] C. Cecati, “Microprocessors for Power Electronics
and Electrical Drives Applications”,
http://sant.bradley.edu/ienews/99_3/drCECATI/paper.htm
, IES Newsletter, vol. 46, no. 3, September 1999

[4] J.F. Moynihan, P. Kettle, A. Murray, “High
Performance Control of AC servomotors using an
Integrated DSP”, Intelligent Motion, May 1998
Proceedings

[5] A. Murray, P. Kettle, "Towards a single chip DSP
based motor control solution", Proceedings PCIM -
Intelligent Motion, May 1996, Nurnberg, Germany, pp.
315-326

[6] F. Moynihan, “High-Performance Motion Control”,
PCIM-Europe N1/2, 1999

[7] Texas Insruments, Digital Signal Processing Solution
for AC Induction Motor Application Note BPRA043,
1996

[8] D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, S. Zhao,
“SpecC: Specification Language and Methodology”,
Kluwer Academic Publishers, 2000

[9] A. Gerstlauer, R. Dömer, Junyu Peng, D. Gajski,
“System Design: A Practical Guide with SpecC”, Kluwer
Academic Publishers, 2001

[10] D. Gajski, J. Zhu, R Dömer, “The SpecC+
Language”, University of California, Irvine, Technical
Report ICS-TR-97-15, February 1997

11

Appendix: SpecC code for the DC system

