
 

 
 
 
 
 
 
 
 

 
 
 

Specification and Validation of New Control Algorithms for Electric Drives 
using SpecC Language 

 
 

Slim Ben Saoud, Daniel D. Gajski 
 
 

Technical Report ICS-01-44 
July 25, 2001 

 
Center for Embedded Computer Systems 

Department of Information and Computer Science 
University of California, Irvine 
Irvine, CA 92697-3425, USA 

(949) 824-8059 
 
 
 

Slim Ben Saoud 
Fulbright Visitor @ CECS 
INSAT-Tunis-TUNISIA 

sbensaou@ics.uci.edu 
http://www.cecs.uci.edu/~sbensaou 

Daniel D. Gajski 
CECS 

UCI-California-USA 
gajski@ics.uci.edu 

http://www.cecs.uci.edu/~gajski 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
 
 

Specification and Validation of New Control Algorithms for Electric Drives 
using SpecC Language 

 
 

Slim Ben Saoud, Daniel D. Gajski 
 
 

Technical Report ICS-01-44 
July 25, 2001 

 
Center for Embedded Computer Systems 

Department of Information and Computer Science 
University of California, Irvine 
Irvine, CA 92697-3425, USA 

(949) 824-8059 
 
 
 

Slim Ben Saoud 
Fulbright Visitor @ CECS 
INSAT-Tunis-TUNISIA 

sbensaou@ics.uci.edu 
http://www.cecs.uci.edu/~sbensaou 

Daniel D. Gajski 
CECS 

UCI-California-USA 
gajski@ics.uci.edu 

http://www.cecs.uci.edu/~gajski 
 
 
 

Abstract 
Today, the shortest time-to-market in the electric drives industries is being a pressing requirement, consequently development 
time of new algorithms and new control systems and debugging them must be minimized. This requirement can be satisfied only 
by using a well-defined System-level design methodology and by reducing the migration time between the algorithm 
development language and the hardware specification language. 
In this report, we propose to use the SpecC language for the development (specification and validation) of new control 
algorithms. This includes the specification of the control systems (algorithms and I/O interfaces) in SpecC and its validation by 
simulation using a SpecC specification model of the process under control.  
This new approach will allow designers to implement easily the retained specification according to the SpecC methodology. 
Indeed, the same language (SpecC) is used for the study of new control systems and their design and implementation. 
We first begin with a brief presentation of the electric drives and of the SpecC language. Then, we discuss the specification 
models in SpecC of the whole system including the control unit and the process under control. We illustrate this approach by an 
application example of a DC system. Finally, we present the main advantages of the SpecC language in the development of new 
control systems. 
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ABSTRACT 
 
Today, the shortest time-to-market in the electric drives 
industries is being a pressing requirement, consequently 
development time of new algorithms and new control 
systems and debugging them must be minimized. This 
requirement can be satisfied only by using a well-defined 
System-level design methodology and by reducing the 
migration time between the algorithm development 
language and the hardware specification language. 
 
In this report, we propose to use the SpecC language for 
the development (specification and validation) of new 
control algorithms. This includes the specification of the 
control systems (algorithms and I/O interfaces) in SpecC 
and its validation by simulation using a SpecC 
specification model of the process under control.  
This new approach will allow designers to implement 
easily the retained specification according to the SpecC 
methodology. Indeed, the same language (SpecC) is used 
for the study of new control systems and their design and 
implementation. 
 
We first begin with a brief presentation of the electric 
drives and of the SpecC language. Then, we discuss the 
specification models in SpecC of the whole system 
including the control unit and the process under control. 
We illustrate this approach by an application example of a 
DC system. Finally, we present the main advantages of 
the SpecC language in the development of new control 
systems. 

 
1 Introduction 
 
Today, variable speed motor control systems have a wide 
range of applications from industrial robotics to domestic 
washing machines, each with a specific set of 
requirements. Therefore, Motor control is being a vast 
market (estimated to be $5 billion annually for motors and 
motor controllers [1]) and the motor control industry is 
being a strong aggressive sector. Each industry to remain 
competitive has to answer the customer and governments 
demands for lower cost, greater reliability, environmental 
concerns regarding power consumption, emitted radiation 
and requirements for greater accuracy achievable only by 

the use of sophisticated control algorithms. Developments 
are usually done according to two fields: 
 

- Control algorithms: Motor control researchers are 
increasingly developing new sophisticated control 
algorithms to increase performances: i.e. Sensorless 
control, self-adaptive control, Neural network 
control, Fuzzy logic control… These developments 
are always characterized by a growth of complexity 
and needs more performance devices. 

 
- Control device: Motor control circuit designers are 

increasingly developing new hardware systems with 
new dedicated processors in order to obtain real-time 
implementation of these sophisticated control 
algorithms [2,3]. Some ASM (Application Specific 
Microprocessor) for motion control applications are 
developed [4,5,6]. These processors include both 
high performance core (usually DSP core [7]) and 
almost all the required peripherals and memory 
(analog input channels, encoder interface, PWM 
outputs, serial communication channels, Timers, …). 
Today, industries are working on developing fully 
integrated solutions for motor control [1](ASSPs : 
Application Specific Standard Products) which will 
allow inherent benefits like lower cost, greater 
reliability, greater flexibility, lower power 
consumption and greater precision. These solutions 
are becoming a key market for IC manufacturers like 
Analog Devices, Hitachi and Texas Instruments. 

 
The shortest time-to-market is a pressing requirement, 
consequently development time of new algorithms and 
new control device and debugging them must be 
minimized. This requirement can be satisfied only by 
using a well-defined System-level design methodology 
and by reducing the migration time between the algorithm 
development language and the hardware specification 
language. 
 
In this report, we use the SpecC language for the 
development and validation of new control algorithms. 
This will allow designers to implement easily this 
algorithm according to the SpecC methodology [8]. 
Indeed, the same language (SpecC) is used for validation 
of the algorithm and specification of the device. 
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We first begin with a brief presentation of the electrical 
drives and of the SpecC language. Then, we present the 
specification model of the electric drive system in SpecC 
(control unit and process under control). Finally, we 
illustrate this approach by an application example of a DC 
system and we present the main advantages of the SpecC 
language in the development of new control systems. 
 
2 Electrical Drives 
 
The electrical machine control is performed following the 
diagram of figure 1. Such a system is composed of two 
main parts: 
 

- The process to control (CMS: Converter / Motor / 
Sensors); 

- The control unit. 
 
The control unit receives process state information from 
the sensors and generates control signals to the converter 
switches. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Electrical drive structure 

As shown in figure 1, electrical drives have the following 
basic I/O requirements: 
 

- currents/voltages measurements; 
- position/speed measurements; 
- pulse width modulation for power converter 

switching. 
 
Today, modern applications mostly employ A.C. motors: 
PMSM (permanent magnet synchronous motors), IM 
(Induction motors), SyncRel (Synchronous reluctance 
motors). In fact, if the complete life of the drive is 
considered A.C. drives performance and cost are better 
than those of D.C. drives since their higher initial cost is 
quickly balanced by the reduced energy consumption and 
the lower or absent maintenance. 
So in most of systems, two phase currents (generally 
measured by Hall sensors) are sufficient since the third 
one can be easily computed. Position signals, needed by 
speed/position control and field oriented control are 
measured either by using optical encoders (generally 

incremental encoders) or resolvers. Pulse width 
modulation (PWM) is achieved in several ways either 
hardware or software, using either the single 
microprocessor or external ASIC. 
 
According to the previous description, all motor control 
systems require, besides the powerful processor core, a 
significant array of additional circuits for correct 
operation, including such functions as: 
 

- Analog to Digital conversion for current or voltage 
feedback: requires both high accuracy and fast 
conversion rate: usually 10-12 bit analog to digital 
converters with a few µs conversion times are 
needed; 

- Pulse width modulation (PWM) blocks for generation 
of the inverter switching commands: PWM 
generation represents one of the most interesting part 
in drive design and the chosen modulation technique 
affect both performance and system complexity. 
Simple modulations do not require complex 
calculation, so they can be easily implemented either 
by HW and SW without any external component; 
more complex algorithms often present high 
computational load, then they require external ASIC 
or dedicated microprocessors; 

- Position/sensor interfaces for higher-performance 
applications: Encoder outputs are two quadrature 
square wave signals which frequency is up to some 
MHz.; 

- Serial ports for host communications: Because 
modern drives cannot neglect communications, high 
speed serial channels and or specific interfaces (e.g. 
CAN bus) are often highly desired; 

- General-purpose digital input/output ports. 
 
3 SpecC Language [8,9,10] 
 
3.1 Design Consideration for System Level 

Design Language 
 
A system can be described at any one of several distinct 
levels of abstraction (logic level, architecture level, 
conceptual level, …). Each of them serves a particular 
purpose.  
In particular, at the conceptual level, it is possible to 
describe the system’s functionality without any notion of 
its components. Description of such level can serves as 
specification of the system for designers to work on. 
Indeed, increasingly designers need to conceptualize the 
system using an executable specification language, in 
order to verify the correctness of the system’s intended 
functionality. 
According to the Co-Design methodologies, it is desirable 
that the specification language be used for all models at 

Power Converter Motor Load

DIGITAL CONTROL 
UNIT 

CMS PROCESS 
Converter/ Machine / Sensors

Sensors 
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all stages of the design process (homogeneous 
methodology). Therefore, this methodology does not 
suffer from simulator interfacing problems or 
cumbersome translations between languages with 
different semantics. Instead, one set of tools can be used 
for all models and synthesis tasks are merely 
transformations from one program into a more detailed 
one using the same language. This is also important for 
reuse, because design models in the library can be used in 
the system without modification (“plug-and-play”), and a 
new design can be used directly as a library component. 
 
Such specification and modeling language must be 
executable, modular and complete. Furthermore, these 
concepts should be organized orthogonally (independent 
from each other) so that the language can be minimal. In 
addition to these requirements, the language should be 
easy to understand and easy to learn.  
 
3.2 Traditional Languages 
 
Most of traditional languages lack one or more of the 
requirements discussed in the previous section and 
therefore cannot be used for system modeling without 
problems arising. Figure 2 lists examples of current 
languages and shows which requirements they support 
and which are missing. 
 

Behavioral

hierarchy
Structural
hierarchy

Concurrency

Synchronization

Exception
handling

Timing

State

transitions
Composite

data types

SpecCharts

Statecharts

Hardw
areC

Verilog

VHDL
Java

C
++

C
SpecC

not supported partially supported supported  

Figure 2: Language Comparison 

3.3 SpecC Language 
 
The SpecC language is built on top of the ANSI-C 
programming language, the defacto standard for software 
development. It is a true superset, such that every C 
program is also a SpecC program. C was selected because 
of its high use in software development and its large 
library of already existing code. 
 
The SpecC language is based upon the program state 
machine (PSM) model of computation. The SpecC model 
clearly separates communication from computation. It 
consists of a hierarchical network of behaviors and 
channels and supports “plug-and-play” for easy IP reuse. 

 
In addition, the SpecC language has extensions for 
hardware design. It supports all the concepts that have 
been identified as requirements for embedded systems 
design, such as structural and behavioral hierarchy, 
concurrency, explicit state transitions, communication, 
synchronization, exception handling, and timing. Some of 
these special constructs are described in the next sections. 
 
3.3.1 Structural Hierarchy 
 
Semantically, the functionality of a system is captured as 
a hierarchical network of behaviors interconnected by 
hierarchical channels. Syntactically, a SpecC program 
consists of a set of behavior, channel and interface 
declarations: 
 

- A behavior is a class consisting of a set of ports, a set 
of component instantiations, a set of private variables 
and functions, and a public main function. In order to 
communicate, a behavior can be connected to other 
behaviors or channels through its ports. The 
functionality of a behavior is specified by its 
functions starting with the main function. 

- A channel is a class that encapsulates 
communication. It consists of a set of variables and 
functions, called methods, which define a 
communication protocol.  

- An interface represents a flexible link between 
behaviors and channels. It consists of declarations of 
communication methods, which will be defined, in a 
channel. 

 
For example, the SpecC description in figure 3-b specifies 
the system shown in figure 3-a. The example system 
specifies a behavior B consisting of two sub-behaviors b1 
and b2, which execute in parallel and communicate via 
integer v1 and channel c1. Thus structural hierarchy is 
specified by the tree of child behavior instantiations and 
the interconnection of their ports through variables and 
channels. Behaviors define functionality and the time of 
communication, whereas channels define how the 
communication is performed. 
 
3.3.2 Behavioral Hierarchy 
 
The composition of child behaviors in time is called 
behavioral hierarchy in SpecC. Child behaviors can either 
be executed sequentially or concurrently. Sequential 
execution is specified by standard imperative statements 
or as a finite state machine with explicit state transitions. 
Concurrent execution is either parallel or pipelined 
(Figure 4). 
Syntactically, behavioral hierarchy is specified in the 
main function of a composite behavior.  
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Figure 3: Basic structure of SpecC program 

 
Sequential execution 

 
behavior B_seq 
{ 
 B b1, b2, b3; 
 
 void main(void)  
 { b1.main(); 
   b2.main(); 
   b3.main(); 
  } 
}; 

FSM execution 
 

behavior B_fsm 
{ 
 B b1, b2, b3, 
   b4, b5, b6; 
 void main(void)  
 { fsm { b1:{…} 
         b2:{…} 
         …} 
  } 

}; 
 
Concurrent execution 
 
behavior B_par 
{ 
 B b1, b2, b3; 
 
 void main(void) 
 { par{b1.main(); 
       b2.main(); 
       b3.main(); 
  }   } 
}; 
 

 
Pipelined execution 
 
behavior B_pipe 
{ 
 B b1, b2, b3; 
 
 void main(void) 
 {pipe{b1.main(); 
       b2.main(); 
       b3.main(); 
  }   } 
}; 

Figure 4: Behavioral hierarchy 

3.3.3 Communication 
 
The clear separation of communication from computation 
is one of the strengths of the SpecC language.  
Communication can be modeled by use of variables or 
channels between behaviors (Figure 3). Variables are used 
to represent a shared memory communication model in 
SpecC. However, channels are used to represent more 
complex communication including protocols, which 
invlove synchronization, timing, buffering, error 
correction, etc. 
The specification of the channel is separated in the 
interface declaration and the channel definition. The 
interface defines a set of function prototype declarations 
without the actual function body. The channel 
encapsulates the communication media and provides a set 
of function implementations. 
 
3.3.4 Synchronization 
 
Concurrent behaviors usually need to be synchronized in 
order to be cooperative. In SpecC, a built-in type event 
serves as the basic unit of synchronization. Events can be 
used only as arguments to wait and notify  statements.  
A wait statement suspends the current behavior from 
execution until one of the specified events is notified by 
another behavior. The notify  statement triggers all 
specified events so that all behaviors waiting on one of 
these events can resume their execution. 
 
3.3.5 Exception Handling 
 
SpecC provides support for two types of exceptions, 
namely abortion (or trap) and interrupt.  
For abortion, the execution of the initial behavior is 
aborted immediately and will not be resumed. This 
exception is usually used to model the reset of a system. 
In contrast to this, an interrupt exception will resume the 
execution of the initial behavior. 
 
3.3.6 Timing 
 
In the design of embedded systems, the notion of real 
time is an important issue.  
SpecC differentiates between two types of timing 
information, exact timing  and timing ranges.  
Exact timing is used when the timing is known, as in the 
execution delay of an already synthesized component.  
Timing ranges are used to specify timing constraints at 
the specification level. SpecC supports timing information 
in terms of timing diagrams with minimum and 
maximum time constraints. Timing ranges are specified as 
4-tuples T={l1; l2; 10; 20} with the range statement. This 
specifies that at least min but not more than max time 
units spent between labels l1 and l2. 

interface  I1 
{ 
  bit[63:0] Read(void); 
  void Write(bit[63:0]); 
}; 
 
channel C1 implements I1; 
 
behavior B1(in  int, I1, out int); 
 
behavior B(in  int p1, out int p2) 
{ 
  int v1; 
  C1  c1; 
  B1  b1(p1, c1, v1), 
      b2(v1, c1, p2); 
 
  void main(void) 
  { par { b1.main(); 
          b2.main(); 
         } 
   } 
}; 

(b) 

(a) 

  

 

 B
p1 p2

v1

c1

b1 b2
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Timing ranges allows avoiding the over-specification 
problem often obtained with the hardware description 
languages such as VHDL. 
 
3.3.7 Additional Features 
 
In addition to the concepts explained so far in this 
chapter, the SpecC language supports other constructs that 
are necessary for system-level design. It provides explicit 
support for Boolean (bool) and bitvector (bit[ : ]) types, 
in addition to all types provided by ANSI-C. SpecC also 
provides constructs for binary import of precompiled 
SpecC code and support of persistent annotation for 
objects in the language.  
 
It is very important that the advantage of SpecC lies in its 
orthogonal constructs, which implements orthogonal 
concepts. The SpecC language covers the complete set of 
system concepts with a minimal set of constructs. It is 
therefore easy to learn and easy to understand. 
 
4 Electrical Drives Specification Using 

SpecC 
 
In the traditional way, developers of new control 
algorithms validate their studies by simulation using 
standard language (C, C++, MATLAB, …). The control 
algorithm is tested using mathematical models of the 
process written in the same program, with the same 
language. Therefore, designers of the control devices have 
to translate this specification from the original language 
(standard language) to the co-design methodology 
language. This introduces a time/schedule delay. 
 
In this work, we propose to use the SpecC language to 
specify the whole motor drive system that includes 
control algorithms, I/O modules and Process to control. In 
contrast to other language, the SpecC allows to specify 
the system functionality in a clear and precise manner and 
the obtained specification, used for simulation, will 
serves, without the need for tedious rewrites, as the input 
to the synthesis and exploration stages in the SpecC 
design methodology. 
 
In this section we present the general case of electrical 
drives then we describe the case of a DC system as an 
example. This approach can be generalized to all of 
Power Electronics and Electrical drives system. 
 
4.1 Overview 
 
Figure 5 shows the top level of the electric drive 
specification in SpecC, consisting of process and control 
device sub-behaviors running in parallel. The process sub-
behavior is specified using mathematical models of the 

electric device in order to validate the control algorithm. 
It receives control signals and generates information 
about the electric process state.  Control device on the 
other hand, captures this information and generates 
control signals according to the used algorithm and to the 
user orders. 
 
The highest behavior in the hierarchy (Process_CTL) is 
the “Main” behavior similar to the main()-function in 
each C program. This main-behavior contains the 
testbench including the process specification (Process) 
and the control system under Test (CTL). 
 
In the following sections we describe these modules in 
more details. 
 
 
 
 
 
 
 
 
 

Figure 5: Top-level specification model of electrical 
drive system 

 
4.2 Process Specification 
 
The electric drive is composed of three module 
categories: Converter, Motor/Load, and Sensors. On the 
physical process these modules operate in parallel. Then 
in our specification we reproduce this structure by using 
three parallel behaviors (Figure 6). Each of these 
behaviors will be decomposed on child-behaviors 
according to the following considerations: 
 

- In the motor/load model, we usually distinguish two 
modes: electric mode and mechanical mode. So, 
when digitized, the model is composed of two 
equation systems: one for the electric mode and one 
for the mechanical mode. Then the motor behavior is 
decomposed of two child-behaviors (Electric 
behavior and Mechanic behavior). 

- On the physical process, we usually use several 
different sensors. Each of them is specified in a child-
behavior (sensor1, sensor2, …). 

- According to the fact that these modules don’t have 
the same temporal constraints and rates, we propose 
to add to each behavior a clock (represented by 
another sub-behavior Clk x) that generates its 
corresponding computing step for the simulation.  
These clocks must be defined according to the user 
specification. 

Ci: Control Signals / Di: State process information 

Process 
(Process 

under 

Control) 

CTL 
(Control
Device) 

Ci Di

Ci

Di

Process_CTL
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Usually, we use the same clock for the simulation of 
electrical device, and different clocks for different 
sensors. 

 
The final specification model of the process under control 
is then represented by figure 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Detailed specification model of electric drives 
systems 

 
This specification model present several advantages: 
 

- The SpecC specification describes the process in a 
clear, modular and precise manner. Available 
parallelism and behavior dependencies are explicitly 
shown. This greatly eases the understanding and 
therefore supports quick exploration of different 
design alternatives at the system level in the first 
place. 

- According to this principle, we have a modular 
structure that is easy for use and configure with a 
library of components. User has just to make his 

choice of modules from this library according to his 
application.  

- Manipulation of time is very useful since we define 
for each module or sub-module (for the sensors) a 
clock behavior that specifies the computing time of 
corresponding behaviors. 

- Using the sensor modules we obtain a good 
representation of the physical system and then a good 
validation of the control device. So, some phenomena 
can be studied like resolution of the converter and the 
encoder sensors, influence of delays and noises,… 

 
4.3 Control Device Specification 
 
Besides the algorithm implementation, all motor control 
systems require a significant array of additional circuits 
for correct operation, including such functions as: 
 

- Analog to digital conversion for capture of electric 
magnitudes (current and voltage); 

- Position sensor interfaces for capture of mechanical 
magnitudes (position and speed); 

- Pulse width modulation (PWM) blocks for the 
generation of the converter switching commands; 

- Serial ports for host communication; 
- General-purpose digital input/output ports; 
- Watchdog timer and event timers, …required for real 

time embedded control systems. 
 
According to the user application some or all of these 
blocks are integrated in the control device. So in our 
specification we reserve for each of them a sub-behavior 
that can be decomposed of some child-behavior… These 
sub-behaviors will be specified inside two principle 
behaviors, which are the ACQ behavior for the 
information capture and the PWM behavior for the 
generation of control signals. 
 
On the other hand, in the electric drive, we usually 
distinguish two control loops: an outer motion loop and 
an inner current loop. The motion loop handles the 
mechanical load and maintains rotary position and 
velocity. It has typically bandwidths of the order of 20 to 
30 Hz with sample rates of 500Hz to 3 kHz. The current 
loop handles the dynamics of the motor electrical system 
and controls torque production. It has typically 
bandwidths of the order of 1 to 2 kHz with sample rates of 
up to 20 kHz. 
Then, a behavior CTL_Alg including two sub-behaviors 
one for the motion control (M_Alg) and one for the 
current control (C_Alg) can specify the control algorithm.  
 
Each of these behaviors is associated to a clock generator 
behavior (Clk x). 
 

Motor/Load

Electric Mechanic 
ClkmClke

clke

En

clkm 

V1 V2 V3 Ep E1 En

Ep

E1

Motor/LoadConverter Sensors

E1

Process 

E2

En

V1 

V2 

V3 

O1 O2 OnC1 C2 Cm

Sensors

sensorn

En

Clksn 

clksn 

sensor2

E2

Clks2

clks2

sensor1

E1

Clks1 

clks1 O1 O2 On

Converter

Cv_ModelClkcv

ckcv 

V1 V2 V3 

C1 C2 Cm 
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The Figure 7 represents the specification model of the 
control device. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Specification model of the control device 

 
4.4 Case of D.C. System 
 
To validate this new approach used in the development 
(specification and validation) of new control algorithms 
for electric drives, and based on the SpecC language, we 
describe in this section, the case of a DC system. This 
process is composed of a DC motor fed by a four-
quadrant chopper and associated to current and speed 
sensors. 
 
4.4.1 DC Process 
  
The DC system is composed of a DC motor, a four-
quadrant chopper, a Hall sensor for the current capture 
and an Optical incremental encoder for the speed. 
The SpecC model of this system is represented by figure 
8, where each module has its own clock generator. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Specification model of a DC system 

 
The Hall sensor output is a voltage magnitude that 
represents the current value. This output voltage depends 
on the Hall sensor characteristics and the current value. In 
our case this dependency is represented in the behavior 
Sensori by the equation1: Vout=im*5/15 volts. A more 
sophisticated model (including influence of noises, 
temperature, wear,…) can be specified in this behavior in 
order to reproduce more precisely the Hall sensor output. 
The optical incremental encoder generates two quadrature 
square wave signals (S0 and S1) with the same frequency 
(proportional to the motor frequency) as represented by 
figure 9. 
 
 
 
 
 
 
 
 
 

Figure 9: OIE sensor Specifications 

These signals are reproduced by the behavior SensorΩ. 
More complex models can be added to this behavior 
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specification in order to reproduce more precisely the 
optical incremental encoder outputs. 
 
4.4.2 Digital Control Device 
 
This device includes three main parallel behaviors that 
describe respectively the PWM modules, the control 
algorithms and the different used sensors. Each of them is 
distributed in different child-behaviors according to figure 
10. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Control device specification – case of DC 
system 

The Control Algorithm behavior is composed of two sub-
behaviors: one for the motion control and one for the 
current control. The current loop period is 284µs while 
the motion loop period is 20ms. 
 
The current is measured by Hall sensor and the 
information is obtained in a voltage form. So, the control 
device has to include an ADC module. The current 
capture requires both high accuracy and fast conversion 
rate: usually a 10-12 bits ADC with a few µs conversion 
times are needed. In order to have a precise specification 
of this module, the description of the ADC is done using 
two parameters: resolution (number of bits) and delay 

(time necessary for conversion). More specifications can 
be added to this behavior in order to represent more 
precisely the ADC component functioning. 
The current control module uses the average value of the 
current (at the scale of the current control period). So, we 
add to the current capture behavior a module to compute 
this average value. 
 
For the speed control, the rotation direction and the speed 
absolute value are obtained from the optical incremental 
encoder signals S0 and S1.  
 
To control the four-quadrant chopper, at least, two control 
signals are required. These signals (C0 and C1) are 
generated by the PWM behavior according to the current 
control order. This behavior can be defined with three 
configurable parameters: clock, period, pulse width.  
 
4.4.3 Results 
 

 
 

Figure 11: Specification model results 

 
Using the specification model of the DC system, user can 
test the control algorithm and the influence of its different 
parameters (regulators parameters, control periods,…). He 
can also test the impact of the I/O circuits like the 
resolution of the CAN and it’s delay and the precision of 
the speed capture module according to the used clock… 
 
Figure 11 shows results obtained with two different speed 
control parameters. 
 
More sophisticated models can be used in order to 
represent others complex phenomena like the influence of 
the temperature, of the wear, of the noise,… The user will 
be able to add these specification in very easy way and he 
will be then able to validate his control device under 
specific conditions… 
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The use of SpecC language in the development of new 
control systems present several advantages that are 
developed in the following section. 
 
5 SpecC Language Advantages 
 
During this project, we use the SpecC language for the 
specification and validation of new control systems. 
According to this work we note several main advantages 
of this language that can be described as follows: 
 

- The obtained specification model is executable and 
validation by simulation is done easily. Indeed, 
results storage, restitution and manipulation for 
verification can be performed clearly in the testbench 
module. 

- The SpecC language offers modularity in form of 
structural and behavioral hierarchy, allowing the 
hierarchical decomposition of the specified system. 
The electric drives systems are then described in a 
clear, modular and precise manner. Available 
parallelism, behaviors dependencies and temporal 
constraints are explicitly shown. This greatly eases 
the understanding and the modification of the 
specification model. 

- The SpecC language supports the inclusion of 
precompiled design libraries into the specification 
description. This simplifies the handling of 
component libraries and also allows a speedy 
compilation. The modular specification model of 
electric drives can be obtained easily by the 
association of specific component libraries to the 
SpecC language. Therefore, user has just to make 
her/his choice of modules from these libraries 
according to his application. 

- The SpecC language has extensions for hardware 
design. It supports all the required concepts for 
embedded systems design, such as structural and 
behavioral hierarchy, concurrency, explicit state 
transitions, communication, synchronization, 
exception handling and timing.  
Figure 2 compares some traditional language against 
a set of these requirements. The SpecC language, 
shown in the last column of this table, has been 
specifically designed to support all the required 
concepts. Moreover, SpecC precisely covers these 
requirements in an orthogonal manner. 

- The obtained specification model will serves, without 
the need for tedious rewrites, as the input to the 
synthesis and exploration stages in the SpecC design 
methodology for the final control device design. 

 
On the other hand, the SpecC language is built on top of 
the ANSI-C programming language, the de-facto standard 
for software development. It is a true superset, such that 

every C program is also a SpecC program. This implies 
two main additional advantages of the SpecC languages: 
 

- The major works in the control of Power Electronics 
and Electromechanical Systems are done in C 
language. Then, the large amount of already existing 
codes and libraries can be re-used easily with SpecC 
language. Conversion of these C programs to SpecC 
programs can be done rapidly and we estimate the 
manually conversion time to be between few minutes 
and one hour according to the complexity of the 
program. 

- The ANSI-C is well known by the control systems 
developers. Then, the adaptation of these developers 
to the SpecC language is very easy and can be done 
in a short time. A 4 hours tutorial seems to be 
sufficient for C language programmers to be able to 
develop specification models in SpecC.  

 
6 Conclusion 
 
In this report, we described the use of the SpecC language 
to the specification and validation of new control systems 
for power electronics and electric drives. 
 
The SpecC specification of electrical drives is captured in 
a natural, clear and precise manner showing explicitly 
available parallelism and behavior hierarchy and 
dependencies. This greatly eases the understanding and 
the use of this specification model in order to validate 
control devices. 
 
The modular structure used in this specification allows 
facilitating the validation of new control algorithms. 
Indeed, the SpecC can integrate a library of electrical 
modules including different motor models, different 
converters and different sensors. So the user can select 
among these modules those corresponding to his/her 
application process. He will be able, also to choice the 
control device modules like PWM generators, Speed 
acquisition module,… and configure them according his 
control constraints. 
Only the modules corresponding to the chosen 
configuration will be selected in the library of modules. 
This allows to have optimized running programs at the 
simulation stage. 
 
The SpecC language is built on top of the ANSI-C 
programming language. This allows the re-use of the 
large amount of already existing C codes and libraries and 
facilitates the adaptation of the control developers to the 
SpecC language. 
 
The main advantage of the use of SpecC language is that 
the obtained specification, used for simulation, will 
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serves, without the need for tedious rewrites, as the input 
to the synthesis and exploration stages in the SpecC 
design methodology for the final control device design. 
This will reduce significantly the time-to-market by 
minimizing largely communication among designers and 
customers. 
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