
1

Interconnection Binding in RTL Design Methodology

Haobo Yu
Daniel D. Gajski

Technical Report ICS- 01-38
June 27, 2001

Center for Embedded Computer Systems
Department of Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

{ haoboy, gajski}@ics.uci.edu
http://www.ics.uci.edu/~haoboy

Abstract
Bus-based architecture has better performance than mux-based architecture in large design.

Unfortunately no commercial High-Level/RTL synthesis tools exists today in EDA industry enable the bus
based architecture synthesis. This report describes the interconnection binding part in our RTL refinement
tool. The proposed algorithm is based on the clique partitioning algorithm to minimize the total number
of buses needed for the datapath. It integrates with other modules in our RTL refinement tool to generate
RTL style 2-4 code automatically.

2

Abstract 1

1. Introduction 1

2. RTL Design methodology 1
2.1 RTL refinement flow 1
2.2 Target architecture 2
2.3 User interaction and design space exploration 2

3. Interconnection binding 3
3.1 Quality Metrix 3
3.2 Interconnection binding algorithm 4
3.3. Compatibility graph 5
3.4. Graph partitioning algorithms 1

4. An illustrative example 8

5. Data structure 10

6. Experimental Results 10

10. Conclusion 12

References 12

3

List of Figures

 1 Figure 1 RTL design refinement flow …………………………………………………………. 2
 2 Figure 2 Bus based architecture ……..………………………………………………………….2
 3 Figure 3: user interaction and synthesis procedure …………………………………………. 3
 4 Figure 4. Interconnection binding algorithm…………………………………………………. 4

 5 Figure 5. Weight calculation …………………… ………………………………………………5
 6 Figure 6 graph partitioning algorithm ………………………………………………………… 6
 7 Figure 7 SRA ASM Chart ………………………………………………………………… . 7
 8 Figure 8 Connectivity usage table.…………………………………………………………… 7
 9 Figure 9 Datapath for SRA …………………………………………………………………… 8
 10 Figure 10 Compatibility graph ……………………………………………………………… . 7
 11 Figure 11: graph paritioning. ………………………………………………………………… 9
 12 Figure 12 compare the different binding approaches ………………………………………… 11

1

Interconnection Binding in RTL Design Methodology
Haobo Yu, Dianel D. Gajski

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

Abstract
Bus-based architecture has better performance than
mux-based architecture in large design. In this paper
we introduce interconnection binding in a new RTL
design methodology. The proposed methodology uses
the bus-based architecture and supports pipelined
/multi-cycle operations and storage units. By using
the tools supporting our methodology, the user can
explore the bus-based architecture design space
efficiently.

1. Introduction

Much research for High-level/RTL synthesis has
been done since 1980s. Currently, many commercial
and academical high-level/RTL synthesis tools exist
in electronic design automation market but the design
community wouldn’t integrate them into its design
methodology and design flow, because 1) they can
support only several limited architectures, 2) they are
lack of interaction between them and the designers,
and 3) the quality of the design which they generates
is worse than that of manual design.

Until now, much research on high level synthesis
was focused on mux-based target architecture,
however, bus-based architecture has better
performance than mux-based architecture in large
design. Unfortunately no commercial synthesis tool
exists today in EDA industry enables the bus based
architecture synthesis. Also, there’s limited
architecture support, for example, the registers are
used as storage unit rather than register files and
memories, which is commonly used in manual
design.

To make the synthesis tools accepted by the
design community, we introduce a new RTL design
methodology with corresponding RTL refinement
tool [ShGa01B]. The proposed RTL design
methodology supports the RTL semantics by
Accellera C/C++ working Group[Acc01].

This paper focuses on the interconnection
binding in the purposed RTL design methodology.

The new methodology enables automatic bus binding
and let the user explore the design space. This
methodology differs from previous interconnection
binding approaches in that it does not try to minimize
the total number of buses used in target architecture,
rather, the number of buses in target architecture is
assigned by the user. By this way, our methodology
can let the user rather than the synthesis tools explore
the interconnection binding design space. Thus, the
synthesis result will be better and the design quality
will be close to that of manual design.

2. RTL Design methodology

This section describes the RTL design
methodology and the corresponding test tool. The
proposed methodology has the following features
that make the tool achieve good synthesis quality:

• Comply with the proposed Accella RTL
semantics[Acc01];

• Support bus based universal processor
architecture;

• Support user-tool interaction, enables user
directed design space exploration ;

2.1 RTL refinement flow

The RTL design is modeled by Finite State
Machine with Datapath (FSMD) [Acc01], which is
FSM model with assignment statements added to
each state. The FSMD can completely specify the
behavior of an arbitrary RTL design. The variables
and functions in FSMD may have different
interpretations, which in turn defines several styles of
RTL semantics.

The register-transfer level (RTL) implementation
model has two views: a behavioral RTL view and a
structural RTL view [Gers00]. The behavioral RTL
specifies the operations performed in each clock
cycle and is obtained by scheduling the operations in
the behavioral code into clock cycles. The structural
RTL view of the implementation model explicitly
models the allocation of RTL components, the

2

scheduling of register transfers into clock cycles, and
the binding of operations, variables and assignments
to functional units, register / memories and
components busses.

 The RTL implementation model can be divided
into 5 well defined styles as proposed by Accellera
RTL semantics[Acc01]: behavior RTL (style 1),
Storage-mapped RTL (style 2), function-mapped
RTL (style 3), Connection-mapped RTL (style 4), and
structural RTL (style 5). These different styles
represent the different refinement steps like
scheduling, register binding, function binding and
bus binding from behavior RTL (style 1) to structural
RTL (style 5) as Figure 1 shows.

Figure 1 describes the RTL refine flow in our
RTL design methodology. We generate the
FSMD/CDFG from the C++/SpecC/HDL input as
our internal representation for refinement. Each
refine step is based on FSMD/CDFG data structure,
where each state has its own Control/Data Flow
Graph [ShGa01A]. The scheduling task separates the
state into sub-state based on resource constraint. The
storage, function, and interconnection binding are
performed considering each state transition.
However, due to the interdependence of scheduling,
allocation, and binding, the order of these three
binding steps should be interchangeable to get the

RTL implementation model in different styles.

The RTL component library has the information
about datapath modules such as ALUs, multipliers,
register files, memories and buses. When each
synthesis step is performed, it refers to the RTL
component library to get the information about
resource constraint.

The netlist mapper generates the style 5 exposed-
control RTL from style 4 RTL. Then the style 5 RTL
description can be used as input for gate-level
synthesis tool such as Synopsys Design Compiler.

2.2 Target architecture

The target architecture of our RTL design
methodology is bus-based universal processor
architecture[Acc01], as shown in Figure 2. It consists
of storage units, function units, buses, bus drivers
and multiplexers. The storage units can be composed
of registers, register files and memories with
different latency and pipeline scheme. The function
units are pipelined or multi-cycled.

2.3 User interaction and design space exploration

Most high level synthesis tools were built to do
everything automatically. Research was focused on
how to minimize the number of operation units,

Scheduling

Storage Binding

Function Binding

Connection Binding

FSMD/
CDFG

RTL Description
(style 1~4)

C++/SpecC/HDL
Compiler

Library

RTL Code
Generator

RTL Description
(style 1~5)

Figure 1 RTL design refinement flow
(l 1)

Register
File 1

Register
File 2 Memory

Bus 1
Bus 2

mux

ALU

Register Register

Register

* /

Register Register

Register

Bus 3

mux

Bus 4

Datapath
Output

control
signals from
control unit

Datapath
Input

Latch

Figure 2 Bus based architecture

3

storage units and interconnection units (multiplexes
and number of connections) [TsSi83]. Nearly all the
synthesis tools are trying to explore the design space
automatically without human intervention.

But all these automatical approaches, though
good in intention, failed to achieve satisfactory
synthesis quality. These automatic tools can’t explore
such broad design space by themselves. We need the
designer to participate in the design space
exploration process, because human has more
specific knowledge and experience about the

direction of exploration.

Figure 3 shows our user directed design space
exploration. First, the user specifies the target
architecture and allocates the corresponding resource
according to the target architecture, then our
synthesis tool try to do scheduling/binding based on
these specified resources, if our tool failed to produce
the synthesis result, the user allocate more resources,
this interaction is repeated until the tool can produce
the required architecture. Then, the user can try
another target architecture and the whole process is
repeated again, by this way, we give the user more
freedom to explore the design space. Since the
experienced designer has much knowledge about the
design, his input will lead to better target and
synthesis result than the automatic process.

3. Interconnection binding

In the datapath synthesis, we need to transfer
each register output to the input of a functional unit
and each functional unit output to the input of a
register. Interconnection binding maps the data
transfers to the interconnection paths (in our target
architecture, they are buses). The objective of
interconnection binding is to maximize the sharing of
interconnection units, while still supporting the
conflict-free data transfers required by the register-
transfer description. Since the connections of a
datapath usually occupy a substantial silicon area in a
microchip, we can reduce the cost of datapath
connection by merging several connections into a
bus, which occupies less area.

In our design methodology, the number of buses
is pre-allocated by the designer, and our tool tries to
map all the data transfer paths to specified number of
buses. Thus our goal differs from other bus binding
approaches, which try to achieve minimal number of
buses in the target architecture.

3.1 Quality Metrix

The quality measure for interconnection binding
is to achieve minimal silicon area for the
interconnections. But in the RTL level, we only have
a coarse estimation of the cost, however, the number
of bus drivers and multiplexers give a reasonable
measurement to the interconnection cost. So we use
the following measure:

Cost = w1*Num(busdriver) + w2 *Num(mux)

where w1, w2 is the weight for the bus driver and
multiplexer to account for the different cost between

target architecture specification
(pipeline/multicyle..)

Resource allocation according to
target architecture:

(numbers of storage unit,
functional unit, buses)

scheduling/binding according to
the specified resources

Can the tools produce the
required architecture?

Yes

Does the user want to
expolore another

architecture?

Yes

No

Allocate more
resource

No

Synthesis result output

Figure 3: user interaction and synthesis procedure

4

busdriver and multplexer.

3.2 Interconnection binding algorithm

Since the number of buses to be bound is pre-
allocated by the user, our algorithm differs from
other interconnection binding algorithm. We do not
seek to achieve minimal number of buses in target
architecture, rather, we will try to bind the data
transfer paths into the specified number of buses, at
the same time, we try to minimize the quality matrix
of the bus binding result.

The proposed interconnection binding algorithm
is based on two facts about data transfer paths:
1. Data transfer paths which are never used

simultaneously can be bound together to
connect to the same bus;

2. In order to minimize the quality matrix, it is
beneficial to bind those wires which have the
same source or destine to the same sink;

Interconnection Binding Algorithm:
Input: FSMD(S, N) , BusNumber
Output: FSMD(S,N) where
∀ ni ∈ WireNode,busID(ni) =j , j=1,2…BusNumber;

/* create a list WireList containing all wires of the datapath */
WireList = ∅ ;
for each si ∈ S do

for each nj ∈ Ni do
 if nj ∈ WireNode then
 Add2WireList(WireList, nj, si);
 endif
endfor

endfor

/*create a weighted compatible graph G(V, E) */
G = ∅ ;
for each sni ∈ WireList do
 for each snj∈ WireList do
 weight = CompWeight(sni, snj);

if(weight = -1) continue;
 eij = weight;
 Add2Graph(G, i, j, eij);
 endfor
endfor

/* Partition the graph G into BusNumber number of Cliques */
Graph_partition(G, CliqueList, BusNumber);

/* Update binding information */
for each C i ⊆ CliqueList do
 for each sn j∈ WireList and sn i ∈ C i do
 SetBindingInfo(snj, i);
 endfor
endfor

Figure 4. Interconnection binding algorithm

5

CompWeight(sni, snj)
{
if UsedInSameState(sni, snj)
 if SameSourceDest(sni, snj)

weight=1;
 else

weight=-1;
 endif
else
 if SameSourceDest(sni, snj)

weight=1;
 else

weight=0;
 endif
endif
return weight;
}

Figure 5. Weight calculation

There are two input to the interconnection
algorithm: the first one is the CDFG data structure
[ShGa01], which is generated from RTL style 3(after
storage binding and function binding) code. The data
structure includes CDFG data structure for every
state in FSMD. Each CDFG data structure contains
the storage node, wire node(representing data
transfer path in each state) and function unit node
[ShGa01]. The second input is the number of bus
available for interconnection binding. This number is
determined in the allocation process, based on the
datapath architecture specified by the user.

In our interconnection binding algorithm, the
wire nodes in each CDFG in the FSMD are extracted
to form a super-wire list with proper information
(e.g. states in which it belongs and a unique ID for
each wire), then we generate a graph based on this
super-wire list and partition this graph into several
cliques(the total number of cliques equals the input
bus number). The wire nodes in each clique are
mapped into same bus.

Figure 4 describes our interconnection binding
algorithm. The algorithm begins with an input FSMD
data structure generated from the RTL description.
Let F = (S, N) denote a FSMD, where S is the set of
the states in FSMD and N is the set of nodes (storage
nodes, operation nodes, and wire nodes). Each state si
∈ S contains a subset of nodes Ni ⊆ N. The designer
specify the total bus number (BusNumer) for the
target architecture. The problem of interconnection
binding is to map each wire node ni ∈ N to a bus
resource {busID| busID = 1…BusNumer} and
minimize the total number of buses used. The input
is FSMD F = (S, N) generated from the RTL
description. Each state si of the FSMD(si ∈ S)
contains a subset of nodes Ni ⊆ N. WireNode is the
set of all wire nodes in FSMD and WireList is the set
of the super-wire nodes in which every super-wire
node contains the corresponding wire node, the states
in which the wire is used, and a unique identification
number for this node. G = (V, E) is a graph, where
V={vi| i=1,2¡-total number of elements in WireList}
is the set of all super-wire nodes in WireList and E =
{eij| i,j= 1,2¡-total number elements in WireList} is
the set of all weighted edges which link vertices in V.
The edge eij exists in the graph if and only if two
vertices vi and vj (i.e. two wire nodes in the CDFG
data structure) can be mapped to the same bus
without conflict. Also, all the edge has weight. We
assign weight 1 to an edge if the two vertices
(corresponding to two wires) connected by this edge
have the same source or destination. A CliqueList is a

set of clique, where each clique Ci ⊆ CliqueList
contains a set of vertices in which every two vertices
are compatible with each other(i.e. the two wires are
used in different clock cycles)
� Function Add2WireList(WireList, nj, si) first

create a super-wire node sni, from the wire node
ni and the state information si, then add the
super-wire sni to WireList.

� Function CompWeight(sni, snj) check whether
two node sni, snj is compatible with each other
, and calculate the weight of the ege connecting
these two nodes if they are compatible;

� Function Add2Graph(G, i, j, eij) adds an
weighted edge eij to a graph G(V, E), where i and
j are two vertices of the graph G .

� Function Graph_partition(G, CliqueList,
BusNum) parititions the graph into BusNum
number of Cliques. CliqueList contains the
partitioned clique list of graph G.

� Function SetBindingInfo(snj, i) updates the
binding information in the nodes snj by assign
the bus resource number i to that node.

3.3. Compatibility graph

We generate a compatibility graphs for all the
wires(data transfer paths). Each vertex in the graph
represents a wire between the register and the
functional unit. If two wires are not used in the same
time, the two corresponding vertices in the
compatibility graph are connected by an edge. For
every two wires sharing the common source or
destination in the datapath, we assign weight 1 to the
edge which connects the corresponding two vertices
in the compatibility graph. The remaining edges are

6

Graph_partition(G, CliqueList, BusNumber);
weight=1;
while ((weight >= 0) and (CliqueNumber > BusNumber))do
 while ((Edge(weight)) and (CliqueNumber > BusNumber))do

 ei,j = Pick2Node (G, weight);
 CliqueNumber = MergeNode (G, eij, weight, CliqueList);

 endwhile
weight = weight -1;
endwhile

Figure 6 graph partitioning algorithm

assigned weight 0. Also, those interconnection wires
with the common source or destination, even when
they are used concurrently, can still share the same
bus. Therefore, we should assign weight 1 to the
corresponding edges in the graph. Figure 5 is the
function to calculate the weight in the compatibility
graph.

3.4. Graph partitioning algorithms

After we get the compatibility graph, we will
partition the graph into cliques, each clique contains
a subset of the vertices in which every vertex is
compatible with each other. Our algorithm differs
from other clique partition algorithm for
interconnection binding in that we do not seek to get
the minimal number of cliques for the compatibility
graph. In our algorithm, the number of cliques is
predetermined and we should partition the graph into
specified number of cliques.

 The algorithm is a modified algorithm proposed
by [TsSi83]. We will try to combine the vertices that
are connected by edges with weight 1 first, that
means the wires with common source or common
destination will share the same bus, thus saving bus
drivers or mux used in datapath.

The algorithm is shown in figure 6, it works as
follows:
1. In the subgraph of G where all edges is weight

1, the function Pick2Node(G, weight) pick two
vertices and return the edge ei,j connecting
these two nodes;

2. MergeNode (G, eij, weight) deletes all edges that
are connected to the two vertices connected by
ei,j and combines the two nodes to form a super
vertex, then recalculate the weight of all the
edges that are connected to the new super vertex
in graph G;

3. Check the total number of cliques in graph G, if
the number is same as BusNumber, the
algorithm stops and return the CliqueList;

4. Repeat 1-3 until there’s no weight 1 edge in the
graph;

5. Now we got a graph with only weight 0 edge,
repeat the same 1,2,3,4 process on this graph
until there’s no edge in the graph or the total
numer of cliques is same as BusNumber

3.4.1 Weight calculation after merge two node

In step 2,we see that after combining two nodes,
we should calculate the weights of edges that connect
the new super vertex with the other vertex in graph
G. For example, if we combine node1, node2 into a
new vertex nodex in the graph,
nodex= combination (node1,node2);

for any nodey ∈graph we want to calculate
weight(nodex, nodey) there are 9 conditions that will
occur:
case 1:

weight(node1,nodey)=1 and
 weight(node2,nodey)=1

case 2:
weight(node1,nodey)=1 and
weight(node2,nodey)=0

case 3:
weight(node1,nodey)=0 and
weight(node2,nodey)=1

in these three cases , we still want to combine
nodey with the nodex first,so we make

weight(nodex,nodey)=1;
case 4:

weight(node1,nodey)=0 and
weight(node2,nodey)=0

of course,the result is
weight(nodex,nodey)=0;

7

case 5:
 weight(node1,nodey)=1 and

(node2,nodey) is not an edge;
case 6:
 weight(node1,nodey)=0 and

(node2,nodey) is not an edge;
case 7:
 (node1,nodey) is not an edge;

weight(node2,nodey)=0 ;
case 8:

(node1,nodey) is not an edge;
weight(node2,nodey)=1 ;

case 9:
(node1,nodey) is not an edge;
(node2,nodey) is not an edge;
nodex is in conflict with nodey

we do not make an edge between nodex and
nodey in the resulting graph;

Also, the function MergeNode (G, eij, weight) in
step 2 select two nodes from the subgraph of G
where all edges have weight value weight. Here’s the
criteria for selecting candidate nodes to merge.

3.4.2 Node selecting criterias:
1. Total number of common neighbors, each

supervertex is counted one time, if there are
several candidate node pairs which have same
number of common neighors, then go to criteria
2;

2. For each of the candidate vertex pairs, calculate
the weight sum of those edges which connect
the vertex in each candidate vertex pair and the
common neighbor node, select the vertex pair
with maximum weight sum; if there are several
candidate node pairs which have same weight
sum, then go to criteria 3:

3. We want to distribute the vertices uniformly
among the cliques, so we choose to combine the
supervertex pairs with less total number of
vertices, if there are several candidate super
vertex pairs which have same total number of
vertices, then go to criteria 4;

4. We calculate the total number of common
neighbors again, each supervertex is counted N
times, where N is total number of vertices in

S0 S1 S
2

S3 S4 S5 S6 S7

A X
B X X
C X X X
D X X
E X
F X X X X
G X
H X

Figure 8 Connectivity usage table

S0

S1

S2

S3

 S4

 S5

 S6

a=In1
b=In2

Start

t1=|a|
t2=|b|

x=max(t1,t2)
y=min(t1,t2)

t3=x>>3
t4=y>>1

t5=x-t3

t6=t4+t5

t7=max(t6,x)

Done=1
Out=t7

1

0

 S7

Figure 7 SRA ASM Chart

H

D

E

G

B

C

F

1

1

11

11 1

1

1

1

A

0
0

0

0

00

0

0

0

0

0
0

Figure 10 Compatibility graph

8

each supernode;
If after applying criteria 1, 2,3, 4 , we still have

several candidates, we select the vertex pair to
combine randomly.

4. An illustrative example

We will illustrate our interconnection binding
algorithm by the square root approximation (SRA)
example from the book [Gajs97]. The SRA ASIC is
designed to compute the square root approximation
of two signed integers, a and b, by the following
formula:

max(((0.875x + 0.5y),x)

where x =max(|a|, |b|), and y = minx(|a|, |b|).

The ASM chart[Gajs97] of the SRA ASIC is
shown in figure 7. This ASIC has two input ports,
In1 and In2 which are used to read integers a and b,
and one output port Out. This ASIC reads the input

ports and starts the computation whenever the input
control signal Start becomes equal to 1. In state s1, it
computes the absolute values a and b and in s2 it
assigns the maximum of these two values to x and
the minimum to y. In state s3 it shifts x three
positions to the right to obtain 0.125x and y one
position to obtain 0.5y. The ASIC calculates the
0.875x by subtracting 0.125x from x in state s4. In
state S5 it adds 0.875x and 0.5y, while in state s7 it
computes the maximum of x and the expression
0.875x +0.5y. In state s7, the ASIC produces the
result and makes it available through the Out port for
one clock cycle. At the same time, it sets the control
signal Done to 1, in order to signal to the
environment that the data that has appeared at the
Out port is a valid result.

After we did register binding and function
binding, the datapath for SRA is shown in figure 8,
where we have three registers R1 , R2, R3 to hold the
value of x,y,t1-t7, and two ALU(abs,min/max/+/-)

Figure 9 Datapath for SRA

9

and two shifter(>>1,>>3) as functional units.

Now we need to bind the wires A, B, C, D, E, F,
G,H,I,J,K,L,M in the datapath.Since we only need
this example to demonstrate the algorithm itself, for
simplity’s sake, we only bind the input wiress A, B, ,

D, E, F, G, H in the datapath.Our interconnection
binding algorithm works as follows:
1. Create the connection usage table, as shown in

figure 9;
2. Create the super-wire node (by adding state

Step2:clique=7

Step4:clique=5

Step1:clique=8

Step3:clique=6

H

D

E

G

B

C

F

1

1

11

11 1

1

1

1

A

0
0

0

0

00

0

0

0

0

0
0

Step 5:clique=4 Step 6:clique=3

HA

1

G

B

F

H

D

E

G

B

C

F
1

11

1

1

1

1
0

0

0

0

0

0

0

0

A

H

D

E

G

B

C

F1

1

1

0

00

0

0

A

1

1

0

H

D

E

G
B

C

F

0

0

A

1

1

0

0

1

H

G
B F

A

0

1

D

EC

D

EC

1

0

Figure 11: graph paritioning

10

information associated with each wire and
unique identification number) for wire A, B, C,
D, E, F,G, H and add them to WireList ;Add
these 8 vertices to the graph G;

3. From the SRA datapath, we can see that
A,C,D,H share the same source R1; B,G,F share
the same source R2 and D, E share the same
destination ,we assign the edges that connecting
these vertices weight 1;

4. From the connectivity usage table(Figure 6) we
can see that A is compatible with B,E,F,G, so we
assign weight 0 to edges AB,AE,AF,AG; for the
same reason, we assign weight 0 to edge BE,
BH, CG, CE, CH, DG, EG, EH, FH, now we
have a compatibility graph G ,as shown in
figure 9;

Now we will do the clique partitioning on graph
G,suppose we want to bind them to three buses, that
is ,there will be three cliques after graph partitioning.
The whole process is illustrated in figure 11:
1. In step 1, we have a compatibility graph for the

input wires of the datapath for SRA,there’s 8
cliques in this graph G;

2. We will select two vertices in the graph G(step
1) to merge(the two vertices should connected
by an weight 1 edge) according to the criteria in
section 6.1.2: (A,C) has common neighbor
D,H,G, (A,H) has common neighbor C,D,B,E F,
(H,D) has common neighbor A,C,E, (C,D) has
common neighbor A,H,G,E, so the pair (A,H) is
selected to merge first. We delete all the edges
that are connected with vertex A and H, then
combine vertex A and H and form a new super
vertex AH, calculate the edge weight between
vertex AH and the other vertices according to
the rules of section 6.1.1, the new graph G is
show in step 2, where the total number of
cliques is 7;

3. we choose two vertices in the graph G(step 2) to
merge(the two vertices should connected by an
weight 1 edge): (AH, C) has common neighbor
D, E, (B,G) has common neighbor F,E, (B,F)
has common neighbor AH, G; (C,D) has the
common number AH, G, E, so we select to
merge (C, D), and the merged graph is shown in
step 3, where the total number of cliques is 6;

4. In the step 3 graph, among the vertices
connected by weight 1 edge, (B,F) and (B,G) all
have 2 common neighbors, but (B,F) has
common neighor AH, G, (B,G) has common
neighbor E, F , according to criteria 4 in 3.4.5 ,
we should select (B,F) to merge, we get step 4
graph, where the total number of cliques is 5;

5. In the step 4 graph, among the vertices
connected by weight 1 edge, (CD,E) have the
maximal number of common neighbors, so (B,F
) is selected to merge, we get step 5 graph,
where the total number of cliques is 4;

6. In the step 5 graph, there’s two edges have
weight 1: (CDE, AH) and (BF, G) ,they have
same total number of common neighbors, but (
CDE,AH) , if combined, will have 5 nodes in
the clique, while (BF,G), if combined, will have
3 nodes,according to criteria 3 in 3.4.5, we
choose to combine (BF,G) first, we get step 6
graph;, where the total number of cliques is 3;

Now, we have get the three cliques, we can
assign bus1 to {A,H }, bus 2 to {C,D,E}, bus 3 to
{B,G,F}.

5. Data structure

Our binding algorithm is based on the internal
representation of SpecC RTL data structure. The
most important data structure is the FSMD/CDFG
data structure. It is designed according to accellara
RTL semantics.Detailed explanation of the CDFG
data structure can be found on [ShGa01].

The interconnection binding algorithm begins
with input FSMD/CDFG data structure, which is
generated from the RTL description. And after
resource allocation (register binding, function unit
binding and interconnection binding), the given
resource has been added to the FSMD/CDFG data
structure. Finally, the netlist generater can produce
style 5 RTL code from the FSMD/CDFG data
structure.

Also, In the clique partition algorithm, the graph
is implemented as two list data structure: one for all
the nodes in the graph, the other for all the edges in
the graph.

6. Experimental Results

We implemented our interconnection binding
algorithm on 1500 lines of C++ code. Our code is a
part of the RTL refinement tool, which is used to
demonstrate our RTL design methodology. The RTL
refinement tool can perform the scheduling, storage
binding, function binding and interconnection
binding in arbitrary order. Because our code is based
on the same RTL internal representation [ShGa01A], our
work integrate easily with scheduling, register
binding and function binding code of the RTL
refinement tool.

11

We applied our algorithm on several examples. The

Examples One’s Counter SRA

Resources 1RF,1 ALU,1 Shifter,
3 buses

2 RF, 2 ALU,1 shift,
6 buses

2 RF, 2 Shift ,
3 bus, 2 ALU

Binding #
bus
driver

#
M
U
X

Cost #
bus
driver

#
M
U
X

Cost #
bus
driver

#
M
U
X

Cost

Our
algorithm

4 2 5 6 3 7.5 8 2 9

Manual 4 2 5 6 3 7.5 6 2 7

Full
connectivity

6 4 8 10 4 12 13 4 15

Table 1: Experimental Result

Experimental Result

0

2

4

6

8

10

12

14

16

Full
connectivity

Our algorithm Manual

C
on

ec
tio

n
co

st One's counter resource 1
binding result
One's counter resource 2
binding result
SRA Datapath

Figure 12 compare the different binding approaches

12

The first test example is the ones’ counter, which is
used to count the number of ‘1’ in a given number.
The second is the SRA. We applied our algorithm to
convert the style 3 RTL code for one’s counter to
style 4 RTL code based on different resource
allocation input.
 Table 1 shows the binding result for three
examples using different resources as input. In figure
12, we compare the binding cost using three
approaches: full connectivity, our algorithm and
manual binding. It can be seen from this graph that
our algorithm can get nearly the same binding cost as
manual binding.

10. Conclusion

We have presented a procedure to do
interconnection binding targeting bus-based
architecture in the datapath. This procedure is
combined with scheduling, register binding and
function binding procedure to form a RTL level
refinement system.

Further research work will be extended to enable
the datapath/control pipeline, where the function unit
can accept data at every clock cycle to enable
maximum output.

References
[Acc01]Accellera C/C++ working group. RTL
Semantics : Draft Specification, Febuary ,2001.
[TsSi83]Chia-Jeng Tseng, Daniel P.Siewiorek,
Facet:A Procedure for the Automated Ssynthesis of
Digital Systems: 20th Design Automation Conference
[ShGa01A]Dongwan Shin. D.D. Gajski, Internal
Representation for SpecC RTL, University of
California, Irvine, Technical Report ICS-00-50, June
2001
[ShGa01B]Dongwan Shin. D.D. Gajski, Scheduling
in RTL Design Methodology, University of
California, Irvine, Technical Report ICS-00-51, June
2001
[Gajs00]D. Gajski RTL Design and Methodology,
University of California, Irvine, Technical Report
ICS-00-35, November 2000
[Gajs97] D. Gajski, Principles of Digital Design ,
Pretence Hall, 1997
[GDLW92]D. Gajski er al. High level synthesis:
Introduction to Chip and System Design, Kluwer
Academic Publishers, 1992
[Gers00] A.Gerstlauer: SpecC Modeling Guidelines ,
University of California, Irvine
[GZDG00]D. Gajski er al. SpecC: Specification
Language and Design Methodology, Kluwer

Academic Publishers, 2000

13

