
Introduction of design-oriented profiler of
SpecC language

Technical Report ICS– 00-47
June 2001

Lukai Cai, Dan Gajski
Information and Computer Science

University of California, Irvine
Irvine, CA 92697

(949)824-8059
{lcai, gajski}ics.uci.edu

II

Index

1 Introduction ..1
2 SpecC profiler ...2
3 Input and output models of SpecC profiler ...4
4 Behavior profiler ...4

4.1 Design flow of the behavior profiler ...4
4.2 Behavior statistics description ..5

4.2.1 Total execution number of behavior ...5
4.2.2 Average execution number of operations. ...6
4.2.3 Traffic...6
4.2.4 Storage..7

4.3 Behavior dependency analysis ..8
4.3.1 Calling dependency analysis. ...8
4.3.2 Data dependency analysis. ...9

4.4 Two algorithms in behavior profiler ..9
4.4.2 Algorithm of analyzing port access ..10

5 Retargetable profiler ...12
5.1 Design flow of the retargetable profiler ...12
5.2 Weight table generation ..13
5.3 Output statistics of Retargetable profiler ...13

5.3.1 Design Performance ..13
5.3.2 Traffic...14
5.3.3 Memories ..15

6 A design methodology of Using SpecC profiler ..16
6.1 Design assumption..16
6.2 Specification analysis ...16
6.3 Critical path analysis ..17
6.4 PE selection ...17
6.5 Behavior partitioning..18
6.6 Behavior scheduling ...19

7 Conclusion ..20
Reference:..20

III

List of Figures
Figure 1: Design flow of SpecC methodology of refining from specification model to architecture model……….2
Figure 2: Display of behavior statistics…………………………………………………………………………………4
Figure 3: Design flow of behavior profiler ..5
Figure 4: Example of behavior instance nodes ...5
Figure 5: Example of specification model ...7
Figure 6: Example of use of behavior dependency ...8
Figure 7: Example for algorithm of port access. ..10
Figure 8: Design flow of analyzing port access..11
Figure 9: Design flow of retargetable profiler ...13
Figure 10: Design flow of the simple methodology for architecture exploration ...16
Figure 11: Specification display..17

1

Abstract

To design from higher level of abstraction andto
make architecture exploration decision at early stage,
designer should know the characteristics of
specification on the higher level of abstraction.
Designers should also have a way to evaluate the
system in early stage, to ensure that the system meets
the constraint requirement. In this report, SpecC
profiler, a design-oriented profiler, is introduced to
complete above two tasks, by evaluating the
specification model of SpecC language.

Index Terms-- behavior profiler, retargetable profiler,
specification model, design-oriented, SpecC

1 Introduction

With the requirement of time to market and the
increase of complexity of design, the design industry
has tried to make the design decisions in earlier stage
of design flow. Using SpecC methodology [1][2], the
design process will be smooth and efficient.

However, in the past, our design experiences on
JPEG[5][6], GSM vocoder[7], and JBIG[8] system
show the difficulty to get the satisfied profiling result,
from existing profiling tools, for the specification
model of SpecC language. The reason is that the
existing profiling tools are code-oriented: the
purposes of existing profiling tools are to find the
bottleneck of the executed algorithm, thus to optimize
specification of algorithms. The characteristics of
these profiling tools are:

a) They are machine-limited: For example, DSP
56600 instruction set simulator [9] only provides
cycle timing result of instruction for DSP 56000
processor. Similarly, Hierarchical profilers of
Codewarrior[10] only analyzes performance for
Intel Pentium/484/AMD K6/AMD K7 processors.

b) They can only analyze performance of the design.
Traffic and needed size of memory of system
components are not concerned.

c) They only consider sequential execution of
functions, without considering the parallel
execution.

The code_oriented profilers work well in case of
evaluating the specification executed on the processor
that the profiling tools support. However, because
SoC design incorporates at least a programmable
processor, on chip memory, and accelerating function
units implemented in hardware [11], the need of SoC
design is more complex than that code-oriented
profilers can generate. For example, functions of
specification can be implemented in any selected PEs.
If the system components (PEs: processing elements)
are not Intel Pentium/484/AMD K6/AMD K7
processors, Codewarrior can not be used.
Furthermore, The traffic between different PEs also
should be evaluated. The traffic does not only
influence the performance of system, but also
influence the protocol selection. Finally, since PEs
can be executed in parallel in SoC, the parallel
execution between different functions should be
considered.

Since the existing profilers cannot help us to
implement SoC design, in the JBIG project, a manual
approach of profiling were implemented. It took 2
months one person to generate acceptable profiling
result.

To fasten the design process, SpecC profiler, which
is a design-oriented profiler, is developed. Compared
with the code-oriented profiler, the design-oriented
profiler provides needed profiling result for SoC
design. Unlike code-oriented profiler, the purpose of
design-oriented profiler is to help designers to
evaluate specification and design system thus to find
good architecture exploration solution. For example, it
can tell designers that which function should be
implemented in faster PE to improve the performance
of system. Also, it can identify that two functions
should be implemented in same PE, to reduce the
performance overhead for communication. Thus, with
the help of SpecC profiler, designers can make
architecture exploration decision more easily.
 The characteristics of SpecC profilers are.

a) SpecC profiler is retargetable profiler: it can
evaluate the characteristics of behavior that is
executing on any selected PEs. Moreover, it can
provide profiling result for the case that different

Introduction of design-oriented profiler of SpecC
language

2

functions of specification are executed on
different PEs.

b) SpecC profiler not only evaluates performance,
but also evaluate the traffic, needed memory size,
for each function.

c) SpecC profiler evaluates parallel execution among
functions as well as sequential execution.

SpecC profiler belongs to a set of tools refining the
specification model into architecture model, of SpecC
methodology [2].

SpecC profiler works on the specification model of
SpecC language. The profiling results are based on the
number of operations of specification, therefore it is
not real cycle-accurate. However, it is good enough to
give designers a first look of system of design.

This report describes SpecC profiler. In section 2,
the overview of SpecC profiler as well as the design
flow of refining from specification model into
architecture model, are illustrated. The input and
output models of the profiler are introduced in section
3. Two main parts of SpecC profiler, behavior
profiler, and retargetable profiler are described in
section 4 and 5 respectively. In section 6, a simple
methodology and a example are given to teach
designers how to use SpecC profiler. Finally, a
conclusion is made in section 7.

2 SpecC profiler

SpecC profiler works on specification model of
SpecC language [1]. The specification model is the
model with the highest level of abstraction. It is an
accurate model of the system in terms of pure
functionality but does not reflect its structure or
timing.

SpecC Profiler consists of two parts: behavior
profiler and retargetable profiler. In Figure1, these
two parts are illustrated in the environment of SpecC
methodology, for refining the specification model into
the architecture model .

At the initial stage of design, as soon as original
specification model is semantically and syntactically
correct and an executable testbench is selected,
behavior profiler can be performed.

At the beginning, the first part of SpecC profiler,
behavior profiler, inserts statements into the original
specification model, to collect execution number of
basic blocks of specification, at simulation-time. After
simulating with selected testbenches, behavior
profiler analyzes the specification, based on the
execution numbers of basic blocks that are generated
during simulation. Behavior profiler creates two
results: behavior statistics, and behavior dependency

Figure 3: Design flow of SpecC methodology of refining from specification model to
architecture model

G U I

O rg .
S p e c if ic a tio n

m o d e l

A rc h ite c tu re
m o d e l

P E
lib ra ry

A rc h ite c tu re
re f in in g to o ls

B e h a v io r
p r o file r

R e ta r g e ta b le
p r o file r

D e s ig n e r:

A rc h ite c tu re re f in in g to o ls

S p e c C p ro f ile r :

D e s ig n
c o n s tra in t

E v a lu a tio n -
a n n o ta te d

sp e c if ic a tio n
m o d e l

P ro f il in g -
a n n o ta te d

sp e c if ic a tio n
m o d e l

D e c is io n -
a n n o ta te d

sp e c i fic a tio n
m o d e l

T e s tb e n ch e s

D e s ig n e r

3

(In SpecC language, Behavior is a class that
encapsulates related functions and connects to other
behaviors by its ports). Behavior statistics consists of
the statistics of behaviors, including execution number
of behaviors, average execution number of operations
per behavior execution, the size of needed memory of
behavior, and the average traffic of behavior, per
behavior execution. Behavior dependency describes
the executing relation between behaviors, including
calling/called relations and sequence/parallel
execution relations. Behavior statistics and behavior
dependency are not related to system architecture,
therefore, it is implementation-independent.

Behavior profiler annotates behavior statistics and
behavior dependency into original specification
model. Profiling-annotated specification model is
produced and sent to GUI. GUI is a graphical user
interface that helps designers to explicitly and
automatically read and write different specification
models [4].

With the help of behavior statistics and behavior
dependency, designers should make the architecture
exploration decision, based on their design
experience. Architecture exploration consists of
following three items:

a) Allocation: Needed PEs are selected from PE
library, for assembling the system.

b) Partitioning: Behaviors of specifiction are mapped
to selected PEs.

c) Scheduling: Whether the execution relations
among behaviors are parallel or sequential are
decided.

The architecture exploration decision will be
annotated into profiled-annotated specification model
by GUI, thus decision-annotated specification model
is created.

With decision-annotated specification model as
input, the second part of the SpecC profiler,
retargetable profiler, is used to re-profile
specification. In this stage, the re-profiling results are
implementation-dependent, based on designers’
architecture exploration decision. The re-profiling
result includes performance of behaviors, size of

memory of each behavior, and the amount of traffics
and the traffic time between different behaviors. The
result of retargetable-profiler will be annotated into
decision-annotated specification model. The new
model, evaluation-annotation specification model, is
created and displayed to designers by GUI.

After re-profiling, designers will evaluate whether
the current design will meet the constraint
requirement, based on evaluation-annotation
specification. If the current implementation cannot
meet the requirement, a new architecture exploration
decision will be made and again annotated into
profiled-annotated specification model. The process
of designers’ decision making and re-profiling is
continued until the constraint requirement of design is
satisfied by system, as shown in the shaded part of
Figure1. As soon as the final architecture exploration
decision is made, evaluation-annotation specification
model will be sent to the architecture-refining tool.
The architecture-refining tool refines the specification
model into the corresponding architecture model
automatically.

In general, designers control the design process and
make the architecture exploration decision, based on
their design experience. To help beginners to make
correct architecture exploration decision, a simple
design methodology of how to make architecture
exploration decision with profiling result is described
in Section 6 in great detail.

Besides the characteristics of SpecC profilers
described in Section 1, SpecC profiler has two more
advantages. First, it analyzes the behavior
dependency, which provides designers more flexibility
of scheduling. This part will be illustrated in Section
4. Second, since the behavior profiler and the
retargetable profiler are separated, design simulation
is only executed once during design process, by
behavior profiler. The retargetable profiler can be
executed as many times as needed, based on the result
of behavior profiler, without specification simulation.
Since the specification simulation and execution of
behavior profiler are slow, while process of re-
profiling is fast, this advantage makes more system
alternative can be explored during the architecture
exploration, than the traditional methodology.

4

3 Input and output models of
SpecC profiler

As shown in Figure1, there are four specification
models: original specification model, profiling-
annotated specification model, decision-annotated
specification model, and evaluation-annotated
specification model. All of the specification models
are described in the format of the .SIR file. The .SIR
file is the internal representation of SpecC model. It
can be transformed to and from .SC file by SpecC
compiler [3].

Among these models, original specification model
and decision-annotated specification model are the
input models of SpecC profiler. Profiling-annotated
model and evaluation-annotated specification model
are the output models of SpecC profiler. The only
differences among these models are annotations:
Original specification model has no annotation;
profiling-annotated specification model has
information of behavior dependency and behavior
statistic; decision-annotated specification model
contains architecture exploration decision; evaluation-

annotated specification model contains re-profiling
statistics.

As shown in Figure1, GUI should be developed to
help designers to read and write specification models
automatically and explicitly. To make SpecC profiler
an independent tool, we also provide a way for
designer to read and write model by simply reading
and writing texture files. This part of work is
described in the profiler manual.

4 Behavior profiler

4.1 Design flow of the behavior profiler

Figure2 illustrates the design flow of the behavior
profiler.

First of all, task “instrument for profiling”
decomposes the original specification model into
combinatorial and basic blocks, and inserts statements
for counting the execution number of blocks into
original specification model. After statement
insertion, instrumented specification model, which is
an internal model, is developed, as shown in Figure 2.

Execution number of
behavior instance nodes

(N_N)

Execution number of
operations per

behavior execution
(Op)

Communication traffic
per behavior
execution (T)

Storage for each
behavior (S)

Total port
width (T_S)

Total port
access

(T_R, T_W)

Static storage per data type
(S_Static_DataType)

Sub-Sub storage per data
type per behavior

(S_Sub_DataType_Beh)

Execution number of
operations

per operation type
(Op_OpType)

Execution number of
operations per operation

type per data type
(OP_OpType_DataType)

Execution number of
behavior (N_B)

Execution number of
behavior

instance(N_I)

Port width per
data type

(T_S_DataType)

Port access per
data type

(T_R_DataType,
T_W_DataType)

Port width of port
(T_S_Porti,j)

Port access of
port(T_R_Porti,j,,T
_W_Porti,j)

Static
storage (S_Static)

Sub-Sub storage per
sub_behavior
 (S_Sub_Beh)

Heap per data type
storage(S_heap_DataType)

Heap storage
(S_heap)

Stock storage per data type
per called function

(S_Stack_DataType_Fun)

Stock
storage (S_Stack)

Stock storage
per called function

(S_Stack_Fun)

Sub-Sub storage
(S_Sub)

Figure 4: Display of behavior statistics

5

Org. specification
modle

Instrument for
profiling

Instrumented–
specification model

simulator

Instrumented
result

Behaviors statistics
annotation

Profiling-annotated
specification model

Behavior statistics analysis

Behavior
statistics

Behavior
dependency

Behavior dependency analysis

Testbenches

Figure 5: Design flow of behavior profiler

The instrumented specification model is then
compiled to a executable file by SpecC compiler.
After the executable file is simulated with selected
testbench, two output files are created: _BB_Counter
file contains the number of execution of basic blocks
while _Heap_Counter file contains the heap size of
functions. Based on _BB_Counter file and
_Heap_Counter file, the task “behavior statistics
analysis” and the task “behavior dependency
analysis” analyze original specification model and
produce behavior statistics and behavior dependency.
Finally, the task “behaviors statistics annotation”
annotates the behavior statistics and behavior
dependency into original specification model. This
process will produce profiling-annotated specification
model.

4.2 Behavior statistics description

The behavior statistics represents the statistics of
each behavior based on the simulation with the
selected testbenches. The behavior statistics consists
of four types: execution numbers of behavior, average
execution numbers of operations per behavior
execution, average traffics per behavior execution,
and needed behavior memory. These statistics are
listed in Figure 3 hierarchically.

4.2.1 Total execution number of behavior

There are several execution numbers of behavior
entities should be counted, based on the need of
system evaluation.

First of all, the total execution number of behaviors
should be counted. Furthermore, since each behavior
can have a number of behavior instances and the
behavior instances can be mapped into different PEs
during architecture exploration, behavior profiler also
provides the execution number of behavior instances.
During research, we found that even the execution
number of behavior instances cannot provide enough
information for system evaluation. For example, in
Figure 4(a), there are three behaviors: X, A, B.
Behavior X contains behavior instances A1 and A2,
which are both the instantiation of behavior A.
Similarly, behavior A contains behaviors instances B1
and B2, which are both the instantiation of behavior
B. We use a hierarchical calling tree, called behavior
calling tree, to displayed this relation, as Figure 4 (b).
The tree contains seven nodes: X, A1(X), A2(X),
B1(X_A1), B2(X_A1), B1(X_A2), B2(X_A2). For
example, B1(X_A1) represent the behavior instance
B1 of behavior instance A1 of behavior instance X.
We call the node in behavior calling tree behavior
instance node.

(b)(a)

A X
A1

A2

B1

B2

X

A1 (X)

A2 (X)

B1 (X_A1)

B2 (X_A1)

B1 (X_A2)

B2 (X_A2)

PE0

PE1

PE3

PE4

(c)

Figure 6: Example of behavior instance nodes

In Figure4(c), four leaf behavior instance nodes are
mapped to different PEs. Therefore, if we want to
analyze the system performance based on this
partitioning, the execution number of behavior
instance nodes is needed.

Three types of execution numbers of behavior
entities are calculated as follows:

a) N_B: Total execution number of behavior:
N_Bi refers to the execution number of behavior i.

N_Bi equals to the execution number of combinatorial
block that represents behavior i’s main function.

6

b) N_Ii,j: Average execution number of behavior
instance:

If behavior instance j is declared in behavior i, it
refers to the average execution number of behavior
instance j per execution of behavior i.

If N_Bi is not zero, assume that the basic block
which contains behavior instance j has executed X
times,

N_Ii,j = X / N_Bi ;

Otherwise N_Ii,j = 0;

c) N_Ni: Total execution number of behavior
instance node:

N_Ni refers to the total execution number of
behavior instance node i.

N_Ni can be calculated as:
 i. The top behavior instance node is Main

behavior of specification. N_N Main = 1;
 ii. If behavior instance node A ‘s parent is

behavior instance node B,

 N_NA = N_N B * N_IB,A.

4.2.2 Average execution number of operations.

Average execution number of operations per
behavior execution is another essential behavior
statistic, which will be used for evaluating
performance of design. In SpecC language, there are
56 operation types and 29 data types. Therefore, the
execution number of operations can be calculated
hierarchically in three levels. If we use OpType to
represent a chosen operation type and use DataType to
represent a chosen data type, these three levels can be
defined as:

a) OP_OpType_DataType_i : it represents the
average execution number of operations of
operation type OpType for data type DataType,
per behavior i's execution. Since the number of
operations in each basic block per block
execution is fixed, this number can be derive
from original specification model. If we write
this number as BB_OpType_DataTypeK,, for
operation type OpType and data type DataType,
in basic block k,

OP_OpType_DataType_i
= ΣK(BB_OpType_DataTypek *
 (Execution number of Basic block K))

b) OP_OpType_i: it represents the average
execution number of operations of operation type
OpType for all the data type, per behavior i's
execution.

OP_OpType_i = ΣDataTypeOP_OpType_DataType_i.

c) Op_i: it represents the average execution number
of operations of all operation types for all data
types, per behavior i's execution.

 Op_i = ΣOpType OP_OpType_i.

About execution number of operations are
calculated without considering function calls. If the a
behavior has behavior instances or function calls, the
execution numbers of operations of its behavior
instance or called function should be added to the
execution number of operations of the behavior. The
algorithm for this case is explained in 4.4.1.

4.2.3 Traffic

The traffic (T) represents the communication
throughput of behavior. SpecC profiler provides two
types of traffic as follows:

4.2.3.1 Port width

The port width refers to the bit number of behavior
ports. It consists of three levels:

a) T_S_Porti,j represents the bit number of port j
of behavior i.

b) T_S_DataTypei: represents the bit number of
all the ports which have data type DataType,
of behavior i.

c) T_Si represents the bit number of all the ports
of behavior i.

 T_Si = Σ DataType T_S_DataTypei

 = Σj T_S_Porti, j

Port width can be directly analyzed from original
specification model.

4.2.3.2 Port Access.

Port access refers to the average access number of
each behavior's port per behavior execution. The port
access includes read access and write access. . For
example, if x is behavior's port, executing "x = x +x"
once creates two read access and one write access.
Similar to port width, port access consists of three
levels:

7

a) T_R_Porti,j represents the average number of
read access for port j of behavior i.
T_W_Porti,j represents the average number of

write access for port j of behavior i.
b) T_R_DataTypei represents the read access of

all the ports that have data type DataType, of
behavior i.
T_W_DataTypei represents the write access

of all the ports which have data type DataType,
of behavior i.

c) T_Ri represents the total read access of all the
ports of behavior i.
T_Wi represents the total write access of all

the ports of behavior i.

The approach of getting port access will be
illustrated in 4.4.2.

Besides communication through ports, behaviors
also can communicate through it channels. The
concept of channel is defined in [1]. Behavior use
channel in term of function calls. For example, if
behavior reads from channel A and save it into local
variable b, behavior includes the statement b=
A.receive(). On the other hand, if behavior writes
value of variable b into the channel A, behavior
includes the statement A.send(b). Behavior profiler
calculates the argument of called channel functions as
read access. If there are return data of channel
functions, such as A.receive(), behavior profiler
calculated them as write access.

4.2.4 Storage

There are four types of storage’s: static storage,
stack storage, heap storage, and sub_behavior storage.

4.2.4.1 Static storage

Static storage of behavior consists of variables outside
any behaviors, variables in behaviors but outside any
functions, variables in the main function of behaviors,
and behavior's ports. When a behavior is executed,
static storage must be allocated and the size of static
storage will not changed during behavior execution.

Static storage contains two levels:

a) S_Static_DataTypei represents the total amount
of the static storage of data type DataType of
behavior i.

b) S_Statici represents the total amount of the
static storage of all the data types of behavior i.

 S_Statici = Σ DataType S_Static_DataTypei

In Figure 5, S_StaticParent =sizeof(G) +
sizeof(A) +sizeof(B) + sizeof(C) +sizeof(*D).

Static storage can be directly analyzed from
original specification model.

4.2.4.2 Heap storage

Heap storage refers to the storage that are allocated
by "malloc" statements and are freed by “free”
statements.

In this project, heap storage contains two levels:

a) S_Heap_DataTypei represents the total amount
of the heap storage of data type DataType of
behavior i.

b) S_Heapi represents the total amount of the heap
storage of all the data types of behavior i.

S_Heapi = Σ DataType S_Heap_DataTypei
In figure 5, S_HeapParent = sizeof(D).

Unlike static storage, heap storage is analyzed
based on simulation result _Heap_Counter file and
_BB_Counter_file mentioned in 4.1

4.2.4.3 Stack storage

Stack storage is the first hierarchical storage
concerned. It refers to the storage of the called
functions of behaviors. The storage of function
consists of function’s static and stack storage and
function’s parameters. Since all the functions are
called sequentially in behavior, only current called
function storage is needed at time. Therefore, we use
the maximum of storage of all the called functions of
behavior as behaviors stack storage.

 void F0(){
 int X;
 X=0;
 }
 void F1(int L){
 int E;
 F0();
 E=L++;

}
void F2(){

 int X;
 X=0;
 }

 void main(){
 int C, *D;
 F1(C);
 F2();
 Inst1.main();
 Inst2.main();
 D = (int*) malloc (5);

}
};

int G;

Behavior Sub_1(int K, int K2){
 void main(){
 int M;
 K = K2;

}
};

Behavior Sub_2(int K3, int K4){
 void main(){
 k4 = k3+1;

}
};

Behavior Parent(int A){
 int B;
 Sub_1 Inst1(B, A);
 Sub_2 Inst2(A, B);

Sub_3 Inst2(A, B);

Figure 7: Example of specification model

8

Stack storage of behavior contains three levels:

(a) S_Stack_DataType_Funi,j represents the total
amount of storage of data type DataType of called
function j of behavior i.

(b) S_Stack_Funi,j represents the total amount of the
storage of called function j of behavior i.

S_Stack_Funi,j =
 Σ DataType S_Stack_DataType_Funci,j

(c) S_Stack represents the largest S_Stack_Funi of all
the called functions, of behavior i.

S_Stacki = Maxj(S_Stack_Funi,j)

In Figure 5, S_Stackparent
= Max (S_Stack_Fun parent, F1 , S_Stack_Fun
parent, F2)
= S_Stack_Fun parent, F1
= sizeof(E) + sizeof(L) + S_Stack_Fun parent,

F0
= sizeof(E) + sizeof(L) + sizeof(X).

Stack storage can be achieved by hierarchically
analyzing original specification model.

4.2.4.4 Sub_behavior storage

Sub_behavior storage is the second hierarchical
storage concerned. Unlike stack storage, two behavior
instances can be executed in parallel. Thus
sub_behavior is defined as the sum of the storage of
its sub_behavior instances. The storage of
sub_behavior instance consists of instance’s static,
stack, heap, and sub_behavior storage.

In this project, Sub_behavior storage contains three
levels:

a) S_Sub_DataType_Behi,j represents the total
amount of the sub-behavior storage of data type
DataType of sub_behavior instantiation j of
behavior i.

b) S_Sub_Behi represents the total amount of the
sub-behavior storage of sub_behavior
instantiation j of behavior i.

S_Sub_Behi,j =
Σ DataType S_Sub_DataType_Behi,j

c) S_Subi represents the total amount of the sub-
behavior storage of all the data of behavior i.

S_Subi = Maxj(S_Sub_Behi,j)

In Figure 5,
S_SubParent = S_Sub_BehSub_1 +

S_Sub_BehSub_2
 = sizeof (K) + sizeof(K2) +sizeof (K3)
+sizeof (K4).

Similar to stack storage, sub_behavior storage can
be achieved by hierarchically analyzing original
specification model.

4.3 Behavior dependency analysis

Besides the statistics of each behavior, the relations
among behaviors are also very useful for designers to
make design decision. For example, if there is no
traffic between behavior D and E as shown in Figure
6(a), the behavior D and E can be executed in parallel
instead of in sequential, as shown in Figure 6(b),
which may improve the performance.

Two types of behavior dependencies are analyzed:
calling dependency analyzes the called/calling
relations; data dependency analyzes whether there is
traffic between behaviors.

Behavior dependency can be achieved by
hierarchically analyzing original specification model
and by analyzing port access statistics.

A

(b)

B C

A

B C

D

E

(a)

D E

Figure 8: Example of use of behavior dependency

4.3.1 Calling dependency analysis.

Calling dependency contains two parts:

(a) Parent behavior.
(b) Children behaviors and their

execution relations.

9

For example, in Figure 8(a), Behavior A does not
have parent behavior. Its children behaviors and their
execution relations can be described as (B || C) -> D
-> E, while "B || C" represents parallel execution
between behavior B and behavior C. "D -> E "
represents D and E are executed sequentially and E is
executed after D.

4.3.2 Data dependency analysis.

Data dependency represents whether there is traffic
between sub_behavior instances of the behavior. In
Figure 6, data dependency represents the amount of
traffic among behavior B, C, D, and E.

The sub_behavior instances are connected by their
ports. There are two ways to connect ports of
sub_behavior instances. First, the ports are connected
through the global variables/channels that defined in
the parent behavior, such as traffic between Inst1 and
Inst2 through variable B, in Figure 5. We called these
types of variable as connected variable, between
connected behavior instances. Second, the ports are
connected by the parent behavior's ports, such as
traffic between Inst1 and Inst2 through port A in
Figure 5. We called these types of variable as
connected port, between connected behavior
instances.

Based on the result of behavior statistics analysis,
between any two behavior instances, the port-to-port
traffics is calculated, for each connected port and each
connected variable. The port-to-port traffic is called
based on following equations.

a) Traffic for each connected port/variable

T_CVk = Max(T_R_Porti, Map(i,k) ,
T_W_Portj, Map(j,k)) + Max(T_W_Porti,

Map(i,k) , T_R_Portj, Map(j,k));
T_CPk = Max(T_R_Porti, Map(i,k) ,
T_W_Porti, Map(j,k)) + Max(T_W_Porti,

Map(i,k) , T_R_Porti, Map(j,k))

T_CVk/T_CPk represents the amount of traffic
through connected variable/port k, between
behavior instance i and j. Map(i, k) represents the
port of behavior i that is mapped to connected
variable/port k. In Figure5, for connected port A
in behavior Parent, Map(Inst2, A) is port K3.
T_R_Port and T_W_Port is the read and write
access of port, described in 4.2.3.2. For traffic
between behavior instance i and j through
connected variable/port, read access of mapped
port in i may not equals to write access of
mapped port in j. Therefore, maximum of read

access of mapped port in i and write access of
mapped port in j is added with maximum of write
access of mapped port in j and write access of
mapped port in i, which will be used as
T_CVk/T_CPk. In Figure5, for traffic between
behavior instance Inst1 and Inst2 through
connected port A, T_CVA = Max(T_R_Port Inst1,

K2 , T_W_PortInst2, K3) + Max(T_W_PortInst, K2,
T_R_PortInst2, K3).

b) Traffic for all connected ports/variables

 T_CP = ΣT_CPk
 T_CV = ΣT_CVk

The total traffic for all the connected
variables/ports can be calculated by (15) and
(16).

c) Traffic between behavior instances

 T_BBi,j = T_CP + T_CV

The total traffic between behavior instance i
and j are the sum of traffic for connected
variables and connected ports.

If there is no traffic between two sub_behavior
instance, we call this two behavior instances "data
independent". Otherwise, it is called "data
dependent". Furthermore, the closeness of two
sub_behavior instances is represented by the traffic
between sub_behavior instances.

4.4 Two algorithms in behavior profiler

In behavior profiler, several algorithms are applied
to achieve behavior statistics. The complexity of
implementing behavior profiler comes from the
hierarchical analysis of specification. In these
sub_section, two algorithms are described. The first
one is for recursive function calls as well as operation
calculation. The second one is for port access.

4.4.1 Algorithm for recursive function calls and
operation calculation

In 4.2.2, we derive average execution numbers of
operations of by equations (3)(4)(5), without
considering function calls. In this sub-section, the
algorithm for calculating average execution number of
operations with considering sub_function calls is
described.

There are three types of functions in SpecC. Local
functions are the functions defined and used inside

10

behaviors; global functions are the functions defined
outside behaviors but in specification; and library
functions are the functions defined in libraries but
used in specification. The local functions of each
behavior can be called recursively. The global
functions also can be called recursively.

The average execution number of operations for
behavior equals to the average execution number of
operations for main function of the behavior.
Therefore, we can achieve the execution number of
operations for behavior by only considering functions.

We use local functions as our example to illustrate
the way of solving recursive-calling problem. In this
stage, we ignore library functions and assume the
execution numbers of operations of global functions
are already calculated.

We calculated each OP_OpType_DataType by using
following algorithm. To add the execution number of
operations of called functions into execution number
of operations of calling functions, the following
equations are adopted [12]

A = C * A + O

A is n-dimensional vector, where its item Ai is the
average number of operations executed by the
function i and n is the number of local functions in the
behavior, including the main function. C is a square
matrix, where Ci,j denotes how many times function i
called function j. Ci,j equals to execution number of
basic block which contains calling statement divided
by execution number of function j. O is dimensinal
vector.

Oj = Σk((Op_Bk +
ΣiOp_Global_Function_i
+ ΣlOp_Subl) * BBk) / N_Fj

Op_Bk is the number of operations in basic block k of
function j, Op_Global_Function is the average
execution number of operations of called global
function in basic block k. Op_Sub is the average
execution number of operations in the sub_behavior
instance. BBk is execution number of basic block k of
function j. N_Fj is the execution number of function j.

Behavior Main_B(int x,
int y,
int z){

void C(cx1, cx2){
int i;
i =(cx1+ cx2) * cx1;
y = x;

}

void B(b) {
int i, j;

 for(i=0; i<6; i++)
C (b, i); // Called C1

 for(i=0; i<10; i++)
C (j, b); // Called C2

}

void D(d) {
 int i;
 for(i=0; i<2; i++)

B (d); // Called B_3

}
void main{

int i;
 for(i=0; i<5; i++)

B(x); // Called B_1
 for(i=0; i<3; i++)

B(y); // Called B_2
 for(i=0; i<2; i++)

D(z); // Called D

}

(a) Specification

......

main

B1 (main)

B2 (main)

D (main)

C1 (main_B1)

C2 (main_B1)

B3 (main_D)

C1 (main_B2)

C2 (main_B2)

C1 (main_D_B3)

C2 (main_D_B3)

zyMain: x

D:

B:

dD_main

bB1 b B2 b B3

C: cx1C1(main_B1) cx2 C2(main_B1)

(b) Function calling structure (c) Port-argument binding graph

Figure 9: Example for algorithm of port access.

The only unknown in the system of liner equation
(18) is the matrix A. Therefore, by solving the
equation (18), we calculated the average number of
operations for all functions.

The same algorithm can solve the problems of
recursive calling for traffic and memories.

4.4.2 Algorithm of analyzing port access

When considering hierarchical calls, the port access of
behavior consists of two parts: direct access from
calling function of behavior, and indirect access from
called functions and sub_behavior instances.
As shown in Figure 9(a), the main function of
behavior Main_B calls function B and D, while D
calls function B and B calls function C. For argument
cx1 of function C, there are two read access, per C’s

11

execution. For argument cx2 of function C, there is
one read access, per C's execution. Since behavior
Main_B’s port x, y, and z are bound to arguments of
called function C, cx1 and cx2, the arguments access
of cx1 and cx2 should be counted as the port access of
x, y, z. We call this port access indirect port access.
On the other hand, the statement “x = y” in function C
is called direct port access.
Behavior profiler calculates the port access by
completing following steps as shown in Figure 8:

Build function-calling tree

Calculate execution number of function instance nodes

Build port-argument binding tree

Calculate average argument access for functions

Calculate average direct port access for functions

Calculate average indirect port access for function instance

Calculate port access from global function calls/sub-behavior instance

Calculate total port access for function instance nodes

Calculate total port access for functions

Calculate avg port access for functions

Calculate port access for recursive function call

Figure 10: Design flow of analyzing port access

a) Build function-calling tree: similar to
behavior calling tree in 4.2.1, behavior
profiler analyzes the function-calling tree, as
shown in Figure 9(b). The function-calling
tree reflects the called and calling relation
between function instance nodes.

b) Calculate execution number of function
instance nodes in function-calling tree.
Similar to behavior instance nodes in 4.2.1, if
we define F_I (i,j) as the execution number of
called function j per execution of calling
function i, and define F_N(i) as the total
execution number of function instance node i,

 F_N(i) = F_N(j) * F_I (i,j)

While F_N(main) = 1. F_I(i,j) equals to
execution number of the basic block that
contains calling statement of function j
divided by execution number of function i.
For example, in Figure 9, the F_I(main, B1)
= 5, F_I(B1, C1) = 6. Therefore, F_N(
B1(main)) = F_N(main) * F_I(main, B1) =
5, F_N(C1(main_B1)) = F_N(B1(main)) *
F_I(B1, C1) = 30.

c) Build port-argument binding tree, for each
behavior instance nodes: The binding
information is recorded if the argument of
function instance node is bound to the port of
behavior. For example, the port-argument
binding tree is displayed as shown in Figure
9(c). In this binding tree, the argument cx1 of
function instance node C1(main_B1) is
mapped to port x of behavior.

d) Calculate average argument access for each
function. In Figure 7, the average access for
argument cx1 of function C is 2 read.

e) Calculate the direct port access D_P(i,j),
while i refers to function instance node i and j
refers to port j.

D_P(i,j) = port access(j) per function
execution * F_N(i)

In Figure 7, D_P(C1(Main_B1) ,x) =
1(read) * 30 = 30(read).

f) Calculate the indirect port access, based on
port-argument binding tree and function-
calling tree, for each port of function instance
nodes. First, the total argument access of
function instance node D_A(i,k) are
calculated, while i refers to function instance
node i and k refers to argument k.

D_A(i,k) = argument access(k) per
function execution* F_N(i)

The indirect port access is:

 I_P(i, j) = Σk D_A(i,k)

for all the argument k bound to port j. For
example I_P(C1(main_B1) , x) = D_A(
C1(main_B1), cx1) = 2(read) * 30 = 60
(read), since argument cx1 of Main_B1_C1 is
bound to port x.

g) Calculate the port access from its global
function calls and sub_behavior instances, for
each port of function instance nodes,. Since

12

the port accesses of behaviors are calculated
in the order from children behaviors to parent
behaviors, the port accesses of sub_behavior
instances are already known. The argument
accesses of global function call are calculated
before any behavior port calculation. After
binding the ports of behavior to the ports of
sub_behavior instance or arguments of global
functions, the port access from its global
function calls and sub_behavior instances can
be derived. We define it as G_P(i,j), for
function instance node i and port j.

h) Calculate the total port accesses for each
function instance node FIN_P(i,j).

FIN_P(i,j) = D_P(i,j) + I_P(i,j) +
G_P(i,j).

i) Calculate the port accesses for each function,
without considering local function calls.

 F_P(i,j) = Σk FIN_P(k,j)

While k is the function instance node that
have function type i. For example F_P(C) =
FIN_P(C1(main_B1)) + FIN_P(
C2(main_B1)) + FIN_P(C1(main_B2)) +
FIN_P(C2(main_B2)) + FIN_P(
C1(main_D_B3)) + FIN_P(C2(main_D_B3)
).

j) Calculate the average port accesses for each
function, AF_P(i, j), without considering
local function call.

 AF_P(i, j) = F_P(i,j) / F_F(i)

 while F_F(i) is the execution number of
function i.

k) Calculate the average port accesses for each
function, AF_P(i, j), considering local
function calls. Algorithm in 4.4.1 is used to
solve this recursive problem.

In the C program, the arguments of the data type
such as “int” can only be read but not written. On the
other hand, for the pointer type, the argument can be
read and written through pointer access. In behavior
profiler, we calculated the argument access based on
this fact.

5 Retargetable profiler

5.1 Design flow of the retargetable
profiler

Statistics generated by behavior profiler are
architecture-independent. Allowing users to estimate
the system that reflects architecture exploration
decision, we designed the retargetable profiler.:

Retargetable profiler did the following tasks

a) Retargetable profiler assigns a weight table to
each behavior. The weight table represents
the characteristics of operation, traffic, or
memory for the PE that the behavior is
mapped to. Thus, with the weight tables and
the characteristics from behavior profiler,
retargetable profiler generates the
performance, traffic, and memory
information of the behavior.

b) Each PE consists of a number of behaviors.
All of these behaviors are executed
sequentially. The behaviors communicate with
the behaviors in the different PEs. Since the
statistics of behavior can be achieved from a),
the statistics of PE can also be generated.

c) The system consists of PEs. Retargetable
profiler can generate the statistics of system
based on the statistics of PEs.

SpecC profiler complete separates the behavior
profiler and retargetable profiler. It makes that
retargetable profiler does only depend on the output
of behavior profiler, but not on the simulating result.
That is, the task of retargetable profiler is to only use
weight table, behavior statistics, and behavior
dependency as input, without simulating testbenches
and analyzing behaviors. Therefore, the process of
executing retargetable profiler is very fast. For
example, for the vocoder project [7] , in Sun’s Ultra
5 system, process of behavior profiler took 68
seconds, testbench simulation took 22 seconds, and
process of retargetable profiler only took 5 seconds.
Since the statistics of system for architecture
exploration decision is calculated by executing
retargetable profiler once, designers can complete
changing the architecture exploration decision and re-
profiling the design in very short time. It makes that
the architecture can be explored in a very large range.

The process of retargetable profiler is in Figure 9,
which has explained in section 1.

13

GUI

Implementation evaluation and
annotation

Decision-annotated
specification model

Evaluation-annotated
specification model

Profiling-annotated
specification model

Figure 11: Design flow of retargetable profiler

5.2 Weight table generation

The items in weight table can be divided to three
types: weight for operation, weight for traffic, and
weight for memory. The weight for operation
represents an operation weight for certain operation
type and certain data type. The weight for traffic
represents a traffic weight for certain data type. The
weight for memory represents a memory weight for
certain data type.

Each weight table represents one PE. PE can be a
custom ASIC, a programmable processor, or an IP. If
the PE refers to IP, the IP provider should provide
related weight table. If PE refers to custom ASIC, the
weight table should be generated by analyzing the
ASIC architecture.

If PE refers to a programmable processor, we can
develop the weight table by reading processor
manuals and analyzing based on source code
generation [12]. For example, the SpecC source code
is

{int c, a; c = a + 123;}.

After compiling, the target machine code is:

{MOVE a, R1;
MOVE #123, R1;
 ADD R1, R2;
Move R2, c}

From these results, we concluded that each integer
identifier and constant contributed with one MOVE
instruction into the target code, each integer addition
contributed with one ADD instruction, and there was

no contribution from assignment. Using this way, the
weight table can be achieved.

The number in the weight table can represents the
time, clock-cycle, and number of bit/Byte, according
to designers’ purpose.

5.3 Output statistics of Retargetable
profiler

The statistics of retargetable profiler include
performance, traffic for behavior instance nodes and
memory for behaviors. To simply the name, in this
subsection, we also call behavior instance node as
behavior.

5.3.1 Design Performance

Average performance of each behavior is evaluated.
The performance can be counted as execution time,
clock cycles of execution, or number of instruction,
depending on the meaning of items in PE weight table.
The average performance of behavior can be
computed by adding weighted execution numbers of
operations, which are the product of execution number
of operations generated in 4.2.1 and their
corresponding weight.

Two types of behaviors, leaf behavior and
combinatorial behavior, are treated separately to
achieve the performance of the design.

(a) Leaf behavior
Leaf behaviors are the behaviors that do not have any
sub_behavior instances. The performance of each leaf
behavior contains four levels:

P_OpType_DataType_i =
Op_OpType_DataType_i *
Weight_OpType_DataType_i

P_OpType_i = ΣDatatype

P_OpType_DataType_i

Avg_P_i = ΣOpTypeP_OpType_i

Total_P_i = Avg_P_i * N_Ni

Op_OpType_DataType_i is the average execution
number of operation type OpType of data type
DataType, for behavior i, as show in 4.2.2. The
Weight_OpType_DataType_i is weight of the PE that
behavior i partitions to, for operation type OpType

14

and data type DataType. N_Ni is the execution number
of behavior instance nodes in 4.2.1.

The four levels of performance counted are:
P_OpType_DataType_i represents the average
performance of operation type OpType for data type
DataType of the behavior i. P_OpType_i represents
the average performance of operation type OpType for
all data types of behavior i. Avg_P_i represents the
average performance for all operation type and all
data type of behavior i. Total_P_i represents the total
performance of behavior i.

(b) Combinatorial behavior and PE
Combinatorial behaviors are the behaviors that have at
least one sub_behavior. Combinatorial behavior can
be used to represent the performance of PE or the
whole design. The performance of combinatorial
behavior i can be calculated as follows:

i f execut ion relat ions (sub_behavior) == sequential
then

Total_P i = ΣS u b_ be h(Total_P S u b_ be h) ;
else

if execut ion relat ions(sub_behavior) == paral lel
then

if sub_behaviors are mapped to same PE
then

Total_P i = ΣS u b_ be h(Total_P S u b_ be h) ;
else

Total_P i = Max S u b_ be h(Total_P S u b_ be h) ;
endif

endif
endif

Total_PSub_beh represents the performance of
sub_behavior instances, which should be calculated
before the performance of behavior i.

Though the performance of each PE is not explicitly
displayed by behaviors, it is already considered by
using weight tables. The total performance of design
can be represent by the performance of Main
behavior.

During performance estimation, we do not consider
“waiting time”. For example, when two behaviors A
and B are executed in parallel, and A and B are
mapped to different PEs, if B will not executed until B
receive a input from A, there will be some waiting
time for Behavior B. Designers should adjust the

performance for this case, based on the profiling
result.

5.3.2 Traffic

Retargetable profiler calculates the amount of
traffic among behaviors. Compared with port width
and port access, the amount of traffic is weighted
traffic thus it is PE dependent. Based on port width
and port access, two types of statistics, static traffic
and dynamic traffic are generated by retargetable
profiler.

a) Average static traffic
In some cases, when a behavior is executed, the

data communication is only happened twice: right
before the execution of behavior and right after the
execution of behavior. During the execution, the data
will be saved in local memories. In these cases, the
total amount of data communication per behavior
execution is called static traffic. If C_S represents
average static traffic, static traffic can be calculated
by equation

C_Si = 2 * Σ DataType (T_S_DataTypei *
Weight_Traffic_DataType)

T_S_DataTypei is the port width defined in 4.2.3.1
and Weight_Traffic_DataType is the weight of traffic
for data type DataType.

b) Average dynamic traffic
If the data communication is happened whenever

ports are access, the average traffic for each execution
of behavior i is called average dynamic traffic, which
is represented by C_D_Wi and C_D_Ri

 C_D_Wi = Σ DataType (T_W_DataTypei *
Weight_Traffic_DataType)

C_D_Ri = Σ DataType (T_R_DataTypei *
Weight_Traffic_DataType)

while T_W_DataTypei and T_R_DataTypei are write
access and read access defined in 4.2.3.2.

c) Total traffic of behavior
Furthermore, designer can calculate the total traffic

of behavior i using average static traffic and average
dynamic traffic. For example, assuming when each
behavior is executed, the data communication is only

15

happened twice as discussed in 5.3.2 a), the total
traffic

Ci = C_Si * N_Ni.

While N_Ni is the total execution number of behavior
instance node i in 4.2.1.
On the other hand, if the data communication is
happened whenever ports are access for each
behavior, such as in 5.3.2.(b), the total traffic

Ci = (C_D_Wi + C_D_Ri) * N_Ni.

d) Traffic between behaviors and PEs
Besides the traffic in and out a behavior nodes, the

average traffic between behavior instances were
generated, based on behavior dependency and traffic
for each behavior, by calculating the port-to-port
traffic between behaviors.

For example, if Behavior are executed sequentially,
such as behavior D execute before behavior E as
shown in Figure 8(a), and D and E communicate
through connected ports, the traffic will be exist only
when write D and read E. The amount of traffic CD, E
is:

I. If D, E share a PE, there is no traffic.
II. If D, E communicate through a global

memory:

CD,,E, =N_ND*T_SD, +N_NE *T_RE,

III. If D, E communicate through a local
memory and

i) If the local memory in D:

 CD,,E, =N_NE*T_RE

ii) If the local memory in E:

 CD,,E, = N_ND*T_SD

Retargetable profiler only provides the total
dynamic traffic between behaviors instances.
Designers should give the correct traffic based on
different situation.

The traffic between two PEs are also can be
calculated. The traffic between any behavior in PE1
and any behavior in PE2 are added to the traffic
between PE1 and PE2. Designers can easily do this
work manually.

5.3.3 Memories

Statistics of memories are weighted storages.

 a) Static memory
Static memory

M_Statici = Σ DataType (S_Static_DataTypei

* Weight_Memory_DataType)

While S_Static_DataTypei is described in 4.2.4.1 and
Weight_Memory_DataType is the weight of memory
for data type DataType.

b) Heap memory
Heap memory

M_Heap i = Σ DataType (S_Heap_DataTypei

* Weight_Memory_DataType)

While S_Heap_DataTypei is described in 4.2.4.2.

c) Stack memory
Stack memory

M_Stack i = Σ DataType (S_Stack_DataTypei

* Weight_Memory_DataType)

While S_Stack_DataTypei is described in 4.2.4.3

d) Sub_behavior memory
Sub_behavior memory

M_Sub i = Σ DataType (S_Sub_DataTypei *
Weight_Memory_DataType)

While S_Sub_DataTypei is described in 4.2.4.4.

f) Total memory of behavior and PE
The total memory of behavior

M i = M_Statici +M_Heap i + M_Stack i +
M_Sub i

The total memory of PE

M_Pk = Max(M i)

For all behavior i in the PE k.

16

6 A design methodology of Using
SpecC profiler

As mentioned in section 1, the designers make
architecture exploration decision based on their design
experience. In this section, a simple methodology of
making architecture exploration decision by using
SpecC profiler is introduced. This design
methodology was developed based on our design
experience and the advantages of SpecC profiler. It is
simple and extendable. Thus designers can improve it
according to different design cases. The design flow
of this methodology is described in Figure 12.

Not succeed
Next PE

Specification analysis

Critical path analysis

PE selection for PE i (i =1..n)

Behavior partitioning for PE i (i =1..n)

Specification schedulingFinish all
the PEs

Architecture refinement

Figure 12: Design flow of the simple methodology for
architecture exploration

6.1 Design assumption

We assume that the specification of design is
specified in SpecC language, the execution relation
between behavior instances in specification is either
sequential or parallel. During the architecture
exploration, these execution relations are not changed.

Since the architecture is assembled from its
components, the component library (PE library) is
already existed. For each PE, PE table includes three
attributes: MIPS (Million instruction per second),
MOPS (Million operation per second), and weight
tables for operation, traffic and memory. For different
weight tables, the items of weight tables can have
different meanings. For example, if the weight for
operation “+” is 3, it can be explained as that
operation “+” is compiled to 3 instruction, or its
execution time is 3ms.

The PE table used in our example is displayed in
Table 1.

Name MOPS MIPS WeightTable
SW1 2 7 WT1
SW2 5 17 WT2
HW 10 32 WT3

Table 1 : PE Table

6.2 Specification analysis

To illustrate the methodology, we use a simple
example.

First of all, designers derived behavior statistic and
behavior dependency by behavior profiler. Behavior
calling tree of the example is displayed in Figure
13(a). In behavior calling tree, (--) represents the
sequential execution among subbehavior instances,
while (||) represents parallel execution and (Leaf)
represents leaf behavior. Since there are no two
behavior instances that are the instances of same
behavior, we use behavior’s name as behavior
instance name in the behavior calling tree. In this
section, we behavior instance node as behavior for
sipilicity.

In table 2, the behavior statistics of the example is
listed. To make it simple, only the total execution
number of operation, total traffic, and total memory
size for each behavior are chosen.

Name Operation Traffic Mem
Main 56k 0 5k
AB 20k 50 Word 3k
CD 11k 50 Word 1k
A 20k 0 2k
B 8k 0 1k
C 9k 0 0.5k
D 11k 0 0.5k
E 25k 0 1k
A_1 5k 0 0.5k
A_2 15 0 0.5k

Table 2 : Behavior statisitics of example

Based on behavior statistics and behavior calling
tree, the behavior parallel graph can be generated by
designers, as shown in Figure 13(b).

17

(Leaf) A_1

(Leaf) A_2

(--) Main

(||) AB

(||) CD

(Leaf) E

(Leaf) B

(--) A

(Leaf)C

(Leaf)D

(a) Behavior calling tree

A

C

B

D

E

(b) Behavior parallel graph

Op(B)

Op(C)

Op(E)

Op(D)

Op(A)

 Column1 Column2

Figure 13: Specification display

In behavior parallel graph[13], each white block
represents a behavior, labeled with behavior name.
The behaviors in different columns are executed in
parallel, such as A and B, or C and D, based on the
specification. In each column, the behaviors are
executed sequentially, starting from the top. If two
behaviors are executed in parallel, the successor of
them can not be executed until the executions of two
behaviors are finished. For example, C and D will
start executing after execution of A and B. In
behavior parallel graph, the length of block represents
the total execution number of operations (Op) for
behavior. The shaded block means do nothing.

6.3 Critical path analysis

If two behaviors are executed in parallel, the one
that has the greater execution time will influence the
performance of the system. Therefore, critical path is
first analyzed. Critical path consists of behaviors. If
the behaviors are executed in parallel, the behavior
that have largest Op is in the critical path, such as A
and D in Figure 10. Sequential behaviors are always
in the critical path, such as E in Figure10.

Designers should rearrange the behaviors in
behavior parallel display, for showing the critical
path. For any behavior I and J, if Op(I)> Op(J), then
Column(I)< Column(J), while column(I) refers to the
column number of behavior I. Therefore, the critical

path is represented in column 1, as shown in Figure
13.

6.4 PE selection

The behaviors on different columns of behavior
parallel graph are executed in different PEs.
Therefore, PEs are first selected column by column.
Since the column 1 represents the critical path, PE
selection should in the order from column 1 to column
n. Op of column equals to the sum of Ops of
behaviors in the column. Since execution time of
system is related to Op of critical path, we use critical
path as an example to show our methodology.

In the beginning, designers should try to find easiest
design solution: pure SW solution. In this solution, all
the behaviors in critical path are implemented in one
programmable processor. From 6.3, we knew the total
execution number of operation of critical path, which
is called Op(Critical_Path). We also know the time
constraint of system, which is called T_Constraint.
Thus, Op(Critical_Path) divided by T_Constraint can
tell us how many operations are needed to proceed per
second, which is called Need_MOPS. By comparing
Need_MOPS and MOPS of PEs in PE library, we can
find the suitable PE.

Using MOPS, we select PE in operation level,
which is not accurate. After using retargetable
profiler, performance of critical path, which is called
P(critical_path), can be generated. If the items in
weight table represent the number of instructions for
each operation, P(critical_path) represents the total
execution number of instructions. Similar,
P(Critical_Path) divided by T_Constraint can tell us
how many instructions are needed to proceed per
second, which is called Need_MIPS. By comparing
Need_MIPS and MIPS of selected PE, we can ensure
that the PE we select based on MOPS can meet time
constraint.

The algorithm of selecting the SW PE can be
described as follows:

Need_MOPS = Op(Cri t ical_Path)/T_Constraint ;
for test_PE = PE1 to PE n do

 i f Need_MOPS > MOPS(test_PE) then
test next PE;

 else / / Have SW PE good for MOPS
Generate P(Cri t ical_Path), based on test_PE;
Need_MIPS = P(Cri t ical_Path) /

T_Constraint ;
i f Need_MIPS <= MIPS(test_PE) then

18

return (test_PE);
/ / Find SW PE good for MIPS

 endif
 endif

endfor

/* If no PE can be selected based on MOPS, t ry the
fastest PE based on MIPS, because MOPS is not
accurate for PE select ion */
Generate P(Cri t ical_Path), based on PEn;
Need_MIPS = P(Cri t ical_Path) / T_Constraint ;
i f Need_MIPS <= MIPS(PEn) then

return (PEn);
else

return (Not_Found);
endif

In this algorithm, PEs refers to SW PEs in PE
library. PEs are numbered in the order of MOPS, from
smallest (PE1) to greatest (PEn).

For example, if the time constraint of example in
Figure 11 is 16ms. Needed_MOPS = 56k / 16ms =
3.5 MOPS. From table 1, SW2 can be selected. With
WT2 as our weight table, retargetable profiler
generated P(Critical_path) as 196k. Then
Needed_MIPS = 196k / 16ms = 12.25 MIPS, which is
smaller than MIPS(SW2). Therefore, SW can be
selected for pure SW design of system.

If the algorithm can find SW PE, all the behaviors
in critical path will be implemented in selected SW
PE. After selecting PE for critical path, designers can
select PEs for the column 2, 3... n of behavior parallel
display, in the same way.

If there is no PE that can be found for system, the
behavior partitioning will be implemented.

6.5 Behavior partitioning

If SW PE can meet the requirement, SW-HW co-
design should be implemented. In our methodology,
designers choose fastest SW component and pre-
defined custom hardware as the PE components for
co-design. The purpose of partitioning is to put some
behaviors into HW to ensure the whole system meet
the time constraint. In our example, SW2 and HW are
selected from Table 1 as the system components.

Two tasks are needed to find the suitable behaviors,
The first task is to evaluate the performance based on
selected PEs, the second task is to find the behavior
suitable for HW implementation.

When we select behavior for HW, not only the
performance of behavior should be concerned. So is
the cost of behavior for HW implementation. If there
are several behaviors that can be selected for HW to
meet the time constraint, the one that has the lowest
cost should be chosen.

Since the way of cost evaluation is not available, we
evaluate the cost of behavior based on behavior
hierarchy. We assume that the cost of children
behaviors is always smaller than their parent behavior.
The costs of any two-leaf behaviors are equal.

The behavior hierarchical relation in each column
can be illustrated by behavior calling tree, by cutting
the nodes that are not executed in this column.
Therefore, the cost comparison between behaviors can
be derived from behavior hierarchical tree. For
example, for column 1 in Figure 10 (b), Main
behavior include three children A, D, and E. Behavior
A also includes two leaf behaviors: A_1 and A_2.
Therefore, Cost(A_1) < Cost(A) < Cost(Main).

We implement behavior partitioning by following
bottom-up algorithm. In this algorithm, we first select
the leaf behavior that have largest P(behavior), then
select its ascent if needed.

Selected_Beh= Null ;
for i=1 to num_of_leaf_behavior do

if P (Leaf_behavior(i)) > P(Selected_Beh)
then

Selected_Beh = Leaf_behavior(i);
endif

endfor

P(Crit ical_Path) = P_REPROFILE(Crit ical_Path,
Selected_Beh);
while (Selected_Beh != NULL) & (P(Cri t ical_path)
> T_constraint) do

P(Crit ical_Path) = P_REPROFILE(Crit ical_Path,
Selected_Beh);

Selected_Beh = Parent (Selected_Beh);
Generate P(Cri t ical_Path) ;

endwhile
return Selected_Beh;

In our example, Leaf_behaviors are A_1, A_2, B,
C, D, and E. The Parent(A_1) is A. The purpose of
P_REPROFILE is to derive the performance of
critical path, in the case that the second argument
Selcted_Beh is mapped to HW while the rest of
behaviors are mapped to SW, for the column

19

represented by first argument. P_REPROFILE is
implemented by retargetable profiler.

The advantage of this algorithm is simple. The
disadvantage is that it needs to execute retargetable
profiler several times for function P_REPROFILE.

A revised algorithm is given in the following.
Firstly, retargetable profiler generates performance of
each behavior for SW and HW, respectively. We use
P_S(i) for SW performance of behavior i, while
P_H(i) for HW performance of behavior i. Further
more, P_Comm(i) is used to represent the
performance overhead for traffic of behavior i.

To find the behavior for HW, we calculate
Need_Improvement.

 Needed_Improvment = P_S(Critical_path)
–T_constraint

P_S(Critical_path) is the performance of critical
path/system for pure SW solution. Secondly,
Perf_Gain is calculated for each behavior.

Perf_Gain(i) = P_S(i) - P_H(i) –
P_Comm(i)

For any behavior i, if Perf_Gain(i) >
Needed_Improvment, we can say that the system can
meet the time constraint by implementing behavior i
in HW while rest of behaviors in SW. Thus, we need
to find the behavior that can satisfy above equation.

Finally, we can get the behavior for HW by following
algorithm,

Selected_Beh= Null ;
Perf_Gain(Selected_Beh) = 0;
for i=1 to num_of_leaf_behavior do

if Perf_Gain (Leaf_behavior(i)) >
Perf_Gain(Selected_Beh) then

Selected_Beh = Leaf_behavior(i);
endif

endfor

while (Selected_Beh != NULL) &
(Perf_Gain(Selected_Beh)
< Needed_Improvement) do

Selected_Beh = Parent (Selected_Beh);
endwhile
return Selected_Beh;

In our example the performance of behaviors are
listed in Table 3.

Name P_S(ms
)

P_H(m
s)

P_Comm
(ms)

Perf_Gai
n(ms)

Main 11.52 6.07 0 5.45
AB 6.49 3.44 0.50 2.55
CD 2.26 1.20 0.50 0.56
A 4.11 2.18 0 1.93
B 1.64 0.87 0 0.77
C 1.85 0.98 0 0.87
D 2.26 1.20 0 1.06
E 5.14 2.70 0 2.44
A_1 1.02 0.53 0 0.49
A_2 3.08 1.64 0 1.44

Table 3: Performance for behaviors in example

If the performance constraint of design is 10ms.
Needed_Improvement = 11.52- 10 = 1.52 ms. Among
leaf behavior E, A_1, and A_2, we can found behavior
E has greatest Perf_Gain, which is 2.44ms. Since
Perf_Gain(E) is greater than Need_Improvement, it is
the behavior for HW.

If Selected_Beh is found out by this algorithm, the
system can meet the constraint requirement by
implementing Selected_Beh in HW.

If no behavior can be selected, and P_H(System) >
T_constraint, it means even the pure HW solution can
not meet the requirement. In this case, the behavior
scheduling should be made.

6.6 Behavior scheduling

If the HW solution can not be meet the requirement,
the specification should be scheduled by designers, to
change more sequential execution to parallel
execution. Designers can make this change based on
behavior-dependency, since behavior-dependency can
tell designers whether two behaviors are independent.
For example, if the performance constraint of design
is 5ms, and SpecC profiler tell designers that there are
no traffic between behavior E and behavior CD or AB,
designers should change the specification to make
behavior E parallel executed with behavior AB and
CD. The PE selection, behavior partitioning and
behavior scheduling should be make executed again
for new specification.

20

7 Conclusion

In this report, the SpecC profiler is introduced. SpecC
profilers contain two parts: behavior profiler and
retargetable profiler. Behavior profiler provides the
characteristics of specification, while retargetable
profiler provides the characteristics of system,
according to designers’ architecture exploration
decision.

SpecC profiler has following advantages
a) SpecC profiler is retargetable profiler: it can

evaluate the characteristics of behavior that is
executing on any selected PEs. Moreover, it can
provide profiling result for the case that different
functions of specification are executed on
different PEs.

b) SpecC profiler not only evaluates performance,
but also evaluates the amount of traffic, needed
memory size, for each function.

c) SpecC profiler evaluates parallel execution among
functions as well as sequential execution.

d) SpecC profiler analyzes the behavior dependency,
which provides designers more flexibility of
scheduling.

e) Two part of SpecC profiler, behavior profiler and
the retargetable profiler, are separated.
Therefore, design simulation is only executed
once. It makes the process of executing
retargetable profiler fast and makes large range
architecture exploration possible.

f) SpecC profiler is designed for SpecC language,
which is worldwide-accepted system level design
language. Thus, it can be used as one of tools in
SpecC Engine for other Chip designers and EDA
venders.

Besides SpecC profiler, a simple methodology of
making architecture exploration decision is given.

The SpecC profiler works on specification model of
SpecC language. The evaluation result is not real
cycle-accurate. However, it is first step to limit the
range of architecture exploration and it outlines
profiler of abstract level in SoC design.

Reference:
[1] D. D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, S. Zhao,

SpecC: Specification Language and Methodology, Kluwer
Academic Publishers

[2] Andreas Gerstlauer, Rainer Doemer , J. Peng, D Gajski,
System design: a practical guide of SpecC, Kluwer Academic
Publishers.

[3] Rainer Doemer , SpecC SIR Internal representation, CECS
Internal report IR99-03, June 1999

[4] David Berner, Development of a Visual Refinement- and
Exploration-Tool for SpecC, Technical Report ICS-01-12
2000

[5] L. Cai, J. Peng, C. Chang, A. Gerstlauer, H. Li, A. Selka, C.
Siska, L. Sun, S. Zhao and D. Gajski, "Design of a JPEG
Encoding System," UC Irvine, Technical Report ICS-TR-99-
54, November 1999.

[6] Hanyu Yin, Haito Du, Tzu-Chia Lee, Daniel D. Gajski,
"Design of a JPEG Encoder using SpecC Methodology," UC
Irvine, Technical Report ICS-TR-00-23, July, 2000.

[7] Andreas Gerstlauer, Shuqing Zhao, Daniel D. Gajski and
Arkady M. Horak, "Design of a GSM Vocoder using SpecC
Methodology," UC Irvine, Technical Report ICS-TR-99-11,
March 1999.

[8] Junyu Peng, Lukai Cai, Anand Selka, Daniel D. Gajski,
"Design of a JBIG Encoder using SpecC Methodology," UC
Irvine, Technical Report ICS-TR-00-13, June, 2000.

[9] DSP56600 16-bit Digital Signal Processor Family Manual,
Motorola Inc.

[10] Rick Grehan, Code Profilers: Choosing a Tool for analyzing
performance, A Metrowerks white paper

[11] Chang, Cooke, Hunt, Surviving of SoC Revolution, A guide
to platform-Based Design, Kluwer Academic Publishers.

[12] Sinisa Srbljic, Mario Stefanec, Ivan Benc SpecC Profiler:
Specification-level Exploration Tool

[13] D. Gajski, J. Peir Essential Issues in Multiprocessor Systems
1985 IEEE

