
Design of a GSM Vocoder using SpecC Methodology

Technical Report ICS-99-11
February 26, 1999

Andreas Gerstlauer, Shuqing Zhao, Daniel D. Gajski

Department of Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

fgerstl, szhao, gajskig@ics.uci.edu

Arkady M. Horak

Motorola Semiconductor Products Sector
System on a Chip Design Technology

Austin, TX 78731, USA

RVKA30@email.sps.mot.com

Design of a GSM Vocoder using SpecC Methodology

Technical Report ICS-99-11
February 26, 1999

Andreas Gerstlauer, Shuqing Zhao, Daniel D. Gajski

Department of Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

fgerstl, szhao, gajskig@ics.uci.edu

Arkady M. Horak

Motorola Semiconductor Products Sector
System on a Chip Design Technology

Austin, TX 78731, USA

RVKA30@email.sps.mot.com

Abstract

This report describes the design of a voice encoder/decoder (vocoder) based on the European GSM standard
employing the system-level design methodology developed at UC Irvine. The project is a result of a cooperation
between UCI and Motorola to demonstrate the SpecC methodology. Starting from the abstract executable
speci�cation written in SpecC di�erent design alternatives concerning the system architecture (components
and communication) are explored and the vocoder speci�cation is gradually re�ned and mapped to a �nal
HW/SW implementation such that the constraints are satis�ed optimally. The �nal code for downloading onto
the processors and the RTL hardware descriptions for synthesis of the ASICs are generated for the software
and hardware parts, respectively.

Contents

1 Introduction 1
1.1 GSM Enhanced Full Rate Vocoder . 1

1.1.1 Human Vocal Tract . 2
1.1.2 Speech Synthesis Model . 2
1.1.3 Speech Encoding and Decoding . 2

1.2 System-Level Design . 3
1.2.1 SpecC Methodology . 3
1.2.2 SpecC Language . 4

1.3 Overview . 4

2 Speci�cation 4
2.1 General . 4

2.1.1 Formal, Executable Speci�cation . 4
2.1.2 Modeling Guidelines . 5

2.2 Vocoder Speci�cation . 5
2.2.1 Overview . 6
2.2.2 Coder Functionality . 6
2.2.3 Decoder Functionality . 7
2.2.4 Constraints . 8

3 Architectural Exploration 9
3.1 Models . 9

3.1.1 Speci�cation Model . 9
3.1.2 Architecture Model . 10

3.2 Exploration Flow . 11
3.3 Analysis and Estimation . 11

3.3.1 General Discussion . 11
3.3.2 Initial Simulation and Pro�ling . 12
3.3.3 Estimation . 12
3.3.4 Vocoder Analysis and Estimation . 13

3.4 Architecture Allocation . 15
3.4.1 General Discussion . 15
3.4.2 Allocation Flow . 16
3.4.3 Vocoder Architecture . 17

3.5 Partitioning . 18
3.5.1 General Discussion . 18
3.5.2 Partitioning Flow . 19
3.5.3 Partitioning for Vocoder . 20

3.6 Scheduling . 22
3.6.1 General . 22
3.6.2 Vocoder Scheduling . 23

3.7 Results . 23

4 Communication Synthesis 24
4.1 Protocol Selection . 24
4.2 Transducer Synthesis . 25
4.3 Protocol Inlining . 25
4.4 Vocoder Communication Synthesis . 26

4.4.1 Protocol Selection . 26
4.4.2 Protocol Inlining . 27

4.5 Results . 28

i

5 Backend 29
5.1 Software Synthesis . 29

5.1.1 Code Generation . 29
5.1.2 Compilation . 30
5.1.3 Simulation . 30

5.2 ASIC exploration . 32
5.2.1 Behavioral Model . 33
5.2.2 Architecture Exploration . 35
5.2.3 Performance analysis . 40

6 Conclusions 42

References 44

A C Reference Implementation Block Diagrams 46
A.1 Coder: coder . 47

A.1.1 Encoding: coder 12k2 . 48
A.2 Decoder: decoder . 53

A.2.1 Decoding: decoder 12k2 . 54
A.2.2 Post-processing: Post Filter . 55

B Vocoder Speci�cation 56
B.1 General (shared) behaviors . 56
B.2 Coder . 57

B.2.1 Preprocessing: pre process . 58
B.2.2 Linear prediction analysis and quantization . 58
B.2.3 Open-loop pitch analysis . 59
B.2.4 Closed loop pitch analysis . 60
B.2.5 Algebraic (�xed) codebook analysis . 62
B.2.6 Filter memory updates . 65
B.2.7 Serialization: Prm2bits 12k2 . 65

B.3 Decoder . 67
B.3.1 Parameter extraction: Bits2prm 12k2 . 67
B.3.2 Decoding of LP �lter parameters . 67
B.3.3 Decoding subframe and synthesizing speech . 68
B.3.4 Post-�ltering: Post Filter . 69
B.3.5 Up-scaling . 70

C Simulation Results 72
C.1 Software . 72

D ASIC Datapath Schematic 77

E SpecC Source Listing for the code book search 78

F Behavioral VHDL Source Listing for the code book search 95

G RTL VHDL Source Listing for the code book search 123

ii

List of Figures

1 Speech synthesis model. 2
2 SpecC methodology. 3
3 Vocoder. 5
4 Coder. 6
5 Encoding. 7
6 Decoder. 7
7 Timing constraints. 8
8 General speci�cation model. 9
9 General model for architectural exploration. 10
10 Architectural exploration ow. 11
11 Sample operation pro�le. 12
12 Estimates for computational complexity of coder parts. 14
13 Breakdown of initial coder delays. 14
14 Initial coder delay. 14
15 Estimates for computational complexity of decoder parts. 14
16 Breakdown of initial decoder delays. 14
17 Initial decoder delay. 14
18 Examples of mixed HW/SW architectures. 16
19 Allocation search tree. 16
20 Component matching. 17
21 Computational requirements. 17
22 Example of an encoder partitioning. 19
23 Criticality of vocoder behaviors. 20
24 Balancing resource utilization. 20
25 Final vocoder partitioning. 21
26 Channel partitioning. 22
27 Sample encoder partition after scheduling. 22
28 Final dynamic scheduling of vocoder tasks. 23
29 Breakdown of coder delays after exploration. 24
30 Breakdown of decoder delays after exploration. 24
31 Architecture model. 24
32 General model after protocol selection. 24
33 Sample model after transducer synthesis. 25
34 General communication model after inlining. 25
35 Vocoder model with processor bus protocol selected. 26
36 Vocoder communication model after inlining. 26
37 Vocoder hardware/software interfacing model. 27
38 Original C source code example. 31
39 Assembly output of Motorola compiler. 31
40 Assembly code after optimizations. 31
41 HLS design ow. 32
42 State-oriented models. 33
43 The sample encoder partition. 34
44 Scheduled encoder ASIC partition (Note: DataIn and DataOut FSMD for behaviors other than the

2nd Levinson-Durbin are omitted.) . 34
45 The scheduled codebook search CHSFSMD model. 35
46 Data-ow view of codebook search behavioral model. 36
47 A generic control unit/datapath implementation. 37
48 Hardware exploration. 38
49 Operation pro�le for one sub-frame. 38
50 Behavior prefilter FSMD. 39

iii

51 Datapath diagram. 39
52 A FSMD implementation with a decomposed-CU . 40
53 Control unit decomposition . 40
54 sub-FSM in VHDL . 41
55 Execution time distribution. 42
56 Critical path candidates. 43
57 Vocoder project tasks schedule. 45
58 Coder . 57
59 LP Analysis . 58
60 Open-loop pitch analysis . 59
61 Closed loop pitch search. 60
62 Algebraic (�xed) codebook search . 62
63 Filter memory update . 65
64 Coder block diagram. 66
65 Decoder . 67
66 LSP decoding . 67
67 Subframe decoding . 68
68 Post �ltering . 70
69 Decoder block diagram. 71

iv

Design of a GSM Vocoder using SpecC Methodology

A. Gerstlauer, S. Zhao, D. Gajski

Information and Computer Science

University of California, Irvine

Irvine, CA 92697-3425, USA

A. Horak

Motorola Semiconductor Products Sector

System on a Chip Design Technology

Austin, TX 78731, USA

Abstract

This report describes the design of a voice en-
coder/decoder (vocoder) based on the European GSM
standard employing the system-level design methodol-
ogy developed at UC Irvine. The project is a result of
a cooperation between UCI and Motorola to demon-
strate the SpecC methodology. Starting from the ab-
stract executable speci�cation written in SpecC di�er-
ent design alternatives concerning the system archi-
tecture (components and communication) are explored
and the vocoder speci�cation is gradually re�ned and
mapped to a �nal HW/SW implementation such that
the constraints are satis�ed optimally. The �nal code
for downloading onto the processors and the RTL hard-
ware descriptions for synthesis of the ASICs are gen-
erated for the software and hardware parts, respec-
tively.

1 Introduction

For the near future, the recent predictions and
roadmaps on silicon semiconductor technology all
agree that the number of transistors on a chip
will keep growing exponentially according to Moore's
Law, pushing technology towards the System-On-Chip
(SOC) era. However, we are increasingly experiencing
a productivity gap where the chip complexity that can
be handled by current design teams falls short of the
possibilities o�ered by technology advances. Together
with growing time-to-market pressures this drives the
need for innovative measures to increase design pro-
ductivity by orders of magnitude.

It is commonly agreed on that the solutions for
achieving such a leap in design productivity lie in a
shift of the focus of the design process to higher lev-
els of abstraction on the one hand and in the mas-
sive reuse of predesigned, complex system components
(intellectual property, IP) on the other hand. In or-
der to be successful, both concepts eventually require

the adoption of new methodologies for system design
in the companies, backed-up by the availability of a
corresponding set of system-level design automation
tools.

At UC Irvine, evolving from a background in be-
havioral or high-level synthesis, research has been con-
ducted in this area for a number of years now. An
IP-centric system-level design methodology including
a new system speci�cation language called SpecC was
developed. Currently, work in progress at UCI deals
with the creation of algorithms and tools for automa-
tion of the steps in this design process.

UCI, in cooperation with Motorola, launched a
project in June 1998 with the goal of demonstrat-
ing the SpecC methodology on a real design example.
For this purpose, the design and implementation of a
voice encoder/decoder (vocoder) for cellular applica-
tions was chosen as an example. The actual design
of the vocoder was done at UCI whereas Motorola
is responsible for the �nal integration, implementa-
tion, and eventually manufacturing of the chip. In
this report we document the design of the vocoder
chip employing the SpecC methodology as a result of
the project part done at UC Irvine.

1.1 GSM Enhanced Full Rate Vocoder

The vocoder used in this project is based on the stan-
dard for speech coding and compression in the Euro-
pean cellular telephone network system GSM (Global
System for Mobile Communications). The codec
scheme was originally developed by Nokia and the
University of Sherbrooke [10]. The so called Enhanced
Full Rate (EFR) speech transcoding is now standard-
ized by the European Telecommunication Standards
Institute (ETSI) as GSM 06.60 [9]. In addition, the
same codec has also been adopted as a standard for the
American PCS 1900 system by the Telecommunica-
tions Industry Association (TIA) [11]. In general, this
codec scheme and variations thereof are widely used

1

Short-term
Synthesis Filter

Long-Term
Pitch Filter

Residual
Pulses

+ Speech

Fixed codebook

10th-order LP filter

Delay / Adaptive codebook

Figure 1: Speech synthesis model.

in voice compression and encoding for speech trans-
mission (e.g. [12]).

1.1.1 Human Vocal Tract

Conceptually, the main idea of a speech synthesis
vocoder is based on modeling the human vocal tract
using digital signal processing (DSP) techniques in or-
der to synthesize or recreate speech at the receiving
side.

Human speech is produced when air from the lungs
is forced through an opening between the two vocal
folds called the glottis. Tension in the vocal chords
caused by muscle contractions and forces created by
the turbulence of the moving air force the glottis to
open and close at a periodic rate. Depending on the
physical construction of the vocal tract, these oscilla-
tions occur between 50 to 500 times per second. The
oscillatory sound waves are then modi�ed when they
travel through the throat, over the tongue, through
the mouth and over the teeth and lips.

1.1.2 Speech Synthesis Model

The model assumes that the speech signal is produced
by a buzzer at the end of a tube. The glottis produces
the buzz which is characterized by intensity (loudness)
and frequency (pitch). The vocal tract (throat and
mouth) is modeled by a system of connected lossless
tubes.

Figure 1 shows the GSM vocoder speech synthesis
model. A sequence of pulses is combined with the out-
put of a long-term pitch �lter. Together, they model
the buzz produced by the glottis and they build the
excitation for the �nal speech synthesis �lter which
in turn models the throat and mouth as a system of
lossless tubes.

The initial sequence of so called residual pulses
is constructed by assembling prede�ned pulse wave-
forms taken out of a given, �xed codebook. The code-
book contains a selection of so called �xed code vectors
which are basically �xed pulse sequences with varying

frequency. In addition, the pulse intensities are scaled
by applying a variable gain factor.

The output of the long-term pitch �lter is simply
a previous excitation sequence, modi�ed by scaling it
with a variable gain factor. The amount by which ex-
citations are delayed in the pitch �lter is a parameter
of the speech synthesis model and can vary over time.
The long-term pitch �lter is also referred to as adap-
tive codebook since the history of all past excitations
basically forms a codebook with varying contents out
of which one past excitation sequence, the so called
adaptive code vector, is chosen.

Finally, the excitation which is constructed by
adding �xed and adaptive codebook vectors is passed
through the short-term speech synthesis �lter which
simulates a system of connected lossless tubes. Tech-
nically, the short-term �lter is a tenth order linear pre-
diction �lter meaning that its output is a linear com-
bination (linear weighted sum) of ten previous inputs.
The ten linear prediction coe�cients are intended to
model the reections and resonances of the human vo-
cal tract.

1.1.3 Speech Encoding and Decoding

Instead of transmitting compressed speech samples di-
rectly, the input speech samples are analyzed in or-
der to extract the parameters of the speech synthesis
model which are then transmitted to the receiving side
where they are in turn used to synthesize the recon-
structed speech.

On the encoding side, the input speech is analyzed
to estimate the coe�cients of the linear prediction �l-
ter, removing their e�ects and estimating the inten-
sity and frequency. The process of removing the lin-
ear prediction e�ects is performed by inverse �ltering
of the incoming speech. The remaining signal called
the residual is then used to estimate the pitch �lter
parameters. Finally, the pitch �lter contribution is re-
moved in order to �nd the closest matching residual
pulse sequence in the �xed codebook.

At the receiver, the transmitted parameters are de-
coded, combining the selected �xed and adaptive code
vectors to build the short-term excitation. The linear
prediction coe�cients are decoded and the speech is
synthesized by passing the excitation through the pa-
rameterized short-term �lter.

All together, this speech synthesis method has the
advantages of achieving a high compression ratio since
it tries to transmit only the actual information inher-
ent in the speech signal. All the redundant relation-
ships which are due to the way the human vocal tract
is organized are captured by the �lters of the speech

2

Compilation Interface
synthesis

Backend

Simulation
 model

Simulation
 model

Manufacturing

Communication
 model

Simulation
 model

Simulation
 model

Implementation
 model

Validation of
algorithm and
functionality

Validation of
functionality and
synchronization

Validation of
functionality and

performance

Validation of

performance
timing and

High level
synthesis

Protocol selection

Protocol inlining

Communication synthesis

Behavior partitioning

Synthesis flow Analysis and validation flow

IP

IP

Estimation

Estimation

Estimation

Estimation

Architecture exploration

Architecture
 model

Channel partitioning

Variable partitioning

Specification
model

Transducer synthesis

Figure 2: SpecC methodology.

synthesis model. The vocal tract model provides an
accurate simulation of the real world and is quite e�ec-
tive in synthesizing high quality speech. In addition,
encoding and decoding are relatively e�cient to com-
pute.

1.2 System-Level Design

1.2.1 SpecC Methodology

The system-level design methodology which has been
developed at UC Irvine is shown in Figure 2 [3, 5]. The
system methodology starts with an executable speci�-
cation. This speci�cation describes the functionality
as well as the performance, power, cost and other con-
straints of the intended design. It does not make any
presumptions regarding the implementation details.

As shown in Figure 2, the synthesis ow of the code-
sign process consists of a series of well-de�ned design
steps which will eventually map the executable speci�-
cation to the target architecture. In this methodology,
we distinguish two major system level tasks, namely
architecture exploration and communication synthe-
sis.

Architecture exploration includes the design steps of
allocation and partitioning of behaviors, channels and

variables. Allocation determines the number and the
types of the system components, such as processors,
ASICs and busses, which will be used to implement
the system behavior. Allocation includes the reuse of
intellectual property (IP), when IP components are
selected from the component library.

Behavior partitioning distributes the behaviors (or
processes) that comprise the system functionality
amongst the allocated processing elements, whereas
variable partitioning assigns variables to memories and
channel partitioning assigns communication channels
to busses. Scheduling is used to determine the order of
execution of the behaviors assigned to the processors.

Architecture exploration is an iterative process
whose �nal result is the de�nition of the system archi-
tecture. In each iteration, estimators are used to eval-
uate the satisfaction of the design constraints. As long
as any constraints are not met, component and con-
nectivity reallocation is performed and a new archi-
tecture with di�erent components, connectivity, par-
titions, schedules or protocols is evaluated.

After the architecture model is de�ned, commu-
nication synthesis is performed in order to obtain a
design model with re�ned communication. The task
of communication synthesis includes the selection of
communication protocols, synthesis of interfaces and
transducers, and inlining of protocols into synthesiz-
able components. Thus, communication synthesis re-
�nes the abstract communications between behaviors
into an implementation.

It should be noted that the design decisions in each
of the tasks can be made manually by the designer,
e. g. by using an interactive graphical user interface,
as well as by automatic synthesis tools.

The result of the synthesis ow is handed-o� to the
backend tools, shown in the lower part of Figure 2.
Code for the software and hardware parts is gener-
ated automtatically. The software part of the hand-
o� model consists of C code and the hardware part
consists of behavioral VHDL or C code. The backend
tools include compilers and a high-level synthesis tool.
The compilers are used to compile the software C code
for the processor onto which the code is mapped. The
high-level synthesis tool is used to synthesize the func-
tionality mapped to custom hardware and the inter-
faces needed to connect di�erent processors, memories
and IPs.

During each design step, the model is statically
analyzed to estimate certain quality metrics such as
performance, cost and power consumption. This de-
sign model is also used in simulation to verify the
correctness of the design at the corresponding step.

3

For example, at the speci�cation stage, the simulation
model is used to verify the functional correctness of
the intended design. After architecture exploration,
the simulation model will verify the synchronization
between behaviors on di�erent processing elements
(PEs). After communication synthesis, the simulation
model is used to verify the performance of the system
including computation and communication.

1.2.2 SpecC Language

The methodology described in the previous section is
supported by a new system-level description and spec-
i�cation language called SpecC [1, 2, 4] which was de-
veloped at UC Irvine in realization that existing lan-
guages lack many of the features needed for system-
level design [3]. At all stages of the SpecC method-
ology, the current state of the design is represented
by a model described in the SpecC language. In this
homogeneous approach transformations are made on
the SpecC description in contrast to a heterogeneous
approach where each step also transforms the design
into a new language, ending up with a mix of design
representations at di�erent stages of the process.

SpecC is being built as a superset of ANSI-C [6]
which allows easy reuse of the existing algorithmic and
behavioral C descriptions that are common in todays
industrial practice. SpecC contains all of the features
required to support system-level design including IP
integration in general and the SpecC methodology in
particular:

� Structural and behavioral hierarchy.

� Concurrency.

� Communication with explicit separation of com-
putation (behavior) from communication (chan-
nel).

� Synchronization.

� Exception handling (traps and interrupts).

� Timing.

� Explicit state transitions (FSM modeling).

All these features are explicitly speci�ed in a clear and
orthogonal manner which makes it easy to understand
and analyze given SpecC descriptions both for humans
and for automation tools. This is an essential require-
ment to enable successful design automation and syn-
thesis of high-quality results.

SpecC descriptions are translated into a C++
model by the SpecC compiler. These C++ descrip-
tions are then in turn compiled into a native exe-
cutable for simulation and veri�cation. This results
in very high simulation speeds due to the fact that
the design is compiled instead of interpreted.

1.3 Overview

The rest of the report is organized as follows: Sec-
tion 2 describes the speci�cation of the vocoder stan-
dard in SpecC, including a more detailed description
of the functionality and other requirements. In Sec-
tion 3 the di�erent steps performed during architec-
tural exploration are shown. Starting with a gen-
eral overview the �nal vocoder architecture is devel-
oped. The process of mapping the abstract commu-
nication onto real protocols, busses, etc. is described
in Section 4. Communication synthesis also shows the
requirements for successful integration of intellectual
property (IP). Again, a general discussion is followed
by the vocoder speci�cs. Finally, Section 5 concen-
trates on the synthesis of the system's software and
hardware parts in the backend. Section 6 concludes
the report with a summary.

2 Speci�cation

2.1 General

The �rst step in any design process is the speci�ca-
tion of the system requirements. This includes both
functionality as well as other requirements like timing,
power consumption or area.

2.1.1 Formal, Executable Speci�cation

As outlined in the introduction, in the SpecC system
the speci�cation is formally captured and written in
the SpecC language. As opposed to the informal spec-
i�cations (e.g. in plain English) that have been com-
monly used in the past, a formal speci�cation of the
system has two main advantages:

1. It is executable for simulation and veri�cation of
the desired functionality or for feasibility studies
at an early stage.

2. The formal, executable speci�cation directly
serves as an input to the following synthe-
sis and exploration stages that eventually lead
to the �nal implementation without the need
for time-consumingmodi�cations or translations
into other languages and models.

4

2.1.2 Modeling Guidelines

The initial SpecC speci�cation should model the sys-
tem at a very abstract level without already introduc-
ing unnecessary implementation details. In addition,
a good synthesis result using automated tools also re-
quires the user to follow certain modeling guidelines
when developing the initial speci�cation. Basically,
the speci�cation should capture the required system
functionality in a natural way and in a clear and con-
cise manner. Speci�cally, some of the main guidelines
for developing the initial system speci�cation are:

� Separating communication and computation.
Algorithmic functionality has to be detached
from communication functionality. In addition,
inputs and outputs of a computation have to be
explicitly speci�ed to show data dependencies.

� Exposing parallelism inherent in the system
functionality instead of arti�cially serializing be-
haviors in expectancy of a serial implementation.
In essence, all parallelism should be made avail-
able to the exploration tools in order to increase
room for optimizations.

� Using hierarchy to group related functionality
and abstract away localized e�ects at higher lev-
els. For example, local communication and local
data dependencies are grouped and hidden by
the hierarchical structure.

� Choosing the granularity of the basic parts
for exploration such that optimization possibil-
ities and design complexity are balanced when
searching the design space. Basically, the leaf
behaviors which build the smallest indivisible
units for exploration should reect the division
into basic algorithmic blocks.

� Using state transitions to explicitly model the
steps of the computation in terms of basic algo-
rithms or abstracted, hierarchical blocks.

The SpecC language provides all the necessary sup-
port to e�ciently describe the desired system features
following these guidelines. Each of the modeling con-
cepts like parallelism or hierarchy is reected in the
SpecC description in an explicit and clear way.

2.2 Vocoder Speci�cation

The GSM 06.60 standard for the EFR vocoder con-
tains a detailed description of the required vocoder
functionality [9]. The standard description was trans-
lated into a formal, executable SpecC speci�cation

���
���
���
���

���
���
���
���

coder

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

decoder

vocoderspeech bits

speechbits

Figure 3: Vocoder.

building the basis for the following synthesis and de-
sign steps. In addition, the speci�cation was simulated
to verify the vocoder functionality.

The SpecC speci�cation was developed following
the guidelines mentioned in the previous section. In
our case, part of the vocoder standard is a complete
implementation of the vocoder functionality in C (see
Appendix A). The C code is based on a 16-bit �xed-
point implementation of the algorithms and it serves
as a bit-exact reference for all implementations of the
vocoder standard, i.e. the C code speci�es the vocoder
functionality down to the bit level.

Therefore, for the vocoder, the C reference im-
plementation builds the basis for the speci�cation in
SpecC. However, a great amount of time had to be
spent on analyzing and understanding the standard
including the 13,000 lines of C code in order to extract
the high-level structure and the global interdependen-
cies. Once this was done, a mapping into a SpecC rep-
resentation was straightforward. Using the guidelines
of Section 2.1.2, the high-level picture of the vocoder's
abstracted functionality could be directly and natu-
rally reected in its SpecC speci�cation.

As will be seen in the following sections this greatly
eases understanding of the vocoder basics and there-
fore supports quick exploration of di�erent design al-
ternatives at the system level in the �rst place. At
each level, the SpecC description hides unnecessary
details but explicitly depicts the major aspects, focus-
ing the view of the user and the tools onto the im-
portant decisions at each step. For example, at the
lowest level, detailed algorithmic code is hidden in the
leaf behaviors whereas the relations between the be-
haviors are made explicit through state transitions.

In terms of the actual algorithmic behavior, SpecC
being build on top of ANSI-C made it possible to di-
rectly plug the C code of each basic function in the C
description into the corresponding leaf behavior of the
SpecC speci�cation.

5

Filter memory

update

Closed-loop

pitch search

pitch search

Open loop

Algebraic (fixed)

codebook search

Linear prediction

(LP) analysis

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��

��

��

��

��

����

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�� ��

����

��
��
��
��

��
��
��
��

�
�
�
�

����

prm[57]

speech[160]

bits

pre_process

code_12k2

prm2bits_12k2

m
em

ory

2x p
er fram

e

A(z)

2 su
b

fram
es

code_12k2

prm

speech[160]

sample coder

Figure 4: Coder.

2.2.1 Overview

Figure 3 shows the top level of the vocoder speci�ca-
tion in SpecC consisting of independent coding and
decoding subbehaviors running in parallel. The coder
receives an input stream of 13 bit wide speech samples
at a sampling rate of 8 kHz, corresponding to an input
bit rate of 104 kbit/s. It produces an output bit stream
of encoded parameters with a bit rate of 12:2 kbit/s.
Decoding, on the other hand, is the reverse process of
synthesizing a reconstructed stream of speech samples
from an input parameter bit stream. The following
sections will describe the encoding and decoding pro-
cesses in more detail in so far as they are relevant
for the following discussions about the vocoder design
process. See Appendix B for an in-depth description
of the vocoder functionality in SpecC.

2.2.2 Coder Functionality

Coding is based on a segmentation of the incoming
speech into frames of 160 samples corresponding to
20ms of speech. Speech parameters are extracted on
a frame-by-frame basis. For each speech frame the
coder produces a frame of 244 encoded bits resulting
in the aforementioned output bit rate of 12:2 kbit/s.

Figure 4 shows the �rst two levels of the coder hi-
erarchy. At the top level, the coder consists of three
main parts which execute in a pipelined fashion:

1. Pre-processing: Bu�ering of the incoming
speech stream into frames of 160 samples. Initial
high-pass �ltering and downscaling of the speech
signal.

2. Encoding: The main encoding routine which
extracts a set of 57 speech synthesis parameters
per speech frame. Encoding will be described in
more detail in the following paragraphs.

3. Serialization: Conversion and encoding of the
parameter set into a block of 244 bits per frame.
Transmission of the encoded bit stream.

Due to the pipelined nature, all three parts operate
in parallel but each on a di�erent frame, i.e. while a
frame is encoded the next frame is pre-processed and
bu�ered, and the previous frame is serialized.

In general, encoding uses an analysis-by-synthesis
approach where the parameters are selected in such a
way as to minimize the error between the input speech
and the speech that will be synthesized on the decod-
ing side. Therefore, the encoder has to simulate the
speech synthesis process.

In order to increase reaction time of certain �lters,
the main encoding routine (also shown in Figure 4)
further subdivides each frame into subframes of 40
samples (or 5ms) each. Depending on their criticality,
parameters are computed either once per frame, once
every two subframes or once per subframe.

Encoding Encoding itself basically follows the re-
verse process of speech synthesis. Given the speech
samples, in a �rst step the parameters of the LP �lter
are extracted. The contribution of the LP �lter is then
subtracted from the input speech to get the remain-
ing LP �lter excitation. The LP �lter parameters are
encoded in so called Line Spectral Pairs (LSPs) which
reduce the amount of redundant information. Two
sets of LP parameters are extracted per frame, taking
into account the current speech frame plus one half of
the previous frame. LP analysis produces a block of 5
parameters containing the two LSP sets.

Next, using the past history of excitations, all the
possible delay values of the pitch �lter are searched
for a closest match with the required excitation. The
search is divided into an open-loop and a closed-loop
search. A simple open-loop calculation of delay esti-
mates is done twice per frame. In each subframe a
closed-loop, analysis-by-synthesis search is then per-
formed around the previously obtained estimates to
obtain the exact �lter delay and gain values.

The long-term �lter contribution is subtraced from
the excitation. The remaining residual is the input
to the following �xed codebook search. For each sub-
frame an extensive search of the codebook for the clos-
est code vector is performed. All possible code vectors

6

Search
codebook

Prefilter
response

Update
target

Prefilter
code vector

Calculate
codebook gain

Codebook

pitch delay
Find

Compute
code vector

pitch gain
Calculate

Impulse
response

Target
signal

Closed_loop

Synthesize
speech

Update filter
memories

Quantize
codebook gain

Update

Find open loop
pitch delay

Open_loop

speech
Weighted

2
su

b
fr

am
es

Interpolation &
LSP -> A(z)

Quantization
LSP

Interpolation &
LSP -> Aq(z)

Windowing &
Autocorrelation

Windowing &
Autocorrelation

Levinson-
Durbin

Levinson-
Durbin

LP_analysis

A(z) -> LSP

2x per frame

2 subframes

code_12k2

Figure 5: Encoding.

are searched such that the mean square error between
code vector and residual is minimized.

For each subframe the coder produces a block of 13
parameters for transmission. Finally, using the calcu-
lated parameters the reconstructed speech is synthe-
sized in order to update the memories of the speech
synthesis �lters, reproducing the conditions that will
be in e�ect at the decoding side.

Figure 5 exposes the next level of hierarchy in the
encoding part, showing more details of the encoding
process. Note that for simplicity only the behavioral
hierarchy and no structural information is shown, i.e.
the diagram doesn't include the information about
connectivity between behaviors. A complete block di-
agram of the coder which provides an idea about the
complexity by exposing all levels of hierarchy down
to the leaf behaviors can be found in Appendix B on
page 66 (Figure 64).

As can be seen, at this level, the coder speci�cation
exhibits some limited explicit parallelism. However, in
general, due to the inherent data dependencies both
the coder and decoder parts of the system are mostly
sequential in their natures.

��

��

��

��

�
�
�
�

��

�
�
�
�

��

��

��

��
��
��
��

��
��
��
��

decode_12k2

Post_Filter

Bits2prm_12k2

Decode

LP parameters

4 su
b

fram
es

bits

speech[160]

A(z)

synth[40]

synth[40]

prm[57]

prm[13]

decoder

Figure 6: Decoder.

2.2.3 Decoder Functionality

Decoding (Figure 6) basically follows the speech syn-
thesis model in a straightforward way and is more or
less the reverse process of encoding. The decoder re-
ceives an encoded bit stream at a rate of 12; 2 kbits/s
and reproduces a stream of synthesized speech samples
at a sampling rate of 8 kHz. For each incoming frame
of 244 encoded bits a frame of 160 speech samples is
generated.

Incoming bit frames are received and the corre-

7

sponding set of 5 + 4 � 13 = 57 speech parameters
is reconstructed. The �rst 5 parameters containing
the Line Spectral Pairs are decoded to generate the
two sets of LP �lter parameters. Then, once for each
subframe the following blocks of 13 parameters each
are consumed, decoded and the speech subframe of 40
samples is synthesized by adding the long-term pitch
�lter output to the decoded �xed code vector and �l-
tering the resulting excitation through the short-term
LP �lter. Finally, the synthesized speech is passed
through a post �lter in order to increase speech qual-
ity.

A more detailed block diagram of the decoder show-
ing all levels of hierarchy down to the leaf behaviors
can be found in Appendix B, Figure 69 on page 71.
Compared to the encoding process, decoding is much
simpler and computationally much cheaper.

2.2.4 Constraints

Transcoder Delay The GSM vocoder standard
speci�es a constraint for the total transcoder delay
when operating coder and decoder in back-to-back
mode. According to the standard, back-to-back mode
is de�ned as passing the parameters produced by the
encoder directly into the decoder as soon as they are
produced. Note that this de�nition doesn't include
encoding and decoding, parallel/serial conversions, or
transmission times of the encoded bit stream. Back-
to-back mode is not considered as the connection of
the coder output with the decoder input. Instead, the
57 parameters produced by the encoder are assumed to
be passed directly into the decoder inside the vocoder
system.

The transcoder delay is then de�ned as the delay
starting from the time when a complete speech frame
of 160 samples is received up to the point when the last
speech sample of the reconstructed, synthesized frame
leaves the decoder. The GSM EFR vocoder standard
speci�es a maximum timing constraint of 30ms for
this transcoder delay.

Analysis and Budgeting In addition to the explic-
itly given transcoder delay constraint the requirements
on the input and output data rates pose additional
constraints on the vocoder timing. All requirements
of the standard were analyzed to derive timing bud-
gets for di�erent parts of the vocoder, resulting in the
actual constraints of the SpecC description.

Figure 7 depicts an analysis of the transcoder de-
lay constraint. Note that the time di�erence between
the �rst and the last sample of synthesized speech

Pre_process

LP_analysis

Open_loop

Subframe

Subframe
Code

Code

Open_loop

Subframe

Subframe
Code

Subframe
Decode

Code

Decode

Subframe
Decode

D_lsp

Subframe

Subframe

Decode

Coder

prm

prm

prm

prm

prm

Start

speech

speech

speech

speech

Start

5
m

s
5

m
s

5
m

s
5

m
s

O
u

tp
u

t
sp

ee
ch

 f
ra

m
e

(2
0

m
s)

In
p

u
t

fr
am

e
ra

te
 (

20
 m

s)

T
ra

n
sc

o
d

er
 d

el
ay

 <
=

30
 m

s

Decoder

Pre_process

LP_analysis

Open_loop

Code
Subframe

D_lsp

Decode
Subframe

Coder

Decoder

D
el

ay
 <

=
10

 m
s

Figure 7: Timing constraints.

at the decoder output is 20ms (with the given sam-
pling rate). Therefore, if encoding and decoding would
happen instantaneously in zero time the theoretically
achievable minimum for the transcoder delay is 20ms,
too. In other words, the �rst sample of reconstructed
speech has to leave the decoder not more than 10ms
after the input speech frame is received.

Hence, encoding and decoding of the �rst subframe
of 40 speech samples has to happen in less than 10ms.
This includes all the information needed for the �rst
subframe, i.e. encoding and decoding of the 5 LP
�lter parameters plus the set of 13 parameters for
the �rst subframe. Then, while the speech samples
are written to the decoder output at their sampling

8

rate, the following three subframes have to be encoded
into blocks of 13 parameters and decoded into recon-
structed speech subframes such that the following sub-
frames are available at intervals of at most 5ms.

However, while encoding and decoding of the cur-
rent frame take place the next frame is already re-
ceived and bu�ered, and processing of the next frame
will have to start once its last sample is received.
Therefore, an additional, implicit constraint is that
encoding and decoding of a complete frame of 160
samples have to be done in less than the intra-frame
period of 20ms. Hence, decoding of the last subframe
will have to be done before that time or|in relation
to the transcoder delay constraint|up to 10ms before
the last sample of the synthesized speech frame at the
decoder output. Note that this requires a bu�ering of
the decoded speech subframes at the decoder output.

To summarize the constraints for the vocoder, there
are two basic timing constraints derived from the given
time budgets:

� The encoding and decoding delay for the �rst
subframe (5 + 3 parameters) has to be less than
10ms.

� The time to encode and decode a complete frame
(all 57 parameters) has to be less than 20ms.

3 Architectural Exploration

The goal of architectural exploration is initially to
quickly explore a large number of target architectures,
comparing them to each other after an initial mapping
of the design onto the architecture has been done and
�nally pruning the design space down to a few can-
didate architectures. These system architectures are
then evaluated further, trying to improve the map-
ping of the design onto the architecture and possibly
modifying certain aspects of the system until a �nal
architecture is selected.

Exploration is a part where the design process
can bene�t to a great deal from human experience.
Therefore, interactivity is an important requirement
of system-level design environments. However, with
the help of automated tools that quickly search large
parts of the design space, provide feedback about de-
sign quality, perform tedious, time-consuming jobs au-
tomatically, etc. the designer will be able to explore
a large number of promising design alternatives in a
shorter amount of time. In general, exploration is an
iterative process where the di�erent steps described
in the next sections are repeated for di�erent archi-

Figure 8: General speci�cation model.

tectures. Design automation tools signi�cantly reduce
the time needed for each iteration.

Since the corresponding tools are not yet available
at this time exploration for the vocoder project had
to be done mostly manually. However, manual explo-
ration strictly followed the ow and the step-by-step
procedures proposed for the implementation of the au-
tomated tools. Nevertheless, due to the lack of tools
we had to restrict ourselves to a very small number of
candidate architectures.

3.1 Models

3.1.1 Speci�cation Model

The initial speci�cation written by the designer is
the basis for architectural exploration. The speci�-
cation model at the input to architectural exploration
is shown in Figure 8. The speci�cation model is a su-
perstate �nite state machine (SFSM) with hierarchy
and concurrency.

At each level of hierarchy, the superstates (SpecC
behaviors) are decomposed further into either paral-
lel or sequential substates. Superstates at the bottom
of the hierarchy are called leaf states (or leaf behav-
iors). They �nally contain actual program fragments
describing the algorithmic behavior of the leaf states.

In a sequential composition of states at any level of
hierarchy the states are traversed in a stepwise fashion.
After attening of the hierarchy, the model resembles
a standard state machine with the additional feature
of parallelism. In contrast to a classical low-level FSM
or FSMD, however, superstates can take an arbitrary

9

ASIC1

ASIC2

Bus

MPEG IP

DSP Bus

ASIC3

DSP core

CPU core

Figure 9: General model for architectural exploration.

amount of time to execute the statements or substates
contained within. Much like a dataow model, a state
doesn't start to execute until all of its predecessors are
�nished. In addition, control ow is introduced by the
possibility to augment transitions with conditions.

3.1.2 Architecture Model

Figure 9 shows the general target or output model of
architectural exploration. An architecture consists of
a set of processing, memory and communication com-
ponents. Processors and memories are connected to-
gether by communication links, forming a bipartite
graph. During exploration, given the initial speci�ca-
tion, behaviors are mapped to processors and commu-
nication is mapped to the network in the architecture.
The architecture can contain multiple instances of the
same component.

Components are taken out of a library or database
of available component types. The library contains
the functional models for simulation together with in-
formation for exploration (e.g. about speed or cost).

In general, the functionality of the library com-
ponents ranges from fully customizable components
which can implement any behavior and any interface
to �xed components with prede�ned behaviors and in-
terfaces. Flexibility in the component functionality is
exploited by synthesizing customized versions of the
components during the design process. If part or all of
the component functionality is �xed the components
are also referred to as intellectual property (IP) com-
ponents.

Processing Components In general, processing
elements (PEs) can be arbitrary programmable soft-
ware processor cores or non-programmable hardware
PEs. Examples for software processors are digital sig-
nal processing (DSP) cores or general purpose (GP)
CPU cores. Examples of hardware processors are
fully synthesized application speci�c integrated cir-
cuit (ASIC) components or IP components with �xed,
prede�ned functionality. Processors are considered to
have a single thread of control. If a processor can exe-
cute behaviors in parallel it is split into logical single-
threaded processing components for exploration. For
example, an architecture with multiple hardware pro-
cessors will have several custom-hardware FSMDs al-
though all logical HW processors or FSMDs might end
up on the same physical chip.

Processing components are fully synthesized or
taken out of an IP library. In general, IP processing
components are hardware modules with all or parts
of their functionality �xed, e.g. an MPEG hardware
component or a software processor which can be pro-
grammed to implement a large range of behaviors but
nevertheless has a �xed, prede�ned interface, for ex-
ample. Processing components in the library are char-
acterized by their functionality and parameters like
cost, power, speed, etc.

Memory Components In addition to the pure
functionality, system-level processing components
generally include some sort of local memory. Along
with the behaviors, variables and storage in general is
mapped onto the local memories of the processors. A
special case of system components are (shared) memo-
ries. The functionality of memory components is lim-
ited to simple reading and writing of their local mem-
ories. Global variables in the speci�cation which are
shared by two behaviors mapped to two di�erent pro-
cessors can either be mapped to the local memories of
the processor or to a shared memory in case such a
component is included in the system architecture.

Communication Components The communica-
tion components of the interconnect network handle
the communication between the processing and mem-
ory components. Therefore, they include any type of
communication media used to implement system-level
communication. For example, busses are commonly
used for interconnection at the system level.

Similar to processing components, communication
components are taken out of a library of available in-
terconnect types characterized by their functionality
(protocol) and parameters like delay, throughput, etc.

10

Specification

Partitioning

Allocation

Simulation
Profiling

Estimation

IP

Scheduling

Architecture

Estimation

Components

Implementation

Figure 10: Architectural exploration ow.

Protocols in the library are usually at least partly pre-
de�ned, implementing industry standards like PCI or
VME. On the other hand, protocols are customized or
full-custom protocols are synthesized during the de-
sign process.

3.2 Exploration Flow

The general ow of steps performed during architec-
tural exploration is shown in Figure 10. With the
design speci�cation at the input, exploration creates
an architecture for implementation of this design.

Initially, during simulation the speci�cation is pro-
�led to extract estimates about the design com-
plexity and the dynamic behavior. Using these
implementation-independent estimates a set of com-
ponents is selected out of a library during allocation.
Allocation is based on matching components with the
computational requirements and the available paral-
lelism of the speci�cation.

Once a set of components has been selected, design
metrics like cost, delay, etc. of implementing the parts
of the speci�cation on these components are estimated
taking into account information obtained during ini-
tial pro�ling. In the next step, partitioning is per-
formed to map the design onto the components based

on these component-related estimates. During parti-
tioning design trade-o�s related to implementation of
behaviors on di�erent components and parallel versus
sequential execution of behaviors are explored.

After the design has been mapped onto the al-
located components the design space is reduced to
a single implementation of the design parts on the
components they are bound to. A more accurate re-
estimation of this implementation is then performed.
Finally, the design is scheduled with this information
to derive the actual system timing. Constraints are
veri�ed and depending on the severity of the viola-
tions a new iteration of the exploration loop is started
with reallocation or repartitioning until an optimal ar-
chitecture has been found.

3.3 Analysis and Estimation

3.3.1 General Discussion

The basis for any exploration of the design space|
including system-level architectures|is the availabil-
ity of good and useful design quality metrics. On
the one hand, metrics are closely related to the de-
sign constraints like performance, power or cost (area,
code size, etc.). On the other hand, other metrics can
provide additional useful information. Basically, these
metrics are the only means of deciding how good a cho-
sen architecture is in comparison with other possible
architectures. Therefore, analysis of the speci�cation
and estimation of the design metrics for di�erent im-
plementations is an integral part of the design process.

Behavior Estimation During architectural explo-
ration behaviors are mapped to the processing com-
ponents of the architecture. For each type of target
processor the behaviors will exhibit di�erent metrics,
i.e. di�erent cost, di�erent performance, etc. There-
fore, by combining the properties of the speci�cation
with the abstracted properties of the target compo-
nents estimates about the behavior metrics are ob-
tained without actually implementing the behavior on
the component.

However, di�erent implementations of a behavior
on the same processor resulting in di�erent metrics
have to be considered during architectural exploration,
too. For example, the behavior can be optimized for
cost resulting in the least-cost solution. At the other
end of the spectrum, a behavior can be optimized for
performance to achieve the fastest execution possible.
Based on the estimated values, the exploration tools
will assign budgets for cost or performance, for exam-
ple, to behaviors or groups of behaviors. This infor-

11

mation is then passed to the backend where it is used
to guide the synthesis process.

Communication Estimation In general, the over-
head of communicating data values between the be-
haviors of the speci�cation can not be neglected when
evaluating possible target architectures. For behaviors
mapped to the same component, communication be-
tween those behaviors is handled according the compo-
nent's communicationmodel and is therefore included
in the behavior estimation. For example, on software
processor the call overhead of pushing/popping values
to/from the stack is part of the software implementa-
tion of the caller and callee on the processor.

On the other hand, communication among behav-
iors mapped to di�erent processing components re-
quires transferring data over the channels in the sys-
tem architecture. Estimates for the overhead of this
communication are taken into account during explo-
ration. The main communication overhead is due to
the delay of transmitting values from one component
to the other.

Basic estimates about the time needed for commu-
nication are obtained by evaluating the size of the data
block to be transmitted divided by the channel data
rate. More elaborate estimates are obtained by con-
sidering the protocol overhead of the channel includ-
ing possibly the segmentation of the data block into
smaller packets for transmission.

3.3.2 Initial Simulation and Pro�ling

In the �rst step an analysis of the initial speci�cation
independent of any implementation is performed by
pro�ling the speci�cation during initial simulations.
Simulation of the initial speci�cation is necessary in
any case to verify functional correctness. Therefore,
these simulations can be augmented to obtain valuable
information which will be used for implementation-
dependent estimations and exploration in general.

Estimates about the relative computational com-
plexity and the computational requirements of di�er-
ent parts of the speci�cation are obtained by count-
ing basic arithmetic operations (additions, multiplica-
tions, etc.), logic operations (and, or, shift, etc.), and
memory access operations (moves) during simulation.
For each behavior an operation histogram (Figure 11)
is created in which the complexity of an execution of
the behavior is broken down into the number of oc-
currences of each basic operation.

Operation pro�les are summed according to the
speci�cation hierarchy such that total pro�les for each

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

O
cc

u
re

n
ce

 c
o

u
n

t

M
OVE R

eg
ADD

M
AC

AND
SHL

M
UL

M
OVE M

em Operations

Figure 11: Sample operation pro�le.

constrained execution path are obtained. The compu-
tational requirements for each path can then be cal-
culated by summing the operation counts counti and
dividing the sum by the path's timing constraint Tpath:

MOPS =

P
counti
Tpath

;

giving the complexity in million operations per second
(MOPS). Note that these initial estimates are archi-
tecture independent and therefore don't have to be
recalculated during exploration.

In addition, with dynamic pro�ling information
about the dynamic dependencies both among the be-
haviors and inside the behaviors can be derived. For
example, for data dependent loop bounds information
about the worst case execution is obtained by counting
the number of loop iterations. In general, a dynamic
analysis of the possible paths through the speci�ca-
tion and through the behaviors from inputs to outputs
along with the frequency at which each path is taken
is performed and the results are stored for future esti-
mations.

3.3.3 Estimation

In contrast to the architecture independent initial sim-
ulation and pro�ling the actual estimation during ar-
chitectural exploration is concerned with deriving the
metrics for an implementation of the speci�cation on
an underlying architecture. Using the previously col-
lected pro�ling data a retargetable estimator is used
to obtain metrics for a wide range of HW and SW im-
plementations. Depending on the stage in the explo-
ration ow the estimator can work at di�erent levels
of accuracy in return for estimation speed.

12

Coarse Estimation For the initial exploration, a
relative comparison of a large number of architectures
has to be done in order to select the best candidates.
Therefore, at this point absolute accuracy is not of
utmost importance. The estimates should rather be
obtained very quickly and provide a good relative ac-
curacy, the so called �delity. On the other hand, in
order to evaluate di�erent architectures estimation of
an implementation on the currently selected target ar-
chitecture has to be performed.

With the help of retargetable pro�lers and estima-
tors the behaviors are analyzed statically on the basic
block level. For each basic block the number of cy-
cles required for execution of that block on each of
the allocated processors are estimated. With the ad-
ditional dynamic information about the relations of
basic block executions and execution frequencies that
were obtained during simulation and pro�ling of the
initial speci�cation �nal estimates about the execution
times of the behaviors on the allocated components are
computed.

Estimation is very fast this way since both unopti-
mized synthesis and basic block pro�ling can be per-
formed quickly. Extensive, time-consuming simulation
of the complete speci�cation is not necessary. Due to
the unoptimized nature of the implementations, the
absolute accuracy of these results is low. However,
under the assumption that optimization gains are in-
dependent of the actual target these estimates exhibit
a high �delity.

In addition, in each iteration of the exploration loop
estimates have to be derived for the newly allocated
components only. For previously allocated compo-
nents the information about behavior execution times
from quick or accurate estimates of previous iterations
are retained.

Fine Estimation Later, as the design progresses,
the solutions have to be evaluated in relation to the
design constraints thus requiring estimates with high
absolute accuracy. However, the closer the design gets
to a �nal implementation the smaller is the number
of architectures under consideration. Major decisions
have already been made. For each behavior the com-
ponent on which it will execute is known after par-
titioning. Since estimation is �xed to one implemen-
tation per behavior more time can be spent on its
analysis. Therefore, estimation run times are traded
o� for absolute accuracy.

Basically, accurate estimation creates an actual, op-
timized hardware or software implementation of the
behaviors. Using the backend process, software is

compiled and hardware is synthesized with all opti-
mizations enabled in the same manner as for the �nal
design. Accurate estimated are obtained by combin-
ing a static analysis of the �nal hardware and software
execution times with the dynamic information com-
puted during initial simulation and pro�ling. Since
static analysis is done only once for each basic block|
the dynamic nature of multiple executions is captured
through the initial analysis information|estimation is
faster than extensive simulation of the complete im-
plementation.

Only when a �nal architecture has been selected
and pushed through the backend, an overall simulation
of the �nal design will be done in order to verify both,
the functionality of the �nal implementation and the
satisfaction of design constraints.

3.3.4 Vocoder Analysis and Estimation

For the vocoder example, the goal was basically to
come up with the least-cost solution that satis�es the
given timing constraints. Therefore, the speci�cation
was analyzed to obtain estimates about the execution
times and hence eventually the actual delays of the
di�erent vocoder parts.

Initial Analysis Initially, analysis of the vocoder
speci�cation was performed with the goal of obtaining
estimates about the relative computational complexity
of the behaviors in the speci�cation. Computational
complexity is directly related to execution times on
di�erent platforms. The higher the complexity the
longer it will take to compute the result on any plat-
form.

In case of the vocoder example, the C reference
implementation of the vocoder standard (see Ap-
pendix A) already provided initial estimates through
dynamic pro�ling by counting basic arithmetic, logic
and memory access operations. The operations are
counted on a frame-per-frame basis, weighted accord-
ing to their estimated relative complexity and �-
nally combined into the so called WMOPS estimate
(weighted million operations per second) by divid-
ing the sum through the time allowed for each frame
(20ms).

Figure 12 and Figure 15 show the WMOPS es-
timates for the coder and the decoder, respectively.
The estimates are broken down into the major parts
LP analysis, closed-loop search, open-loop search and
codebook search for the coder, and LSP decoding, sub-
frame decoding and post �ltering for the decoder. For
each part both the total per frame and the major con-
tributing subbehaviors are shown. Each subbehavior

13

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Total per frame Single execution

Res
idu

Le
vin

so
n

Az_
lsp

Q_p
lsf

_5

Aut
oc

or
r

W
eig

ht
_A

i

Syn
_f

ilt

Res
idu

Pitc
h_

ol

Pre
d_

lt_
6

Con
vo

lve

co
r_

h_
x

Syn
_f

ilt

Pitc
h_

fr_
6

Syn
_f

ilt

co
r_

h

se
ar

ch
_1

0i4
0

W
ei

g
h

te
d

 M
O

P
S

 (
W

M
O

P
S

)

L
P

_a
n

al
ys

is

O
p

en
_l

o
o

p

C
lo

se
d

_l
o

o
p

C
o

d
eb

o
o

k

Figure 12: Estimates for computational complexity of
coder parts.

0

200000

400000

600000

800000

1000000

1200000

First subframe Remaining frame Single execution

C
o

d
eb

o
o

k

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�����

C
lo

se
d

_l
o

o
p

�
�
�
�

���� �
�
�

�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
��

�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�

�
�
�

��
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

Aut
oc

or
r

��

Q_p
lsf

_5
��

Az_
lsp

W
eig

ht
_A

i

O
p

en
_l

o
o

p

Le
vin

so
n

��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

C
yc

le
s

Syn
_f

ilt

se
ar

ch
_1

0i4
0

co
r_

h

co
r_

h_
x

Syn
_f

ilt

Pitc
h_

fr_
6

Res
idu

Pitc
h_

ol

Pre
d_

lt_
6

Con
vo

lve

Res
idu

Syn
_f

ilt
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

L
P

_a
n

al
ys

is

Figure 13: Breakdown of initial coder delays.

0 ms 10 ms 20 ms 30 ms 40 ms 50 ms

LP_analysis Open_loop Closed_loop Codebook��

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

Figure 14: Initial coder delay.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Total per frame Single execution

In
t_

lpc

D_p
lsf

_5

d_
ga

in_
co

de
ag

c2

Syn
_f

ilt

Pre
d_

lt_
6

pr
ee

m
ph

as
is

Syn
_f

ilt

Res
iduag

c

D
_L

S
P

D
ec

o
d

e_
12

k2

P
o

st
_f

ilt
er

W
ei

g
h

te
d

 M
O

P
S

 (
W

M
O

P
S

)

Figure 15: Estimates for computational complexity of
decoder parts.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

First subframe Remaining frame Single execution

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��

��
��
��

������ ���� ������

In
t_

lpc

d_
ga

in_
co

de

d
ec

o
d

e_
12

k2

P
o

st
_f

ilt
er

D
_l

sp

Syn
_f

ilt

C
yc

le
s

D_p
lsf

_5
ag

c2

Syn
_f

ilt

Pre
d_

lt_
6

pr
ee

m
ph

as
is

ag
c

Res
idu

Figure 16: Breakdown of initial decoder delays.

0 ms 1 ms 2 ms 3 ms 4 ms 5 ms 6 ms

D_lsp Decode_12k2 Post_filter����

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

Figure 17: Initial decoder delay.

14

of the di�erent vocoder parts can be executed sev-
eral times per frame (e.g. in a loop or once for each
subframe). Therefore, for the subbehaviors both the
total complexity per frame and the complexity of a
single execution, i.e. the total complexity divided by
the number of executions are shown.

Accurate Estimation In order to obtain more ac-
curate estimates about the real execution times on the
target platform, a quick and straightforward compila-
tion of the behaviors for the target processor under
consideration was done next.

Due to the unavailability of the retargetable estima-
tors and pro�les, the target analysis of the vocoder was
done by compiling the behavior code for the chosen
target processor (Motorola DSP56600 family, see Sec-
tion 3.4) using the o�cial compiler Motorola provides
for their processors. The resulting machine code was
then simulated on the Motorola Instruction Set Sim-
ulator (ISS) to obtain cycle-accurate execution times.

Simulations were performed using typical input
data. The results given here represent average execu-
tion times per frame or per execution. An analysis of
the code reveals that the execution times at this level
have only minimal dynamic data dependencies in the
order of a few statements di�erence (at most 10% dif-
ference between worst case and average case). Some
subbehaviors exhibit static execution time variations
through constant parameters passed into the routines
depending on the calling environment but these vari-
ations are averaged out at the higher levels of the hi-
erarchy.

Figure 13 and Figure 16 show the execution time
results (in number of cycles) for the coder and de-
coder, again broken down into parts and their major
subbehaviors. According to the timing budgets de-
rived from the constraints in the initial speci�cation
(see Section 2.2.4), the �gures show cycles for encod-
ing or decoding of the �rst subframe plus the rest of
the frame totaling in the cycles per complete frame.
In addition, the cycles for a single execution of each
behavior are included in order to show the complexity
of each behavior in comparison with the initial esti-
mates.

Finally, Figure 14 and Figure 17 show the sequences
of execution of the parts for one frame as time pro-
gresses in the coder and decoder. The given times are
given based on a processor clock frequency of 60MHz.
As can be seen easily, for this initial implementation
both timing constraints are severely violated. For a
complete list of simulation results, see Appendix C,
Section C.1.

As mentioned earlier, the results con�rm that the
coding part is the major contributor to the delays and
the computational complexity in general. Therefore,
architectural exploration should focus on this part of
the system.

Inside the coder, overall, the codebook search is
the most critical part since it contributes the most to
the violation of the two timing constraints. Also, the
largest indivisible leaf behavior in terms of execution
time is the actual search routine (search 10i40) in-
side the codebook search.

Furthermore, comparing the actual execution times
with the initial WMOPS estimates suggests that an
implementation of the codebook search on the pro-
cessor introduces a higher overhead of operations not
directly related to the computation than the software
implementation of the other parts. Analysis of the
speci�cation shows that most of the time of the other
parts is spent inside very tight loops with loop bod-
ies of a few statements only but a large loop count
as they are typical in DSP-style applications. These
loops promise very good opportunities for optimiza-
tions even in software. An exception to this is the
codebook search since it is relatively irregular with
large and hard to optimize code blocks.

3.4 Architecture Allocation

3.4.1 General Discussion

The �rst step in each iteration of the search through
the architectural design space is the choice of an archi-
tecture to be evaluated further. Architecture alloca-
tion selects the types of components and the number
of components of each type in the system. Along with
the selection of processors, architecture allocation also
de�nes the general connectivity between the proces-
sors by selecting the types and numbers of communi-
cation components between processing components.

Typically, processing elements (PEs) are either pro-
grammable processor cores running software or proces-
sors implementing a �xed functionality in hardware.
Under the aspect of design reuse the architecture can
include prede�ned components taken out of an in-
tellectual property (IP) library, either from in-house
sources or provided by a third-party vendor. Usually
the functionality of these IP components is �xed and
limited to a small range of possible behaviors. An ex-
ception are the software processors. Although they are
taken out of the library of prede�ned IP components
they are fully programmable and able to implement
basically any behavior.

Possible system architectures range from pure soft-

15

(b)(a)

SW PE HW PE

HW PESW PE1

SW PE2

Figure 18: Examples of mixed HW/SW architectures.

ware solutions using one or more processing elements
up to full-custom hardware implementations with one
or more ASICs. In between is a vast range of mixed
HW/SW architectures based on a combination of SW
and HW processors (Figure 18).

3.4.2 Allocation Flow

Allocation successively walks through the design space
guided by the information obtained during initial anal-
ysis and estimation, selecting components out of the
library based on their characteristics. The goal is to
select architectures which promise to satisfy timing
constraints while staying within the given bounds for
other constraints like cost and power.

Figure 19 shows the basic search tree for processor
selection. Starting with no components allocated, in
each iteration a new component is added to the ar-
chitecture, possibly replacing another one. With the
help of heuristics and pruning techniques like branch-
and-bound the breadth-�rst search through the tree is
directed towards promising architectures.

Component Selection Given the requirement to
execute a certain number of basic operations in a cer-
tain amount of time a set of processing components
has to be selected such that their computational power
promises to run the operations in the given time. The
goal is to satisfy the timing constraints while keeping
the cost low.

The principle of component selection is based on
choosing a set of processors that achieve the required
MOPS rate as de�ned in Section 3.3. The spe-
ci�c properties and capabilities of the components are
matched with the properties of the instruction mix of
the speci�cation in order to get more realistic esti-
mates.

Each component in the library has an associated
set of operation weights wi that reect the number

SW

SW+HW SW+SW

SW+SW+HW

Figure 19: Allocation search tree.

of instruction cycles typically needed to execute each
basic operation in the speci�cation. In addition, the
components are tagged with their MIPS rate (million
instructions per second). Together with the opera-
tion counts ci in the histogram obtained during initial
analysis and estimation the rate at which each com-
ponent will approximately execute the speci�cation is
calculated to

MOPSC =

P
ciP
wici

MIPSC :

An example of a graph is shown in Figure 20. Com-
ponents are sorted by their cost. Although in general
the computing power increases with increasing cost
there are local maxima and minima in the operation
rates. Basically, certain components match the op-
eration pro�le better than others. For example, the
vocoder pro�le includes a large number of multipli-
cations and multiply-accumulates (MACs). A digital
signal processor (DSP) with dedicated hardware mul-
tipliers and MAC units that operate in one instruction
cycle can therefore achieve a higher operation through-
put than a general-purpose processor with the same
MIPS rate.

Given the local maxima of the operation rate graph,
sets of components are then selected such that their
added MOPS rates satisfy the MOPS requirement of
the speci�cation, at the same time trying to minimize
the combined cost of the components.

Allocation Strategy During allocation, trade-o�s
between resource and timing requirements are ex-
plored. Depending on the parallelism available in
the speci�cation adding resources (processing compo-
nents) increases cost but reduces the overall delay. On
the other hand, reducing the number of components
requires serialization of the speci�cation and increases
the delays. Orthogonal to the concept of parallelism,

16

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Cost

Components

M
O

P
S

Spec

Figure 20: Component matching.

the speed of the components as described in the pre-
vious paragraphs, determines how fast the operations
of the speci�cation will run.

To combine the parallelism available in the speci�-
cation with the computational requirements, the spec-
i�cation SFSM is divided into basic steps according
to the boundaries between the leaf behaviors. In each
step along a path from inputs to outputs the operation
pro�les of the behaviors obtained during initial esti-
mation are combined. In case a behavior covers multi-
ple steps its operational requirements are distributed
evenly among the range of steps.

Figure 21 shows an example of the graph obtained
for the given SFSM assuming unit operation require-
ments per behavior. The graph shows the combina-
tion of computational requirements and available par-
allelism in each step. Note that the duration of each
step can and will vary depending on the processors
on which the corresponding behaviors will be imple-
mented.

Given the graph, parallelism in the speci�cation is
explored by dividing the operations along the graph
into chunks assigned to run on di�erent processors in
parallel. The amount of operations to be executed on
each processing element together with the total tim-
ing constraint determines the required MOPS rates
for component selection. On the other hand, given a
selection of well-matching components a �tting cut of
the operation graph can be found.

In general, exploration of parallelism focuses on bal-
ancing resource utilization and keeping the allocated
parallel components busy. In addition to the explo-
ration of overall parallelism, single peaks in the oper-
ation waveform that temporarily exceed the process-
ing rate of the selected components can be cut and
attened by allocating a small and fast coprocessor
(ideally an IP component or a small custom ASIC)
that will run the operations in a short time. Depend-

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

S
tep

s

Operations

PE1 PE2

Figure 21: Computational requirements.

ing on the available parallelism other processors are
either idle or can run other parallel behaviors while
the coprocessor is executing.

3.4.3 Vocoder Architecture

As mentioned previously, for the vocoder project we
were restricted to evaluating one architecture. The
goal is an implementationwhich is as cheap as possible
while satisfying the constraints.

Initially, a pure software solution based on a sin-
gle, cheap programmable processor core is assumed to
be the cheapest possible solution. Due to the signal-
processing nature of the vocoder the instruction pro-
�les of digital signal processors (DSP) conform the
best with the application's operation histograms.

Since the vocoder is based on a 16-bit �xed-point
implementation out of the class of DSP components
a 16-bit architecture matches best. Increasing the bit
width of the DSP to 24 bits, for example, just increases
cost without reducing the number of instructions re-
quired since the additional precision is not needed and
therefore not used.

For the vocoder we selected the DSP56600 family
[13] out of the DSPs available from Motorola as the
one satisfying the above mentioned criteria.

However, the execution time estimation described
in Section 3.3 showed that even under the assumption
of a poor accuracy of the results the given constraints
can't be satis�ed by a software solution on the DSP.
In the analysis it was also noted that the parallelism

17

inherent in the vocoder is quite limited. Therefore,
architectures with multiple parallel processing com-
ponents will not prove to be bene�cial. Since there is
not much parallelism to be exploited no speedup can
be expected by adding parallel components. In con-
trast, since the utilization of these components will be
low such architectures are cost-ine�ective.

Therefore, the option of adding additional process-
ing elements is not considered further. This leaves two
options for decreasing the vocoder delays, choosing a
faster processor or adding an ASIC component and
moving parts of the vocoder functionality into hard-
ware. In the former case, since the DSP architecture
is already optimal for the given application faster soft-
ware execution can only be achieved by increasing the
processor clock frequency. However, with increasing
processor frequency and speed in general both power
consumption and cost increase dramatically.

Under these assumptions, moving to a faster pro-
cessor is not the most cost-e�ective next step at this
point. Instead, adding a small ASIC component for
sequential implementations of vocoder parts in simple
hardware promises a signi�cant speedup at a reason-
able cost increase.

In conclusion and under consideration of all these
points at the end of the process an architecture as
shown in Figure 18(a) with one DSP (DSP56600)
and one ASIC connected through one communica-
tion channel was selected for implementation of the
vocoder.

3.5 Partitioning

3.5.1 General Discussion

After an architecture has been selected for evaluation
the next step is to map the speci�cation onto the archi-
tecture. This includes partitioning the behaviors onto
the system processors and partitioning the behavior
communication according to the system connectivity.
Note that partitioning is closely related to scheduling
(Section 3.6) in the sense that partitioning has to be
followed immediately by scheduling in order to get the
total delay and therefore feedback about the quality
of the partition.

Behavior Partitioning Behavior partitioning dis-
tributes the functionality of the system onto the avail-
able system processing components. The goal is to
reach a near optimal partition under consideration of
design constraints like cost, timing, power, etc., e.g.
by looking for a solution that satis�es the timing con-
straints with minimal cost in the case of the vocoder.

During partitioning several options for trading o�
di�erent design aspects exist. Mapping behaviors to
di�erent types of components results in di�erent ex-
ecution times where a speedup is usually associated
with an increase in cost. For example, implementing
a behavior in hardware instead of software will de-
crease the delay. On the other hand, multiple process-
ing components of the same or di�erent type allow the
exploration of parallelismamong behaviors and among
components during partitioning and scheduling.

Partitioning will also insert additional synchroniza-
tion in places where it is necessary to coordinate the
execution of the components operating generally in
parallel. For example, in case of data dependencies
successive behaviors mapped to di�erent components
have to be synchronized in order to ensure correct-
ness and equivalence with the semantics of the original
speci�cation.

Figure 22 shows an example of a HW/SW parti-
tioning for the encoding part of the vocoder based on
the selected target architecture with one DSP and one
ASIC. Although the available parallelism in the en-
coder is limited, the partition tries to exploit the par-
allel execution on the DSP and the ASIC. Mostly, how-
ever, the partition is based on moving computation-
ally expensive parts into hardware, thereby reducing
execution times and satisfying constraints even when
DSP and ASIC operate in a serialized fashion.

Note that the example shown is only one partition
out of thousands of possible mappings. Again, this
justi�es the need for automated partitioning and esti-
mation tools in order to be able to quickly explore a
large number of di�erent architectures and partitions.

Channel and Variable Partitioning Similar to
the mapping of behaviors onto processing compo-
nents, after behavior partitioning the communication
and synchronization of behaviors across component
boundaries has to be mapped onto the available sys-
tem interconnectivity.

The abstract communication between behaviors in
two di�erent processors is grouped into abstract sys-
tem channels corresponding to the mapping of each
communication onto the available connectivity be-
tween the processing components in the system archi-
tecture. In reference to behavior partitioning, channel
partitioning selects the type of system connection to
be used to implement a given abstract communication.
After channel partitioning and successive scheduling
of communication the grouping into abstract channels
reects the mapping of communication onto system
connections.

18

2 subframes

Closed_loop Codebook

Update

signal
Target

Synthesize
speech

Update filter
memories

Quantize
codebook gain

Compute
code vector

pitch gain
Calculate

Impulse
response

Search
codebookFind

pitch delay

2x per frame

Windowing &
Autocorrelation

A(z) -> LSP

LP_analysis

Levinson-
Durbin

Interpolation &
LSP -> A(z)

Interpolation &
LSP -> Aq(z)

LSP
Quantization

Levinson-
Durbin

Windowing &
Autocorrelation

speech

Open_loop

2
su

bf
ra

m
es

Weighted

Find open loop
pitch delay

Prefilter
response

Update
target

Prefilter
code vector

Calculate
codebook gain

Hardware behaviors

Software behaviors

ASIC

DSP

Figure 22: Example of an encoder partitioning.

In case of communication through variables or
bu�ers in general, the task of variable partition-
ing maps these component-global variables into local
memories or into a shared memory if a global memory
has been included into the system architecture.

3.5.2 Partitioning Flow

In each iteration of the exploration loop the parti-
tioning step re�nes the current partition by moving
selected behaviors between components. After each
change, the partition is rescheduled. This process is
repeated until a partition is found that promises to
satisfy the timing constraints. If no partition can be
found a reallocation will become necessary.

Similar to the situation during allocation partition-
ing can either focus on the speed of the components
trying to satisfy the timing constraints or it can try to
balance and maximize resource utilization. The selec-
tion of a strategy or a combination of both strategies is
done in each iteration of the exploration loop depend-
ing on the constraints the the component capabilities.
Strategies are switched between iterations to explore
di�erent dimensions of the design space and to opti-
mize for di�erent constraints.

Timing-Driven Partitioning The basis for
timing-driven partitioning is a strategy with the goal

of satisfying the timing constraints while keeping
implementation cost low. Behaviors on the critical
paths are speeded up by moving them to faster
processing components. Under the assumption that
the implementation costs of all behaviors are approx-
imately the same, a least-cost solution is achieved by
making moves that exhibit the highest gains in total
path delay.

The general principle for timing-driven partitioning
is based on a measure of so called criticality. Given a
current partition, the criticality tries to measure the
contribution of a behavior mapped to a certain com-
ponent to the violated overall timing constraints. For
each critical path the delay a behavior on that path
contributes to the overall path delay is given by the
behavior execution time d and the number of times n
the behavior is executed. The criticality of a behav-
ior is then the sum of its relative contributions on all
critical paths:

Criticality =
X

paths p

np � dp
Tp

with Tp being the total delay of path p, i.e. the
sum of behavior execution times with behaviors be-
ing mapped to di�erent components along the path.
Note that by summing over all paths behaviors that
contribute to multiple critical paths are favorized. As

19

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

First subframe Total frame

C
ri

ti
ca

lit
y

Cod
eb

oo
k

LP
_A

na
lys

is

Clos
ed

_lo
op

Ope
n_

loo
p

Pos
t_

filt
er

Dec
od

e_
12

k2
D_ls

p

Figure 23: Criticality of vocoder behaviors.

an example, Figure 23 shows the criticality for the
top-level behaviors of the vocoder.

Under consideration of increases in cost due to be-
havior moves, timing-driven partitioning then tries to
speed up the most critical behaviors by moving them
to faster components. Behaviors are selected depend-
ing on the gain in criticality that is achieved by a move.
Note that moving the most critical behavior doesn't
necessarily result in the highest gain when other be-
haviors experience higher speedups during a move.
In addition, information about available parallelism
among critical behaviors can be included in deciding
which behavior to select. Additional speedups can be
obtained by moving critical behaviors such that they
can execute in parallel with other critical behaviors.

Resource-Driven Partitioning In contrast to
timing-driven partitioning, resource-driven partition-
ing tries to speed up the design as much as possible
by balancing resource usage and thereby utilizing the
resource parallelism maximally. The peak computa-
tional power of the system is reached when all the
components are fully utilized.

The basic idea is to assign parallel behaviors to the
components in such a way that the slack is minimized.
The slack (see Figure 24) of a parallel decomposition
of behaviors is the total amount of unutilized compu-
tational power resulting from components being idle
during the execution of the graph. If the slack is zero
all components are fully utilized and peak performance
is reached.

Mapping the behaviors to di�erent components re-
sults in di�erent execution times for the same be-
havior. Theoretically, the shortest delay that can be
achieved is given by the critical path after choosing
the fastest implementation of every behavior. How-

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

PE2

B2 B3

B4

B1

PE1

Time

Slack

B2

B3

B4

B1

Figure 24: Balancing resource utilization.

ever, parallel behaviors mapped to the same compo-
nent have to be serialized and dependencies among
the behaviors have to respected. In general, both iter-
ative and constructive approaches for slack minimiza-
tion and optimization of resource utilization are pos-
sible.

3.5.3 Partitioning for Vocoder

In case of the vocoder, the target system architecture
consists of one DSP and one ASIC connected by one
system channel.

Behavior Partitioning The objective is to move
parts of the vocoder functionality into the ASIC,
achieving a speedup through implementation in hard-
ware in order to satisfy the timing constraints. To
keep the cost low the ASIC should be kept as small as
possible while the software has to �t into the selected
processor (i.e. program and data memory).

Starting from a pure software solution where all
behaviors are mapped to the DSP, the basic strategy
followed for partitioning of the vocoder example onto
the selected architecture was to successively move the
most critical behaviors in terms of violation of the tim-
ing constraints from the DSP into the ASIC until the
constraints are satis�ed. At the same time, on the
other end, starting with the least critical behaviors the
software implementation was improved by optimizing
the code. Assuming that the cost of implementing
each behavior in hardware is is in the same order of
magnitude, moving behaviors �rst where the largest

20

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

Bits2PrmSpeech_In

��
��
��
��

���
���
���
���

��
��
��
��

���
���
���
���

���
���
���
���

Speech_outPrm2Bits

prm

prm

speech

speech

bits_out synth_out

Pre_process

LP_analysis

Open_loop

Closed_loop

Start

Wait

Update

D_lsp

Decode_12k2

Post_Filter

speech_in bits_in

Codebook

ASIC

DSP

Figure 25: Final vocoder partitioning.

gain in execution time is expected will eventually re-
sult in the least-cost solution.

As the analysis in Section 3.3 has shown, the code-
book search is the most critical part under consider-
ation of both timing constraints. In addition, it has
been noted that the codebook search comes with a
high software overhead and is not as amenable to opti-
mizations compared to the other parts with their tight
DSP-style loops.

Therefore, it was decided initially to move the
codebook search into hardware. To reduce the ex-
pected communication overhead between the DSP
and the ASIC not only the actual search routine
(search 10i40) but the complete codebook search
part (Codebook) including the pre�ltering, gain cal-
culation, etc. was mapped onto the ASIC.

As it turned out, the implementation of the code-
book search in hardware (described in Section 5.2)
together with the optimization of the software code
(see Section 5.1) was already su�cient to satisfy the
given constraints. Hence, no more behaviors had to
be moved into the ASIC.

Figure 25 shows the SpecC model after �nal par-

titioning of the vocoder including coder, decoder and
all the external interfacing. The interfaces are respon-
sible for parallel/serial conversions, initial bu�ering,
synchronization and protocol handling at the external
ports, etc. Since they include all the functionality that
has to be performed in parallel to the actual encod-
ing and decoding they are implemented as separate,
independent hardware modules running in parallel.

Therefore, the �nal partition consists of six paral-
lel behaviors: the central processor running the main
coder and decoder behaviors, a dependent coprocessor
implementing the codebook search, and interfaces for
incoming and outgoing speech sample and encoded bit
streams.

Parallel, independent coder and decoder task are
assigned to the processor. Executions of the tasks are
triggered by events from the external input interfaces.
The tasks then receive the frames of input data from
their corresponding input interfaces. During one exe-
cution they produce a frame of output data which is
send to the corresponding output interfaces, respec-
tively.

The speech input interface receives the constant
stream of speech samples, bu�ering one frame of sam-
ples each. Once the frame bu�er is full, the coder
task in the processor is signaled and the PE copies the
frame bu�er to its local memory. Note that after the
last sample in the bu�er has been received the copying
of the frame has to be started before the next speech
sample arrives. As will be seen later, satisfaction of
this constraint will be ensured after communication
synthesis.

During execution, the coder task triggers the hard-
ware codebook search by sending the search data to
the ASIC. The coder then waits until the result is re-
turned by the codebook search routine. Basically, the
ASIC is a dependent coprocessor whose executions are
triggered by the master processor.

Encoded speech parameters are sent directly to
the coder's output interface as soon as they are pro-
duced during the coder run. The output interface
then converts the parameters into encoded bit blocks
and transmits them according to the external protocol.
Once the coder has �nished one execution it returns
to its initial state, waiting for the next input frame
(for simplicity, the outer loops are not shown in the
�gure).

On the other hand, the decoder's input interface
performs the reverse process of receiving the encoded
bit packets from the external world, decoding them
into parameters sets. Each time a complete subblock
of LP or subframe parameters is received it is sent to

21

ASIC

Channel

data

data

data

DSP

Figure 26: Channel partitioning.

the decoder task in the processor.
The decoder task in the DSP runs in an endless

loop. For each frame it waits for the LP parameters,
decodes them and repeatedly waits for the four blocks
of subframe parameters, decoding them to produce a
subframe of speech as they arrive. The synthesized
speech subframes are sent to the speech output inter-
face as they arrive. The speech interface then bu�ers
the output speech samples and generates the speech
stream at the external interface.

As can be seen, communication between the six be-
haviors combines data transfers with synchronization.
At this step, all the communication of the six behav-
iors at the system level is implemented through ab-
stract channels. The channels are automatically in-
serted during partitioning. In case of the vocoder,
channels based on the abstract semantics of syn-
chronous, blocking message passing are used. Note,
that the channels just de�ne the abstract communica-
tion model without any decision on their actual im-
plementation.

Channel Partitioning In case of the vocoder, only
one system channel exists which connects DSP and
ASIC. Therefore, all communication between behav-
iors mapped to the DSP and behaviors mapped to the
ASIC is grouped into one channel representing the sys-
tem connectivity at an abstract level (Figure 26).

3.6 Scheduling

3.6.1 General

Partitioning is immediately followed by the task of
scheduling. Both are closely related since the quality
of a partition is not �nally revealed until scheduling
has been performed.

Wherever necessary, scheduling determines the or-
der of execution of the behaviors in relation to each
other under consideration of the given constraints. For
example, parallel behaviors in the speci�cation which
are supposed to be implemented on the same sequen-
tial, single-threaded hardware or software component
have to be ordered and serialized. The serialization of

ASIC

Windowing &
Autocorrelation

Windowing &
Autocorrelation

A(z) -> LSP

Interpolation &
LSP -> A(z)

Response &
target signal

Update target
& response

Update

Levinson-
Durbin

Levinson-
Durbin

LSP
Quantization

Open-loop
pitch search

Find pitch
delay and gain

Search
codebook

DSP

Figure 27: Sample encoder partition after scheduling.

one component is done on the system level in combina-
tion with scheduling of behaviors in other processors,
maximizing resource utilization and minimizing delays
due to waiting for input data.

Finally, scheduling not only determines an order-
ing for behavior executions but it also selects the �-
nal communication implementation. Similar to the
aspects for behaviors and processors, the �nal map-
ping of communication channels to actual instances
of connections in the system is determined. If nec-
essary, this requires a serialization of communication
mapped to the same communication component, for
example. On the other hand, due to the serializa-
tion of behaviors certain synchronizations might have
become redundant and are therefore removed during
scheduling.

Scheduling may be done statically or dynamically.
In static scheduling, each behavior is executed accord-
ing to a �xed schedule. The scheduler computes the
best schedule at design time and the schedule does not
change at run time. On the other hand, in dynamic
scheduling, the execution sequence of the subtasks is
determined at run-time. During scheduling priorities
are assigned to the di�erent tasks running in paral-
lel. An application-speci�c run-time scheduler is au-
tomatically generated. On the software side the sched-
uler becomes part of the embedded operation system
whereas on the hardware side the control arbiter FSM
will be synthesized as part of the ASIC. The run-
time scheduler or arbiter maintains a pool of behaviors
ready to be executed. A behavior becomes ready for

22

D_lsp

ASIC

Codebook

Pre_process

LP_analysis

Open_loop

Closed_loop

Start_codebook

Wait_codebook Decode_12k2

Post_FilterUpdate

LSP in

prm in

prm out

LSP out

res

data

Speech frame in

speech subframe out

DSP

Figure 28: Final dynamic scheduling of vocoder tasks.

execution when all of its predecessor behaviors have
been completed and all inputs are available. With a
non-preemptive scheduler, a behavior is selected from
the ready list as soon as the current behavior �nishes,
whereas for a scheduler with preemption, a running
behavior may be interrupted in its computation when
another behavior with higher priority becomes ready
to execute.

Figure 27 shows an example of a schedule for the
sample partition from Figure 22. Software behaviors
are serialized and execution of software and hardware
behaviors is overlapped where possible in order to ex-
ploit the available parallelismbetween ASIC and DSP.

3.6.2 Vocoder Scheduling

For the vocoder example, the behaviors mapped onto
the processor have to be scheduled. At the top level,
this requires serialization of the parallely executing
coder and decoder tasks. The coder and decoder tasks
themselves are already inherently sequential.

Due to the dynamic nature of the relation between
coder and decoder|in general, the timing relationship
of coder and decoder execution depends on external
triggers and will only be determined at run-time|
a dynamic scheduling approach is needed. A �xed
schedule would possibly incur unwanted additional de-
lays through required bu�ering if the external input
doesn't directly conform with the �xed schedule.

The SpecC model of the dynamic scheduling ap-
proach chosen for the vocoder is depicted in Figure 28.
The coder task builds the main program which exe-
cutes in synchronization with the external input, i.e.
a new iteration of the main loop is started as soon as
a new speech input frame arrives. The coder commu-
nicates with the coprocessor for o�oaded executions
of the codebook search.

Apart from that, the coder task is interrupted asyn-
chronously whenever a new piece of decoder data ar-
rives. Depending on the type of incoming parameters
either LP or subframe decoding is executed and the
control ow returns to the coder at the point where it
was interrupted.

This is a simple implementation of dynamic
scheduling as a degenerated version of the general case.
A general dynamic scheduler would require additional
scheduling code which would run as the main program.
The scheduler would execute at regular intervals, ei-
ther interrupt-driven or by splitting the tasks into sep-
arately executed chunks. At each execution the sched-
uler would select which of the two task to execute in
the next interval. However, due to the limited num-
ber of tasks and the simple relationship between the
tasks such a general scheduler is not needed for the
vocoder and this simple scheduling scheme with a low
overhead is su�cient.

In terms of communication scheduling, since
the processor is the master of all external
communications|data transfers are synchronous
and are initiated by the processor, possibly in reac-
tion to external events|and since the processor itself
is sequential, there is no need to serialize external
communication on the system channels. It is ensured
that at no point two data transfers can happen at the
same time.

3.7 Results

The results for the vocoder after architectural explo-
ration are summarized in Table 1. Codebook search is
implemented in hardware and the software behaviors
have been optimized (see Section 5).

Note that at this point, the given delays do not

First subframe Total frame
Cycles ms Cycles ms

Coder 287943 4.80 511130 8.52
Decoder 29648 0.49 89596 1.49
Combined 317591 5.29 600726 10.01

Table 1: Delays after architectural exploration.

23

C
lo

se
d

_l
o

o
p C

o
d

eb
o

o
k

O
p

en
_l

o
o

p

L
P

_a
n

al
ys

is

C
yc

le
s

p
er

 f
ra

m
e

0

200000

400000

600000

800000

1000000

1200000

Unoptimized SW Optimized SW Hardware

Aut
oc

or
r

Q_p
lsf

_5

Res
idu

Syn
_f

ilt

Pitc
h_

ol

Pre
d_

lt_
6

Con
vo

lve

Res
idu

Pitc
h_

fr_
6

Syn
_f

ilt

Syn
_f

ilt

co
r_

h_
x
co

r_
h

se
ar

ch
_1

0i4
0

Az_
lsp

Le
vin

so
n

W
eig

ht
_A

i

Figure 29: Breakdown of coder delays after explo-
ration.

P
o

st
_f

ilt
er

D
ec

o
d

e_
12

k2

D
ec

o
d

e_
L

S
P

C
yc

le
s

p
er

 f
ra

m
e

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

Unoptimized SW Optimized SW

ag
c2

Syn
_f

ilt

Pre
d_

lt_
6

pr
ee

m
ph

as
is

ag
c

Res
idu

Syn
_f

ilt

d_
ga

in_
co

de

D_p
lsf

_5

In
t_

lpc

Figure 30: Breakdown of decoder delays after explo-
ration.

yet include the overhead for communication between
DSP and the hardware blocks. However, as the results
show both timing constraints are satis�ed with enough
margin to include even very conservative estimates for
the communication delays.

The results even suggest that it will be possible
to slow down processor and/or ASIC, e.g. by reducing
the clock frequency, resulting in a signi�cantly reduced
�nal power consumption.

Finally, Figure 29 and Figure 30 show the delays
broken down into the major parts and major subbe-
haviors per part for the coder and decoder, respec-
tively. Both initial, unoptimized delays as well as de-
lays for hardware and optimized software are shown
in comparison. The data con�rms that a signi�cant
speedup can be obtained by optimizing the software.
However, even a moderately simple hardware imple-
mentation results in considerably larger gains com-
pared to optimized software.

4 Communication Synthesis

ASICChannelPE

Figure 31: Architecture model.

In the SpecC architecture model obtained as a re-
sult of architectural exploration the communication
between system components is still modeled on a
high level through abstract channels (Figure 31). Al-
though the channels represent the grouping according
to the mapping onto underlying communicationmedia
like busses etc. they don't yet contain any informa-
tion about the actual implementation of send() and
receive() primitive's semantics.

Communication synthesis, therefore, has the pur-
pose of gradually re�ning the channels in the system
model down to an actual implementation with data
transfers over wires. This comprises the steps of pro-
tocol selection, transducer synthesis and protocol in-
lining.

4.1 Protocol Selection

System
Bus

Channel

PE1 PE2

Figure 32: General model after protocol selection.

During protocol selection, for each abstract channel
on the system level an actual communication protocol
is selected out of the library of available protocols.
The protocols in the library are described as SpecC
channels and include, for example, standardized, pro-
prietary or custom bus protocols like PCI, VME, etc.

The selected protocol is then hierarchically inserted
into its system channel and the abstract communica-
tion of the system channel is transformed into an im-
plementation based on the primitives provided by the
protocol. For example, this includes assembling and
disassembling system messages into protocol packets.

As an example, Figure 32 shows the SpecC model
after a system bus protocol has been selected for im-
plementation of the communication between the pro-
cessing elements.

24

System

Channel

Bus
�
�
�

�
�
�

Transducer

IP PE2
PE1

Figure 33: Sample model after transducer synthesis.

4.2 Transducer Synthesis

Some system components including in particular non-
synthesizable and IP components come with a �xed
protocol on their external interfaces. This also in-
cludes processing elements in general since the exter-
nal processor bus is usually �xed to a protocol de�ned
by the provider. If the protocol of such components is
not compatible to the protocol selected for the chan-
nels connected to the component interfacing hardware
has to be inserted which translates between the two
protocols.

In these cases, the task of transducer synthesis
therefore inserts an additional behavior, a so called
transducer between the component and the channel in
the SpecC model. In the system model, the behavior
of the IP component is replaced with a true functional
model enclosed into a wrapper (Figure 33). The wrap-
per encapsulates the proprietary component protocol
and provides the abstract canonical interface for com-
munication with the IP. The transducer performs the
necessary protocol translations between the wrapper
and the channel communication primitives. Note that
transducers are not required for interfacing to syn-
thesizable components since they can be designed to
implement any selected system protocol.

In case of processor IP, application-speci�c I/O rou-
tines are synthesized and added to the embedded op-
erating system on the software side when replacing the
behavior with the processor model. The calls of the
abstract channel routines in the software behaviors are
replaced with system calls to these I/O routines. The
routines in turn handle the interfacing to the external
world which includes external data transfers, memory-
mapped I/O, interrupt handling, etc.

In general, wrappers together with the clear sepa-
ration of computation (behaviors) and communication
(channels) are the key for IP plug'n'play. At any time
during the design ow it is possible to replace a com-
bination of a general, synthesizable component and a
channel with an IP component plus wrapper in the
SpecC model. As will be shown later on the vocoder
example (Section 4.4, Figure 35), in such a case two
general components connected through a general sys-
tem channel are replaced with a general component
being directly connected to an IP component using the

Interface

System Bus

IP

PE2

Figure 34: General communication model after inlin-
ing.

proprietary IP protocol for communication. However,
since the wrapper abstracts the IP protocol onto the
same canonical interface as used by the other system
channels the replacement is possible without any fur-
ther modi�cations. Only later, after protocol inlining,
will the IP protocol be exposed.

Again, the key is the separation of communication
and computation and the abstraction through chan-
nels, features provided by the SpecC language. A mix
of behavioral functionality with communication func-
tionality would require to separate those two before
the behavior could be replaced with functionality pro-
vided by an IP component. A process that is tedious
and almost impossible to do automatically.

4.3 Protocol Inlining

Protocol inlining is the �nal step in communication
synthesis. It is the process of inlining the channel
functionality into the connected behaviors, exposing
the actual ports, wires, etc. of the system connectiv-
ity. After inlining the �nal system model consists of
components connected through wires and ports (Fig-
ure 34).

Inlining moves the communication functionality
into the components, adding it to the already existing
behavioral functionality. Naturally, this can only be
done for exible components where the channel func-
tionality will be synthesized into SW or HW together
with the other behavior. In all other cases, a trans-
ducer has been inserted before and the channel func-
tionality will be inlined into the transducer resulting
in the �nal interfacing hardware.

The �nal communication model obtained in this
step includes all information about communication
and the corresponding overhead and delays. It is sim-
ulated to verify both functional and timing correctness
of the design including communication details before
the model is �nally handed o� to the backend (Sec-
tion 5).

25

E
nc

od
in

ginput

speech
decoded

bit stream

D
ec

od
in

g

received

speech

bit stream
encoded

56600
�
�
�

�
�
�

56
60

0
E

xt
er

n
al

 B
u

s

bits in

bits out

synth out

speech in

ASIC

Figure 35: Vocoder model with processor bus protocol
selected.

It should be noted that after inlining has been per-
formed it is no longer possible to exchange and re-
place components since communication and computa-
tion are interleaved and not distinguishable any more.

4.4 Vocoder Communication Synthesis

4.4.1 Protocol Selection

In the vocoder example, the system channel simply
connects the DSP with the ASIC and the interfacing
hardware. Due to the limited number of components
and since the hardware modules can be synthesized
to implement any communication protocol there is no
need to select a standard protocol out of the library
for the system channel.

Instead, the proprietary processor bus protocol was
selected for system communication. On the processor
side, this eliminates the need for a transducer. The
hardware modules, on the other hand, will be synthe-
sized to interface with the given processor bus.

Figure 35 shows the vocoder model after protocol
selection and after the DSP behavior and the system
channel have been replaced with a model of the real
DSP56600 processor consisting of functional compo-
nent plus wrapper. As mentioned previously, at any
time during the design process behavior/channel com-
binations can be replaced with IP components (plus
wrappers) without the need for any modi�cations in-
side the behaviors or channels. Therefore, as the
vocoder example shows, integration of IP is easily pos-
sible in the SpecC models.

In the vocoder example after protocol selection, the
processor is the central component and all data trans-
fers on the processor bus from and to the dependent
hardware modules are initiated by the software on
the processor. Apart from that, the hardware compo-
nents can send asynchronous events to the processor

SpeechSpeech
In Out

Bits
Out In

ASIC

56600 Bus

56600

Bits

Figure 36: Vocoder communication model after inlin-
ing.

by triggering interrupts. Based on this protocol, the
abstract synchronous message-passing communication
of the vocoder is implemented as follows.

On the software side, abstract communication
primitives are replaced with calls to I/O routines and
interrupt handlers. Address ranges on the external bus
are assigned to the di�erent communication links. On
the DSP56600, external data transfers are performed
by accessing program memory locations above $8000
(hexadecimal). Therefore, external communication is
replaced by writing to or reading from the selected
program memory locations.

Externally, through calls to the processor wrapper's
communication routines, the hardware modules de-
code their assigned address ranges and map matching
bus accesses to reads and writes of their local memo-
ries or registers. Events sent to the hardware modules
are signaled by writes to selected memory locations,
e.g. start of processing is triggered by receiving the
last item of an input data block transfer.

On the other hand, hardware components send
events to the software by raising interrupts through
their wrapper calls. For example, the hardware sig-
nals the availability of new data (e.g. new incoming
speech or parameter frames) or computation results
(e.g. codebook search results) to the processor. On
the software side, the interrupt handlers receive these
events and transfer the data one word at a time by
handshaking with the ASIC over the bus. The han-
dlers repeatedly execute instructions that initiate read
cycles on the external bus, putting the data words read
from the bus into the local processor memory. After
the complete data block has been read the handlers
either start the corresponding behavior execution im-
mediately (e.g. decoding in the vocoder) or they set a
ag which can be tested by the program.

26

Memory

D
ec

od
e

Memory

ASIC
Processor
DSP56600

Interrupt

C
on

tr
ol

A
dd

re
ss D
at

a

(R
/W

)

Figure 37: Vocoder hardware/software interfacing
model.

4.4.2 Protocol Inlining

Finally, inlining of the wrapper functionality into the
hardware components is performed (Figure 36). There
the address decoding, interrupt generation, and bus
protocol handling functionality is combined with the
hardware behavior. Both parts will then be synthe-
sized together to generate the �nal hardware compo-
nents. After inlining the actual processor ports and
their connections to the ports of the hardware modules
are exposed and visible, resulting in the �nal system
model as actually seen after implementation.

Figure 37 shows the implementation of the inter-
facing between hardware and software in case of the
vocoder after �nal inlining. A typical ow for trans-
fering control and data in the vococoder would look
like this:

1. The processor successively writes the block of
data for the hardware onto the bus one word at
a time by initiating a sequence of bus write cy-
cles with addresses corresponding to the desired
hardware module.

2. The hardware modules listening on the bus de-
code the addresses, take the data words from the
bus and write them into their local memories if
the address falls into their assigned range.

3. When the last item has been written control in
the hardware module is transfered from the bus
decoder to the execution of the corresponding
(computational) behavior.

4. The behavior reads the values from the memory,
processes them and writes the result back into
the memory.

5. When the behavior has �nished execution it trig-
gers the processor by raising the interrupt line.

6. The processor in the vocoder reads the block of
result data over the bus one word at a time by

initiating a sequence of successive bus read cy-
cles. Again, the hardware modules interfacing to
the bus decode the corresponding adresses and
supply the requested values out of their local
memories.

In case of the vocoder it is assumed that the synthe-
sized hardware will be fast enough to react to trans-
fers initiated by the master processor at the maxi-
mal bus speed (2 processor cycles per bus transfer).
Otherwise, wait states would have to be added to
the bursts of bus transfers on the processor side or
a more elaborate handshaking scheme (e.g. DMA or
interrupt-based acknowledgements of single transfers)
would become necessary.

The bus decoder and interrupt generation logic are
parts of the wrapper channel which after inlining into
the hardware module are combined with the compu-
tational logic. Note that in general there are many
di�erent ways of implementing the transfer function-
ality and a choice about the �nal hardware design has
to be made at this point. (e.g. to combine or to sepa-
rate the decoder and computation state machines).

When waiting for an event without any further pro-
cessing to be done, the program suspends itself by
halting the processor. For example, on the vocoder
the main coder program waits for the start of a new
frame after processing of the previous one has �nished.
After an interrupt has woken up the program it will
check the ag for the correct event type and will ei-
ther continue waiting or it will start processing of the
received data.

Table 2 summarizes the results of protocol selec-
tion for the communication between processor and the
di�erent hardware modules in the vocoder. It lists
all the address and interrupt assignments for the im-
plementation of the synchronous, blocking message-
passing communication as described in the previous
paragraphs. Each message is assigned an exclusive
address range.

Note that for each message the processor transfers
the data items sequentially over the bus. Each data
word of each message has been assigned a di�erent ad-
dress on the external processor bus. By decoding the
bus addresses the hardware modules can determine
which item of a message is being transfered. Note
that items are transfered one word at a time and that
the sequences and the transfers in a sequences are ini-
tiated by the processor in a �xed order. Hence, as an
implementation alternative it would be possible to as-
sign only a single address each for communicationwith
the hardware modules. All data transfers between a
certain hardware module and the processor would be

27

Message Address range SW Trigger HW Trigger

Speech In $8000{$809F Interrupt A

Bits/Prm Out LSP $8500{$8504 Write to $8504

Prm 1{4 $8505{$8538 Write to $8511, $851E, $852B, $8538

Bits/Prm In SID, TAF $953A{$953B Interrupt B, #0
BFI, LSP $9500{$9505 Interrupt B, #0
Prm 1{4 $9506{$9539 Interrupt B, #1{4

Speech Out Subframe 1{4 $9000{$909F Write to $9027, $904F, $9077, $909F

Codebook Data (ASIC In) $A000{$A0C9 Write to $A0C9

Codebook Result (ASIC Out) $A0CA{$A124 Interrupt C

Table 2: Vococeder interrupt and address assignment.

Priority

Interrupt A high (2)
Interrupt B middle (1)
Interrupt C high (2)

Table 3: Vocoder Interrupt priorities.

handled using the same address on the bus. However,
this would require the hardware modules to keep track
of the history of data transfers in order to recognize
the end of the sequence, for example. Therefore, the
implementation as shown in Table 2 was chosen for
the vocoder example.

On the processor side, incoming messages are as-
signed to di�erent interrupts. However, due to the
limited number of available interrupts all incoming
parameter blocks (LSP and subframe parameters) are
mapped to the same interrupt. Since the parameter
order is �xed and given, di�erent blocks are distin-
guished by their index in the sequence of incoming
messages.

Table 3 lists the priorities assigned to the di�erent
interrupts. Interrupt priorities de�ne the ordering in
which overlapping interrupts are processed. Interrupts
of lower priority are disabled while a high-priority in-
terrupt is processed in its handler.

The vocoder priorities are selected such that incom-
ing speech frames have priority over incoming parame-
ter blocks. It is time-critical that the hardware speech
bu�er is copied into the processor as soon as it be-
comes full. The selected priorities ensure that this
data transfer can't be interrupted and therefore will
be �nished before the next speech sample will arrive
at the bu�er. Note that interrupts A and C (incoming
speech and codebook done signal) can never happen
simultaneously and therefore can share the same pri-
ority.

4.5 Results

A �nal simulation of the communicationmodel includ-
ing interrupt handling, external data transfers, etc.
was done by extending the instruction set simulator of
the processor to include an emulation of the hardware
module functionality at the interface to the processor
(Section 5.1.3). The resulting co-simulation was used
to verify functional correctness of the results produced
by interface synthesis and to the obtain �nal timing
data including communication overhead.

Cycles ms Constraint

First subframe 366809 6.11 10ms
Total frame 642351 10.71 20ms

Table 4: Worst-case delays for vocoder in back-to-back
operation.

Table 4 lists the simulation results for both con-
straints in terms of worst-case delays for operating
coder and decoder in back-to-back mode as required
by the speci�cation (see Section 2.2.4). Also, com-
paring the delays of Table 4 to the estimates obtained
after architectural exploration (Table 1 in Section 3.7)
shows the additional delays due to the communication
overhead.

As these results show, both constraints are easily
satis�ed and there is even room for other optimiza-
tions, trading of speed for other parameters of the
design space. For example, by lowering the clock fre-
quency power consumption can be reduced at the ex-
pense of execution times and delays.

28

5 Backend

At the end of the SpecC design process the �nal com-
munication model is handed o� to the backend tools.
For the software parts code is generated which will be
compiled into a program that runs on the correspond-
ing processors. For the hardware parts high-level syn-
thesis is performed to create an RTL description which
will then be further processed using traditional logic
synthesis and P&R tools.

5.1 Software Synthesis

Software synthesis is the process of generating exe-
cutable machine code to run on the processors in the
system. Given the �nal SpecC model, C code is gener-
ated for behaviors mapped to processors. Using spe-
cialized or general, retargetable compilers the C code
is compiled and optimized for the given processor.

Finally, using an instruction set simulator (ISS),
again either specialized or retargetable, the software
generated for each behavior is simulated to obtain de-
tailed timing information. For the �nal veri�cation of
the communication model the di�erent parts of the
system are cosimulated at the native C level using
the detailed timing information to emulate the de-
lays of the behaviors at their interfaces. Therefore,
the functionality and the timing of the communication
between the behaviors can be simulated without the
need for slow, cycle-accurate simulation of the hard-
ware and software behaviors themselves.

5.1.1 Code Generation

During code generation, the SpecC model of the soft-
ware behaviors mapped to the processor is translated
into a C program for that processor. Due to the fact
that SpecC is based on ANSI-C this translation pro-
cess is straightforward.

The software behavior hierarchy is converted into a
hierarchy of C functions where the functions are called
in the order given by the scheduled SpecC model. The
C code contained in leaf behaviors is directly used as
the body of the corresponding C function.

In addition, the behavioral C code is linked with
the customized operating system kernel as determined
during scheduling and communication synthesis. The
operating system kernel is generated using a library of
templates and standard modules. The corresponding
schedulers, interrupt handlers, I/O routines, etc. are
customized according to the speci�cs of the given pro-
cessor (e.g. mapping to interrupt vector addresses).

The SpecC language includes certain extended fea-
tures (e.g. bit vector data types) not available in
ANSI-C. Using a library, operations can be mapped
to function calls of library routines implementing the
desired functionality on the target processor. In gen-
eral, depending on the features of the processor in con-
nection with their support by the C compiler, special-
ized operations are either emulated or directly imple-
mented using the processor's capabilities.

Since the corresponding tools for automated code
generation in the SpecC environment were not yet
available, for the vocoder project the following tasks
were instead performed manually:

� Scheduling of the software behavior hierarchy
into a sequential hierarchy of C function calls,
largely based on the model of the initial C ref-
erence implementation.

� Parts of the runtime library provided with the
Motorola C compiler were linked to the vocoder
code. The linked assembly code (crt module)
is responsible for initializing the C runtime en-
vironment (e.g. stack, etc.) on the DSP core.
Since they are not used by the vocoder code,
the C standard library routines were not linked
with the program, saving memory space.

� A customized operating system kernel consisting
of interrupt handlers, I/O routines for external
bus accesses, process synchronization operations
and the interrupt-based dynamic scheduling of
coding and decoding processes was created.

� Appropriate calls of the operating system ker-
nel routines were inserted into the C code to
synchronize with incoming events and to trans-
fer data between the processor and the external
hardware.

� The 16-bit saturated �xed-point arithmetic of
the algorithms in the vocoder behaviors was
implemented using native assembly instructions
provided by the DSP core. Therefore, the ex-
plicit saturations and �xed-point adjustments
(shifting, etc.) of the basic operations in the
original speci�cation were replaced with corre-
sponding native assembly code and the previ-
ously generated processor initialization routines
were modi�ed to switch the processor into sat-
urated arithmetic mode. Also, complex op-
erations like multiply-accumulate (MAC) were
mapped onto equivalent machine instructions as
far as they were available in the DSP instruction
set.

29

5.1.2 Compilation

Following code generation, the sources have to be com-
piled into an executable program for the chosen pro-
cessor. During compilation, general and processor-
speci�c optimizations of the code have to be performed
to improve code quality. This requires good, optimiz-
ing compilers for each processor in the system. In
general, a retargetable compiler provides the basis for
generating optimized code for a large range of typical
embedded processors.

Compilation of the C code for the vocoder's soft-
ware parts was accomplished using the compiler pro-
vided by Motorola for their DSP processors. Initial
compilation of the software was done with all com-
piler optimizations enabled, including post-processing
with the assembly-level optimizer.

Unfortunately, analysis of the code produced by the
compiler revealed that the Motorola compiler does a
poor job optimizing for the DSP56600. The Motorola
compiler is based on a retargeted GCC. However, GCC
is a compiler for general-purpose processor and there-
fore doesn't include DSP-speci�c optimizations. Es-
pecially for the typical tight loops, the code produced
by the compiler for the loop bodies spends most of
the time spilling register data to and from memory
compared to performing actual computations.

For the vocoder example the objective was to pro-
duce code that is comparable to the level that could
be expected as output of a good, state of the art com-
piler. To get results that are similar to the ones ob-
tained once the compilers of the SpecC environment
are available the following three-step procedure was
employed:

1. The generated C code of the behavior hierar-
chy assigned to the processor was compiled into
assembly code for the DSP core using the GCC-
based Motorola compiler.

2. The assembly code was pro�led using the in-
struction set simulator (ISS) for the DSP core
supplied by Motorola (see also Section 5.1.3).
The results were presented in the section about
initial analysis and estimation of the vocoder
complexity (Section 3.3, for a complete list of
results see Table 8 and Table 9, Section C.1 in
Appendix C).

3. The loops in the assemble code that dominated
the execution times were manually optimized.
Basically, register allocation was optimized to
reduce the spill code and memory moves inside

the loop bodies. Modi�cations were made to im-
prove execution times without increasing code or
data memory size.

In general, only straightforward manual modi�cations
were made without applying any sophisticated opti-
mization strategies even a good compiler wouldn't be
capable of doing automatically. Figure 38, Figure 39
and Figure 40 show examples of the assembly code
produced by the Motorola compiler and the assembly
code after optimization for a simple �ltering loop (part
of Syn filt).

As the results (presented in Section 3.7 and Sec-
tion C.1) show, this simple optimization strategy al-
ready leads to signi�cant gains in terms of execution
times:

� Up to 94% improvement of the loop execution
times could be achieved.

� On average, the execution time gain for the op-
timized software behaviors was about 82%.

The data clearly indicates the importance of compiler
techniques for system design. A system design process
that produces good results mandates the availability
of a good optimizing compiler.

5.1.3 Simulation

After compilation, the �nal program code has to be
simulated to verify software synthesis results in combi-
nation with the results of hardware synthesis. Similar
to the compiler aspects, a simulator for every proces-
sor in the system has to be available. Again, a re-
targetable simulator, possibly derived from the same
processor description as the retargetable compiler, will
cover simulation requirements for a large number of
processor architectures. In order to get cycle-accurate
results the di�erent software blocks are simulated on
retargetable instruction set simulators (ISS) that em-
ulate the cycle-true behavior of the target processors
on a simulation host machine.

Once accurate timing and delay results for each
hardware and software block have been obtained the
whole system can be cosimulated to verify the interac-
tion among the di�erent parts. For fast cosimulation
the di�erent parts of the system are simulated at the
native C level, i.e. the C code of the behaviors is com-
piled into a native program on the simulation host.
Using the previously obtained timing data the C code
emulates the cycle-accurate timing and the behavior
of the di�erent hardware and software parts at their
interfaces without actually simulating the cycle-per-
cycle behavior inside the blocks.

30

/� Do the f i l t e r i n g . �/
for (i = 0 ; i < lg ; i ++)
f

s = L mult (x [i] , a [0]) ;
5 for (j = 1 ; j <= m; j++)

f
s = L msu (s , a [j] , yy[� j]) ;

g
s = L shl (s , 3) ;

10 � yy++ = round (s) ;
g

Figure 38: Original C source code example.

; ��� for (i = 0 ; i < l g ; i ++) f
cmp y0 , b
jge L96
move r4 , r5

5 do y0 , L97
; ��� s = L mult (x [i] , a [0]) ;
move y : (r2) , y1
move y : (r5)+, x1
MPY x1 , y1 , b

10 ; ��� for (j = 1 ; j <= m; j ++) f
clr a r2 , x1
add #1, a
move a1 , y : (r6+(�5))
add x1 , a

15 move a1 , r4
do #10 , L95
; ��� s = L msu (s , a [j] , yy [� j]) ;
move r1 , a
move y : (r6+(�5)) , x1

20 sub x1 , a y : (r4)+, x1
move a1 , r0
move y : (r0) , y1
MAC �x1 , y1 , b
; ��� g

25 move y : (r6+(�5)) , r7
move (r7)+
move r7 , y : (r6+(�5))

L95
; ��� s = L shl (s , 3) ;

30 ASL #3 , b , b
ADD #0 , b
; ��� �yy++ = round (s) ;
tfr b, a
RND a

35 ; ��� g
move a1 , y : (r1)+

L97
nop

L96

Figure 39: Assembly output of Motorola compiler.

; Do the f i l t e r i n g
MOVE#12 , n5
MOVE (r5)� ; &(yy [�1])
MOVE y : (r6+(�82)) , n0 ; l g

5

DO n0 , LOOP2 ; for (; < l g ;)
MOVE a , r4 ; & a []
MOVE y : (r4)+,x0 ; a [0]
MOVE y : (r1)+,x1 ; x [i]

10 MPY x0 , x1 , b y : (r5)�, x1 ; L mul () , yy [�1]

DO#10 , LOOP3 ; for (; m;)
MOVE y : (r4)+,x0 ; a [j]
MAC�x0 , x1 , b y : (r5)�, x1 ; L msu () , yy [� j]

15 LOOP3
ASL#3, b , b ; L sh l ()
RND b (r5)+n5 ; round (), & yy [i]
MOVE b, y : (r5) ; s tore in yy [i]

LOOP2

Figure 40: Assembly code after optimizations.

This cosimulation strategy provides cycle-accurate
results for the interactions among system parts at a
high simulation speed. Behavior and timing of hard-
ware and software parts is emulated at the full speed
of the simulation host in contrast to traditional time-
consuming cosimulationwhere a slow simulation of the
hardware at the structural or gate level is combined
with a slow simulation of the software processor at the
instruction level.

Due to the fact that the retargetable simulators
and cosimulation engines of the SpecC environment
are still under development, the cosimulation of the
vocoder example had to be done using a combina-
tion of specialized standard tools and manually cre-
ated simulators:

� The execution of the compiled program parts on
the DSP56600 processor was simulated using the
instruction set simulator (ISS) made available
by Motorola [14]. The cycle-accurate execution
time results presented previously were obtained
this way.

� For timing-accurate simulation of the interac-
tions between processor and external hardware
in the �nal communication model a specialized
cosimulator was developed based on the source
code of the Motorola ISS for the DSP core.

As described above, for cosimulation of hardware and
software an emulation of the hardware modules' be-
havior at the C level was added to the source code of
the instruction set simulator. The ISS sources were
modi�ed such that in each cycle the conditions at the
processor interface as seen by the software running

31

on the simulated processor reect the actual expected
hardware behavior. Finally, the resulting cosimulator
source code was compiled into a program to run on
the simulation host.

Basically, after each simulated cycle the cosimula-
tor program checks for accesses of the software to the
processor bus, catching and handling them appropri-
ately. In case of write cycles the values written by
the simulated software are passed into a call of the
C function that emulates the corresponding hardware
module. On the other hand, given the known timing
of the hardware modules, interrupts in the simulator
are scheduled at certain regular intervals or after cer-
tain delays. Once the simulation has reached a cycle
with an interrupt condition the control in the sim-
ulated processor is transfered to the appropriate in-
terrupt handler. Finally, at bus read cycles initiated
by the software the simulator supplies the values re-
turned by the previous call of the C function for the
corresponding hardware module.

For example, once the simulator program recog-
nizes that the DSP program has triggered a codebook
search by writing the search input data to the proces-
sor bus it calls the codebook search C function with
the given parameters. The simulator program will
then schedule a codebook search interrupt after the
given hardware delay (see Section 5.2). Once the in-
terrupt cycle is reached the interrupt condition in the
DSP is simulated. The DSP program will then try to
read the search result over the DSP bus and the sim-
ulator program supplies the result calculated during
the C function call to the simulated read cycles.

In terms of interfacing to the external world, in the
simulator program corresponding interrupts are gen-
erated at regular intervals according to the input data
rates. Again, the values read by the DSP program
over the processor bus are supplied by the simula-
tor program. On the other end, the simulator pro-
gram takes results produced in the simulated DSP and
stores them in a �le along with their timing informa-
tion.

For veri�cation of the timing constraints, the simu-
lator program runs the vocoder in back-to-back mode
as required by the speci�cation. Output parameter
blocks generated by the coder in the DSP and written
to the processor bus cause the simulator program im-
mediately to raise an parameter input interrupt. The
parameters written to the bus at the coder output are
directly supplied to the bus read cycles of the decoder
input.

Binder

Scheduler

Netlist

Compiler

Behavioral
description

CDFG

Design
constraints

Physical design

RTL

Logic/Sequential synthesis

Memory
synthesis

Control
synthesis

Datapath
synthesis

generator

Architecture,
topology,

Designer

Design
quality

assessment

ASIC explorationHL synthesis

selection
resource

DB

Figure 41: HLS design ow.

5.2 ASIC exploration

ASIC exploration is based on principles of high level
synthesis (HLS) which can be de�ned as a translation
process from a behavioral description into a register-
transfer level (RTL) structural description. Usually
the input to HLS tools is a behavioral description
written in an HDL or a general purpose programming
language. The output of a HLS tool consists of two
parts: an RTL datapath structure and a description
of the �nite state machine (FSM) that controls the
datapath. At the RTL level, a datapath is composed
of three types of components: functional units (e.g.
ALUs, multipliers or shifters), storage units (e.g. reg-
isters or memories), and interconnection units (e.g.
busses or multiplexers). The FSM speci�es a set of
register transfers executed by the datapath in every
control step.

A typical HLS tool design ow (Figure 41) usually
starts with a pre-synthesis step in which the behav-
ioral description is compiled into an internal represen-
tation such as control/dataow graph (CDFG). It of-
ten includes a series of compiler optimizations such as
code motion, dead code elimination, constant propa-
gation, common subexpression elimination, loop un-
rolling etc. This step is followed by the core HLS
process which typically contains three tasks: schedul-
ing, resource allocation and binding. Scheduling as-
signs operations of the behavioral description to con-
trol steps. A control step usually corresponds to a
cycle of the system clock, the basic time unit of a syn-
chronous digital system. Resource allocation chooses
functional units and storage elements from the compo-
nent library. There may be several alternatives among
which the synthesis tool must select the one that best
matches the design design constraints and maximizes

32

e3

variable A: array[1..20] of integer

 ...
for i = 1 to 20 do
max =0;

variable i, max: integer;

D

Y

C

BA

(d) Concurrent Hierarchical SFSMD
(c) SFSMD

C Program

(b) FSMD(a) FSM

s(i) = temp1 * temp2

Count = n

temp1 = a(i) + b(i)
temp2 = c(i) + d(i)
count = count - 1

x=0
y=0

x=0

S3y=0

y=1 S2

S1

x=0

Count = 0

Count /= 0

S3

S2

S1

Count = 0

Count /= 0

S3

S2

S1

Count = 0

Count /= 0

Figure 42: State-oriented models.

the optimization objective. Binding assigns operations
to functional units, variables to storage elements, and
data transfers to wires or busses.

Those three steps will be addressed in detail in the
following sections using the hardware design of the
codebook search ASIC in the vocoder project as an
example.

5.2.1 Behavioral Model

The input to HLS is a behavioral description which
speci�es the hardware functionality. A natural lan-
guage description is often ambiguous and incomplete.
Therefore, a more formal model is needed. A model is
a system consisting of objects and composition rules.
It provides a high-level view of a system in which dif-
ferent details are abstracted for di�erent applications.

Generic models Figure 42 shows several state-
oriented models for describing the behavior. A �nite-
state machine (FSM) is the most popular control
model. It consists of a set of states, a set of transitions
between states, and a set of assignments to boolean
control variables associated with these states. Tra-
ditionally, every state is associated with one control
step or one clock cycle. However, for a computation-
ally intensive system a FSM model may su�er from a
state explosion problem. For example, a 16-bit inte-
ger data value represents 65536 di�erent FSM states.
To solve this problem the FSMD (FSM with datap-
ath) model is introduced where non-boolean variables
and complex data structures can be used in state as-
signments in order to reduce the numbers of states.
However, neither FSM nor FSMD models are suitable
for specifying complex systems since neither one sup-
ports concurrency and hierarchy which are the two
essential characteristics exhibited by the real world

system. Therefore, superstate FSMD (SFSMD) and
concurrent hierarchical SFSMD (CHSFSMD) are in-
troduced. A SFSMD extends a FSMD by adding the
concept of a superstate which associates a behavior,
an algorithm or a program with each state. In this
case, each superstate is assumed to execute in more
than one control step. Finally, a CHSFSMD adds hi-
erarchy and concurrency to the SFSMD model. The
CHFSMD model basically consists of a hierarchy of
program states in which each program state represents
a computational functions or procedures. At any given
time only a subset of program states will be active.
Within its hierarchy the model consists of composite
and leaf program states. A composite program state
is a state that can be further decomposed into either
concurrent or sequential program substates. If they
are concurrent all the program substates will be ac-
tive whenever the program state is active. If they are
sequential the program substates are actived one at
a time while the program state is active [8]. SpecC
supports this CHFSMD model.

Model for vocoder hardware The vocoder is
speci�ed by a simpli�ed CHFSMD model in which
there are only TOC (transition on completion) arcs
but no TI (transition immediately) arcs (Figure 22).
The TOC arcs not only specify the control transitions
but also imply that the data will be ready for the
next superstate behavior. After hardware/software
partitioning some TOC arcs are crossing the bound-
ary between the processor and the custom hardware as
shown in Figure 43. To maintain the semantics regard-
ing the availability of data a separate FSMD has to
be added which implements the data transfer for each
TOC arc between hardware and software. These FS-
MDs are supposed to be introduced during communi-

33

CORE ASIC

Windowing &
Autocorrelation

Windowing &
Autocorrelation

A(z) -> LSP

Interpolation &
LSP -> A(z)

Response &
target signal

Update target
& response

Update

Levinson-
Durbin

Levinson-
Durbin

LSP
Quantization

Open-loop
pitch search

Find pitch
delay and gain

Search
codebook

Data-in

Data-out

Figure 43: The sample encoder partition.

cation synthesis through channel insertion and proto-
col selection, etc. For example, a simple handshaking
protocol could be selected to synchronize the hardware
and software execution by exchanging Start and Done
signals between the processor and the ASIC. A full-
edged CHFSMD model with TI arcs complicates the
hardware model after partitioning signi�cantly. This
issue is still an ongoing research topic which will not
be discussed in this report.

The CHSFSMD model needs to be described with
a language which can support both hierarchy and con-
currency. In this project, SpecC was used to specify
the CHSFSMD. For comparison, the VHDL model for
the codebook search has also been included in Ap-
pendix F. At this level it is not much di�erent from
the SpecC code except for some syntax variations and
the fact that the pointers in the SpecC code have been
converted to array accesses. However, expressing con-
currency in VHDL at this level would be more di�cult
than in SpecC because of the di�erent semantics of sig-
nals and variables in VHDL. In VHDL a process can
be used to model concurrency of leaf program states
such as blocks prefilter or pitch contr shown in
Figure 45 and Figure 46. However, only signals can
be used to communicate data between processes. Un-
fortunately, signals are not e�cient in modeling algo-
rithms because of their delta delay property. Gener-
ally speaking, algorithms always assign values to tem-
porary storage and use them immediately in the fol-
lowing computation. If signals are used instead, one
needs to insert many "wait 0 ns;" statements in order

ASIC

Levinson-
Durbin

Levinson-
Durbin

LSP
Quantization

Open-loop
pitch search

Find pitch
delay and gain

codebook

.

.

.

S1

S2

SBegin

!(Done1 & e2)

Sn

SEnd

Done2=1

Done1 & e2

Done2=0

Done

!Done

e2

e3

e4

e5

e6

Done1

e1

FSM implementation

DataIn

DataOut
Done2

Figure 44: Scheduled encoder ASIC partition (Note:
DataIn and DataOut FSMD for behaviors other than
the 2nd Levinson-Durbin are omitted.)

to ensure correct data values. This makes it unnatural
for the designer to describe algorithms using VHDL at
the behavioral level.

Usually, each hardware module has a single thread
of control because the behaviors in the module typi-
cally share the same datapath. Therefore, the CHSF-
SMDmodel has to be scheduled at the behavioral level
such that all concurrent behaviors are serialized. Con-
ceptually, additional TOC arcs between those concur-
rent behaviors will be inserted as shown inFigure 27.
The execution of a behavior is triggered when its in-
coming TOC arc is traversed. To implement the se-
mantics of this model each behavior functionality is
adjusted as shown in Figure 44. One initial state will
be inserted before the behavior in which the incom-
ing TOC arc conditions will be checked to determine
whether the behavior should be executed. In the last
state of each behavior instance i, a completion signal
Done(i) signal is asserted. In addition, an end state
will be added after the behavior in which the Done(i)
signal is de-asserted and the completion signal Done
of the top level behavior will be polled to determine
whether to advance back to the initial state. In this
way the ordering and the mutual exclusiveness among
the behaviors will be preserved. Moreover, this pro-
vides additional exibility in implementing the con-

34

DataIn

Start

DataOutDone

code_10i40_35bits

Gain_code

set_sign

cor_h

search_10i40

build_code

cor_h_x

q_p

Prefilter_code

Codebook

pitch_contr_xn pitch_contr_res Prefilter_h

Figure 45: The scheduled codebook search CHSFSMD
model.

troller. The controller can be implemented as one
combined FSM or several separate FSMs. In the for-
mer case only the the initial and end states of each be-
havior have to be removed. All behavior states will be
chained to form the controller FSM. For the latter case
the controller will be decomposed so that each behav-
ior has its own control FSM and all the behavior FSMs
are coordinated with each other through Done(i) and
Done signals. The independent FSMs' control out-
puts are combined in the primary output logic (e.g.
OR gates) to form the datapath control word. Fig-
ure 45 shows the scheduled CHSFSMD model of the
codebook search algorithm which has been selected
for the �nal hardware implementation. The following
discussions will be based on this model.

So far we have discussed the hardware system from
a control-ow view only. A data-ow view (Figure 46)
shows the exact I/O relationships between the par-
titioned hardware and software parts. It is obtained
by data-ow analysis which can determine the input

data, i.e. variables that are alive at the point of en-
trance, and the output data, i.e. variables that are
de�ned/rede�ned in the hardware portion and need
to be alive across the exit point. This data-ow view
actually implies the memory hierarchy of the imple-
mentation. Despite registers and register �les in the
design, a larger memory is also needed as a bu�er that
holds the input/output data and big temporary array
variables such as rr[40][40] inside code 10i40 35bits in
Figure 46.

5.2.2 Architecture Exploration

Up To this point, we have focussed on how the system
should be described and modeled. An architecture
is has to be dervied in order to specify how it will
actually be implemented. HLS is a process of turning
the model into an architecture under given constraints.

Architecture selection The architecture model for
exploration always consists of a control unit and a
datapath. A generic implementation is shown in Fig-
ure 47. The control unit is usually described with a
FSM. It contains a set of state registers and two combi-
natorial blocks computing the next-state and output
functions, respectively. The FSM in this project is
state-based (a so-called Moore machine), i.e. the FSM
output depends only on the current state. As a result
some extra states will be introduced as opposed to a
transition-based FSM. On the other hand, the critical
path length will be reduced. The datapath consists
of functional units, storage units and interconnection
units as shown in Figure 47. The exploration of the
datapath consists of selecting the functional unit types
and numbers, their connectivity and pipelining stages.

Scheduling and Allocation Scheduling and re-
source allocation are two major tasks of HLS archi-
tecture exploration.

Resource allocation determines the number and
types of RT components to be used in the design.
Components are taken out of a library which may
contain multiple types of functional units, each with
di�erent characteristics (e.g. functionality, size, delay
and power dissipation).

Scheduling is the key to determining whether archi-
tecture exploration will satisfy the timing constraints.
It assigns operations in the behavioral description to
control steps which correspond to clock cycles. The
number of clock cycles along with the clock period
thus determine the execution time of the hardware.
Scheduling also a�ects resource allocation. Remem-
ber that within a control step a separate functional

35

Pitch_contr Pitch_contr

Gain_code Prefilter

xn2[40]

res2[40]

Prefilter

h1[40..79]

T0 pit_sharp

gain_pit

gain_pit
<<3

h1[40..79]
pit_sharp

Code_10i40_35bits

code[40]

gain_code y2[40] ana[10] code[40]

xn[40] y1[40]

res2[40]

exc[40]

code[40]

h1[80]

T0

set_sign

cor_h_x

search_10i40

cor_h

0.313

0.171 2.643

1.034

d(n) = correlation between target x2(n) and impulse response h(n)

d’(n) = d(n)sign[b(n)]

Compute matrix of correlations of h(n)

Depth-first search (with pruning?)

xn2[40]

h1[80]

res2[40]

dn[40]

pos_max[5]

ipos[10]

dn[40]

sign[40]

h1[40..79]

rr[40][40]

sign[40]

y2[40]

ana[10]

build_code

sign[40]

codvec[10]

Filter and encode

codebok vector

Q_p
h1[80]

0.146

code[40]

code[40]

Figure 46: Data-ow view of codebook search behavioral model.

unit is required to execute each operation assigned to
that step. Hence, the total number of functional units
required in a control step directly corresponds to the
number of operations scheduled into it. If more oper-
ations are scheduled into each control step more func-
tional units are necessary which results in fewer con-
trol steps for the design implementation. On the other
hand, if fewer operations are scheduled into each con-
trol step fewer functional units are needed but more
control steps are required. Therefore, scheduling is
the most important factor in determining the tradeo�
between design cost and performance.

Scheduling and allocation are closely interdepen-
dent. For example, an optimal schedule of operations
to control steps without explicit information about
performance and cost of allocated components is im-
possible. Similarly, an optimal allocation of compo-
nents cannot be performed without exact informa-
tion about their computation pro�ling data. Further-
more, performance/cost tradeo�s have to be consid-
ered when performing scheduling and allocation. For
example, the most area-e�cient design consists of the
minimum number of the slowest components that re-
quires the largest number of control steps. On the
other hand, allocating more components allows to ex-

ploit parallelism resulting in higher performance at the
expense of area cost. Hence, a design space can be
constrained by adjusting parameters such as resource
limits, timing requirements or both. In a HW/SW
codesign environment it is almost always the case that
the hardware part is intended to achieve some speedup
over a software solution. Therefore, timing constraints
are usually the dominant factor while resource con-
straints play a secondary role.

For these reasons, a timing-constrained approach
for combining scheduling with resource allocation was
used in this project. The major steps are shown in
Figure 48. It has two phases: in the �rst phase, we
tried to �nd a feasible and reasonable solution that can
satisfy the timing constraints by exploiting the paral-
lelism in the speci�cation and minimizing the number
of resources needed to satisfy the timing constraints.
In the second phase the allocated resources were ad-
justed to reduce the implementation cost while still
satisfying the timing constraints.

The �rst phase starts with an initial set of re-
sources, i.e. storage elements for every variable, func-
tional units for every operator and connections for ev-
ery data transfer. We initially chose the fastest re-
source or the one with the maximumnumber of stages

36

Next-state
function

Output
function

State reg.

Datapath

control

Status

Control inputs

Control outputs
Datapath

Control unit

*

Registers

Data input

Data output

ALU

Mem RF

Figure 47: A generic control unit/datapath implementation.

in case of a pipelined resource to get the best perfor-
mance.

Next, the feasibility analysis phase was started by
gradually exploiting the parallelism in the speci�ca-
tion. Simple ASAP (as soon as possible) and ALAP
(as late as possible) scheduling algorithms were per-
formed to expose the parallelism based on the data
dependencies. The goal was then to �nd a sched-
ule which utilizes the components maximally there-
fore requiring a minimal number of components. We
achieved this objective by uniformly distributing op-
erations of the same type into all available control
steps. A uniform distribution ensures that resources
allocated to operations in one control step are used
e�ciently in other control steps, leading to a high re-
source utilization rate. The expected operator cost
(EOC) for any operation type in each control step is
given by the product of the resource cost and the sum
of the probabilities that this operation will be sched-
uled into this control step. Finally, the goal is to bal-
ance the EOC value for each operation type. See [7]
for further details. The schedule is checked to �nd
whether the timing constraints can be satis�ed. If the
timing constraint is satis�ed a feasible schedule has
been found, otherwise the process fails.

The �rst phase of the algorithm �nds the fastest
solution which guarantees to satisfy the performance
constraints. However, the cost of such a solution may
be excessive due to the large number of resources allo-
cated. Therefore, the objective of the second phase is
to minimize the number of the resources types, there-

fore minimizing the overall cost of the hardware imple-
mentation while still satisfying the performance con-
straints.

First, we decided to choose a strategy to relax
the stringent condition for the components by using
slower components, less pipelined components, multi-
functional units or multiport memories. Alternatively,
the number of operation types can be reduced by elim-
inating the least utilized resource. For example, the
utilization pro�le of the operations in the codebook
search algorithm is illustrated in Figure 49. Opera-
tion div s can be chosen to be eliminated, replacing it
by an algorithm performing div s using sub and shift
operators. Rescheduling is then required in order to
ensure that the timing constraints are still satis�ed.
This process is repeated until the timing constraint is
violated or the cost cannot be reduced any further.

RTL behavioral model The strategy above will
generate a clock accurate schedule that can be de-
scribed by an RTL behavioral model which is depicted
as a FSMD in Figure 50. This scheduled RTL model
can be used for synthesis by RTL synthesis tools that
have the capability to perform binding. In addition,
it can be used to verify the functional correctness of
the schedule by simulation.

With the scheduled result the �nal resource
allocation|resource types and quantities{can be ob-
tained fairly straightforward. The results for the code-
book search are summarized in Table 5 and Figure 51.

37

Timing constraint
satisfied?

Y

ASAP/ALAP

ASAP/ALAP

Timing constraint
satisfied?

Done

Y

Start

N

N

Initial allocation

Resource utilization balancing

Resource utilization balancing

Resource reallocation

Figure 48: Hardware exploration.

add
su

b

negate
round

L_add
L_su

b
L_abs sh

l
sh

r
L_sh

l
L_sh

r
mult

L_mult

L_mac

L_msu

norm
_l
div_

s

operation type

0

2000

4000

6000

ex
ec

ut
io

n
tim

es
 p

er
 s

ub
−

fr
am

e

Operations frequency per sub−frame

Figure 49: Operation pro�le for one sub-frame.

FU Operations # Delay(ns) Area(�m2)
ALU add,sub,negate,round, 1 3.02 99531.25

L add,L sub,L abs
Shifter shl,shr,L shl,L shr 1 3.00 128171.87
Multiplier mult,L mult 1 4.09 271212.50
MAC L mac,L msu 1 4.79 479598.43
NORM norm l 1 3.00 8429.68
MEM storage access 1 2.6 1550156
REG32 temp. storage access 5 .75 27442.18
REG16 temp. storage access 4 .73 11578.12
COUNTERS array index generation 4 .40 6987.50

Table 5: Functional Unit Selection Result.

Binding Binding is the process of mapping the vari-
ables and operations in the scheduled RTL model onto
functional, storage and interconnection units while en-
suring that the design functions correctly on the se-
lected set of components. For every operation in the
RTL behavioral model a speci�c functional unit that
is capable of executing the operation is needed. For
every variable that is used across several control steps
in the scheduled RTL model a storage unit to hold the
data values during the variable's lifetime has to be se-
lected. Finally, for every data transfer we need a set
of interconnection units that will handle the commu-
nication.

Functional Unit Binding Having selected a set
of units, functional unit binding in this project was
straightforward. Each operation in the behavioral de-
scription can be mapped onto one of the selected func-
tional units only.

38

i=T0; j=0;

i<40
i=40

SBegin

S1

S2

R_ram1=x(j);

Done_pref=0

Done_pref=1

x(i)=R_alu;
i=i+1; j=j+1;

S3

R_mult=MULT(R_ram1, R_ram2);

R_ram1=x(i);

R_ram2=pit_sharp;

R_alu=ADD(R_ram1, R_mult);

S5

S6

S4

S8

SEnd

S7

!Start

Start

!Done

Done

Figure 50: Behavior prefilter FSMD.

Storage Binding Storage binding maps data
carriers (e.g. constants, variables, and data structures
like arrays) in the behavioral description to storage
elements (e.g. ROMs, registers and memory units) in
the datapath. Constants, such as coe�cients in a DSP
algorithm are usually stored in a ROM. If their num-
ber is small they can be hardwired to VCC or ground
like the 16 constants in the codebook search algorithm.
Variables are stored in registers or memories. As dis-
cussed previously, variables whose lifetime intervals do
not overlap with each other may share the same reg-
ister or memory location. Actually the last step of
register allocation in the scheduling algorithm has al-
ready determined the binding of the variables, i.e. se-
lecting whether a variable will live in a register or in
the memory. The memory addresses of each variable
are listed in Table 6.

Address Variables

0 xn[40]/y32[40]
40 y1[40]
80 xn2[40]
120 exc[40]/dn[40]
160 res2[40]
200 h1[80]
280 sign[40]
320 rr[40][40]
1920 h2[40]/en[40]/rrv[40]/scal y2[40]
1960 code[40]
2000 y2[40]
2040 codevec[10],ana[10], sign[10],ipos[10]
2080 posmax[5]

Table 6: Memory Addresses.

Interconnection Binding Every data transfer
(i.e. a read or a write) needs an interconnection path
from its source to its sink. Two data transfers can
share all or part of the interconnection path if they
do not take place simultaneously. The objective of
interconnection binding is to maximize the sharing of
interconnection units. Therefore, interconnection cost
is minimized while conict-free data transfers required
by the register-transfer description are still ensured.

RTL structural Model The unit binding gener-
ates the �nal RTL structural model which consists of
a control unit and a datapath as mentioned earlier.

The control unit can be obtained by synthesizing
a single central FSM in which the chained behavior
FSM are merged together. Alternatively, when the
combined FSM becomes too large each behavior FSM
can be synthesized into a separate control unit and

off2
off1
base

op

AGEN

off2
off1
base

op

AGEN

off2
off1
base

op

AGEN

r_ram2

counter

counter

counter

counter

i

����������
MAC/MSUNORMALUSHIFTER����������MULT

MEM

clk

ra1

ra2

wa
wen

din

do1 do2

j

k

dec

CMP

r_mult r_sh r_alu r_norm r_mac

CMP_RSLT

r_ram1

Figure 51: Datapath diagram.

39

Next-state

Next-state
function

function
Output

Output

function

function

State reg.

State reg.

Datapath

Datapath

control

control

Status

Status

Start(Done(i-1) AND other conditions)

Start(Done(i-1) AND other conditions)

Done(i)

Done(i)

Control unit

Control unit

Datapath

*

Registers

Data input

Data output

.

.

P
rim

ary D
P

C
trl Logic

Mem RF

ALU

.

Figure 52: A FSMD implementation with a
decomposed-CU

connected as speci�ed in Figure 44 The hardware ar-
chitecture of the decomposed design in shown in Fig-
ure 52. One motivation for the decomposed controller
is that the heuristics algorithms for state assignment
and logic optimization used in logic synthesis tools
such as Synopsys DesignCompilerTM provide supe-
rior results for smaller designs. A reasonable decom-
position may lead to a more economical realization
in terms of area. The performance of a decomposed
design may also be better due to a smaller critical
path delay achieved by logic optimization. Due to
these reasons, in this project the latter alternative
has been chosen. The control unit FSM decomposi-
tion is shown in Figure 53. Every sub-FSM of the
control unit can be modeled with a HDL case state-
ment as accepted by logic synthesis tool like Synopsys
DesignCompilerTM . An example is shown in Fig-
ure 54.

The datapath has been designed with Synopsys
SGETM as a schematic from which a structural
VHDL netlist of components can be generated auto-
matically. The schematic is shown in Appendix D.

5.2.3 Performance analysis

The two most important quality metrics are the cost
and performance. The most common cost metrics is
the design area which is a measure of the silicon area
required by the implementation.

Area For a given FSMD design the area cost in-
cludes the area needed for the control unit, the dat-
apath and the wiring area required to connect these
components.

Next-state
function

Output
function

State reg.

Status

Control unit

en8

en9

O9

(Sw->Hw)
DataOut

(Sw->Hw)
DataIn

O0

O10

Control output
O1

search_10i40

en0 en1 en2

en3 en4 en5

en6 en7 en8

en9

O0 O1 O2

O3 O4 O5

O6 O7 O8

O9 O10

Status Status Status

Status

Status

Status

Status

StatusStatus

Status

Status

cor_h_x set_sign cor_h

q_pbuild_code

Prefilter_code Gain_code

Start

Done

Pitch_contr_xn Pitch_contr_res Prefilter_h

Figure 53: Control unit decomposition

Datapath The datapath consists of three kinds
of RT components: storage units (memories and regis-
ters), functional units (ALUs) and interconnect units
(busses and multiplexers). The total area of the data-
path as the sum of the three kinds of component areas
is a total of 3; 847; 342�m2. Wiring also contributes to
the overall area. Unfortunately, estimating the wiring
area requires knowledge about the placement and the
physical layout of the units. Fast oor planners have
been used by engineers to obtain this placement in-
formation. Alternatively, statistical wiring models
have been used. In this project we arbitrarily as-
sumed that wiring requires 10% of the components
area. Hence, the total area of the datapath is approx-
imately 4; 232; 076�m2.

Control Unit The control unit of the hardware
uses the FSM decomposition approach and is decom-
posed into 11 sub-FSMs(Figure 53). The area of the
control unit can be simply calculated by adding the
are for the 11 FSMs area and the area for the big OR
gate, totalling 1; 094; 255�m2.

40

 ...

 case State is
 --
 -- State PF_S0
 --
 when PF_S0 =>

 ...

 --r_ram1 <= gain_pit;
 R1_BASE <= A_gain_pit;
 R1_OFF1_SEL <= dont_care(2 downto 0);
 R1_OFF2_SEL <= dont_care(1 downto 0);
 R1_OP <= "00";
 REN1 <= ’1’;
 RR1_LD <= ’1’;

 --r_ram2 <= CONV_STD_LOGIC_VECTOR(T0, 16);
 R2_BASE <= A_T0;
 R2_OFF1_SEL <= dont_care(1 downto 0);
 R2_OP <= "00";
 REN2 <= ’1’;
 RR2_LD <= ’1’;

 ...

 Next_State <= PF_S1;

 --
 -- State PF_S1
 --
 when PF_S1 =>

 ...

Figure 54: sub-FSM in VHDL

Hence the total estimated area of the design is

area = area(CU) + area(DP) = 5; 326; 331�m2 �

5mm2

Performance Performance metrics can be classi�ed
into three categories: clock cycles, control steps and
execution times. Execution time is the �nal measure
and the other two metrics contribute to its calculation.

We de�ne the execution time as the time inter-
val needed for process the complete input data set
and generating the complete output data set. This
will cover both a pipelined and a non-pipelined de-
sign. If the number of clock cycles of the interval is
num cycles and the clock cycle delay is clock cycle
the execution time can be computed as follows:

execution time = num cycles � clock cycle

Clock cycle Given the FSMD design shown in
Figure 56 the clock cycle can be determined as the
maximum of the critical path candidates as follows:

(a) Delay of path p1, computing the next state of
the FSM:

�(p1) = delay(SR) + delay(CL) + delay(CMP) +
delay(NL) + setup(SR) � 8:9 ns

(b) Delay of path p2, reading data from the mem-
ory:

�(p2) = delay(SR)+delay(CL)+delay(AGEN)+

Units Delay(ns)

AGEN 1.94
MEM 2.6
MULT 4.09/2
SHIFTER 3.0
ALU 3.02
NORM 1.25
MAC 4.79/2
CMP 1.22
REG32 .75
REG32(setup) .59
REG16 .73
REG16(setup) .59
CU 3.85

Table 7: Unit delays.

delay(MRD) + setup(MR) � 8:5 ns

(c) Delay of path p3, performing the arithmetic op-
eration:

�(p3) = delay(SR) + delay(CL) + delay(AU) +
setup(RR) � 7:0 ns

where delay(SR) is the delay of reading the
state registers, delay(CL) is the delay of the con-
trol logic, delay(CMP) is the delay of the com-
parator, delay(NL) is the delay of next state logic,
setup(SR) is the setup time of the state registers,
delay(AGEN) is the delay of the address generation
unit, delay(MRD) is the delay of reading the memory,
setup(MR) is the setup time of the register connected
to the memory read port, delay(MR) is the delay of
reading the register connected to the memory read
port, delay(AU) is the delay of the ALU, setup(RR)
is the setup time of the registers storing the functional
unit results. Table 7 lists the delays of the functional
units.

Hence, the minimum clock cycle is

clock cycle =Max(�(p1);�(p2);�(p3))� 9 ns

Even when adding a 10% engineering margin the
hardware part can still run at 100MHz, i.e. with a
clock cycle of 10 ns.

Number of execution cycles For a data-ow
dominant design like this project the number of cycles
needed for execution can simply be obtained by pro-
�ling the RTL model. A pro�ling result is shown as
Figure 55. The number of cycles for one sub-frame of
voice data samples is around 33; 000. Therefore, the
total number of cycles for one frame is 132; 000.

41

pitc
h_co

ntr1

pitc
h_co

ntr2

prefilt
er1

co
r_h_x

se
t_sig

n
co

r_h

se
arch

_10i40

build
_co

de
q_p

prefilt
er2

gain_co
de behavior instances

0

5000

10000

15000

N
o.

 o
f c

lo
ck

 c
yc

le
s

Behaviors execution time distribution

Figure 55: Execution time distribution.

The performance of the hardware part, i.e. the total
execution time for one frame of voice data samples is

execution time = 132; 000� 10 ns � 1:3ms

6 Conclusions

In this report we presented the SpecC system-level
design methodology applied to the example of design-
ing and implementing a GSM EFR vocoder. We have
shown the various steps in the SpecC methodology
that gradually re�ne the initial speci�cation down to
an actual implementationmodel. The well-de�ned na-
ture of the models and transformations provides the
basis for design automation tools and in general en-
ables application of formal methods, e.g. for veri�ca-
tion or equivalence checking.

Starting with the executable SpecC speci�cation,
architectural exploration|supported by estimators
and analysis tools|creates an architectural model of
the design through the steps of allocation, partition-
ing and scheduling. We demonstrated how a large part
of the design space can be quickly explored to select
the best architecture. Communication synthesis then
transforms the abstract communication of the archi-
tectural model into an implementation. After protocol
selection, transducer synthesis and protocol inlining
the �nal communication model is obtained.

At any point the design is represented by a model

in SpecC. We perform equivalence checking and simu-
lation on each model to validate the transformations.
The SpecC language explicitly supports all the fea-
tures necessary for system-level design including hier-
archy, timing, concurrency, communication and syn-
chronization, exceptions, state transitions, etc. On
the other hand, the fact that SpecC is a superset of
C allows to draw from the large body of existing al-
gorithms. The clear separation of communication and
computation in SpecC facilitates reuse of system com-
ponents and enables easy integration of IP.

After �nishing the design on the system level the
communication model is handed o� to the backend
for synthesis of the software and hardware parts. For
the software parts C code including a custom real-
time operating system kernel for scheduling, task syn-
chronization and I/O is generated, compiled, and op-
timized for the chosen processor. For the hardware
parts a behavioral description is generated and synthe-
sized into a custom RTL implementation using behav-
ioral or high-level synthesis tools. The structural RTL
design is then further transformed down to a gate- or
transistor-level netlist using traditional logic synthesis
tools.

In case of the vocoder, the initial GSM standard
including the C code was analyzed and a SpecC spec-
i�cation was developed. The 14; 000 lines of the spec-
i�cation were partitioned into 12; 000 lines of code for
a software part running on a Motorola DSP56600 core
at 60MHz and 2; 000 lines of code for a custom hard-
ware part implementing the codebook search. The
�nal implementation of the vocoder consists of 70; 500
lines of compiled assembly code and 45; 000 lines of
synthesized RTL code. The transcoder delay of the �-
nal implementation is 26ms and the time for encoding
and decoding a speech frame is 11ms, easily meeting
the constraints of 30ms and 20ms, respectively.

The design of the vocoder has been done by two
people working at the project part-time over the
course of six months. The schedule of the di�erent
tasks in the vocoder project is shown in Figure 57.
Most of the time was actually spent on initial under-
standing of the standard including its complex, un-
structured C code speci�cation, and on tedious, man-
ual software and hardware synthesis in the backend.
Simply following the well-de�ned steps of the SpecC
methodology helped to reduce the design e�ort signif-
icantly.

With the availability of automated tools that will
cover a large part of the tedious and error-prone syn-
thesis tasks performed mostlymanually in the vocoder
project the time-to-silicon will be reduced even fur-

42

Control

logic

Next state

logic

off2

off1

op

AGEN

off2

off1

base

base

AGEN

op

off1

base

op

AGEN

r_ram2

counter

counter

off2

counter

i

������

counter

MAC/MSUNORMSHIFTER������MULT ALU

State reg.

p1

p2

MEM

clk

ra1

ra2

wa

wen

din

do1 do2

j

k

dec

CMP

r_mult r_sh r_alu r_norm r_mac

r_ram1

Status

Control word

p3

Figure 56: Critical path candidates.

ther. The time spent on the actual design tasks of the
vocoder project was about 12 weeks only.

All in all, the project has shown that the SpecC
methodology will result in signi�cant productivity
gains. A simpli�ed design process based on well-
de�ned, clear and structured models at each explo-
ration step enables quick exploration and synthesis. In
addition, a well-de�ned IP model allows easy integra-
tion and reuse of IP components. In general, commu-
nication among designers and customers is minimized,
allowing for design and manufacturing globalization
and Internet-based design strategies.

Furthermore, due to the formal nature of the de-
sign process and the models, product evolution and
product customization is greatly simpli�ed. Redesign,
integration of new features and incorporation of cus-
tomer feedback (e.g. in case of changing requirements)
as well as upgrades to new technologies are all easily
achieved. In addition, the high abstraction levels of
the speci�cation models allow easy reuse of existing
models by adding or changing features as necessary or
by customization of product templates for a product-

on-demand business model.
Finally, focussed design concepts and design pro-

cesses together with a uniform and formal methodol-
ogy based on automated tools signi�cantly reduce the
amount of resources and the man power required to
complete a System-On-Chip design. A steep learning
curve and the low designer expertise needed reduce
the training overhead and limit the demand for highly
quali�ed designers.

Acknowledgments

The authors would like to thank Motorola for support-
ing this project. Also we would like to thank Lukai
Cai, Hongxing Li from UCI and Justin Denison, Mike
Olivarez from Motorola for help in synthesis of the
codebook search.

43

References

[1] D. Gajski, J. Zhu, R. D�omer, The SpecC+ Lan-
guage, University of California, Irvine, Technical
Report ICS-TR-97-15, April 15, 1997.

[2] J. Zhu, R. D�omer, D. Gajski, Syntax and Seman-
tics of the SpecC+ Language, University of Califor-
nia, Irvine, Technical Report ICS-TR-97-16, April
1997.

[3] D. Gajski, J. Zhu, R. D�omer, Essential Issues in
Codesign, University of California, Irvine, Techni-
cal Report ICS-TR-97-26, June 1997.

[4] J. Zhu, R. D�omer, D. Gajski, \Syntax and Seman-
tics of the SpecC Language," Proceedings of the
Synthesis and System Integration of Mixed Tech-
nologies 1997, Osaka, Japan, December 1997.

[5] D. Gajski, G. Aggarwal, E.-S. Chang, R. D�omer,
T. Ishii, J. Kleinsmith, J. Zhu, Methodology for
Design of Embedded Systems, University of Cal-
ifornia, Irvine, Technical Report ICS-TR-98-07,
March 1998.

[6] R. D�omer, J. Zhu, D. Gajski, The SpecC Language
Reference Manual, University of California, Irvine,
Technical Report ICS-TR-98-13, March 1998.

[7] D. Gajski, N. Dutt, C.H. Wu, Y.L. Lin, High-Level
Synthesis: Introduction to Chip and System De-
sign, Kluwer Academic Publishers, Boston, Mas-
sachusetts, 1991

[8] D. Gajski, F. Vahid, S. Narayan, J. Gong, Speci�-
cation and Design of Embedded Systems, Prentice
Hall, Englewood Cli�s, New Jersey, 1994

[9] European Telecommunication Standards Institute
(ETSI), Digital cellular telecommunications sys-
tem; Enhanced Full Rate (EFR) speech transcoding
(GSM 06.60), Final Draft, November 1996.

[10] K. J�arvinen et. al., \GSM Enhanced Full Rate
Speech Codec," Proceedings ICASSP `97, pp. 771-
774, 1997.

[11] Telecommunications Industry Association (TIA),
TR-46, PCS1900 Enhanced Full Rate Codec US1
(SP-3612), Ballot Version, August 1995.

[12] R. Salambi et. al., \Design and Description of
CS-ACELP: A Toll Quality 8 kb/s Speech Coder,"
IEEE Transactions on Speech and Audio Process-
ing, Vol. 6, No. 2, pp. 116-130, March 1998.

[13] Motorola, Inc., Semiconductor Products Sec-
tor, DSP Division, DSP56600 16-bit Digital Sig-
nal Processor Family Manual, DSP56600FM/AD,
1996.

[14] Motorola, Inc., Semiconductors Products Sector,
DSP Division,Motorola DSP Simulator Reference
Manual, 1995.

44

W
ee

k
23

24
25

26
27

28
29

30
31

32
33

34
35

36
37

38
39

40
41

42
43

44
45

46
47

48
49

50
51

52

S
pe

ci
fic

at
io

n
A

na
ly

si
s

of
 s

ta
nd

ar
d

(f
un

ct
io

na
lit

y,
 c

om
pl

ex
ity

)

S
pe

cC
 s

pe
ci

fic
at

io
n

(d
ev

el
op

 s
pe

c)

E
xp

lo
ra

tio
n

A
llo

ca
tio

n,
 P

ar
tit

io
ni

ng
(S

el
ec

t D
S

P
, H

W
/S

W
 p

ar
tit

io
n)

S
of

tw
ar

e
S

et
up

 S
of

tw
ar

e
E

nv
iro

nm
en

t
(c

om
pi

le
r,

 s
im

ul
at

or
, p

ro
fil

er
)

D
ev

el
op

 S
im

ul
at

or
/P

ro
fil

er
(I

S
S

 w
/ f

un
ct

io
n

pr
of

ile
 a

nd
 H

W
 s

im
.)

O
pt

im
iz

e
as

se
m

bl
y

co
de

(c
od

in
g,

 d
eb

ug
gi

ng
, p

ro
fil

in
g)

R
T

O
S

: s
ch

ed
ul

in
g,

 H
W

 in
te

rf
ac

e
(c

od
in

g,
 d

eb
ug

gi
ng

, p
ro

fil
in

g)

H
ar

dw
ar

e
(C

od
eb

oo
k)

B
eh

av
io

ra
l m

od
el

 d
ev

el
op

m
en

t

D
at

ap
at

h
de

si
gn

R
T

L
be

ha
vi

or
al

 m
od

el
 d

ev
el

op
m

en
t

R
T

L
st

ru
ct

ur
al

 m
od

el
 d

ev
el

op
m

en
t

D
oc

um
en

ta
tio

n
T

ec
hn

ic
al

 R
ep

or
t

 L

eg
en

d:
C

om
pr

eh
en

si
on

C
o-

de
si

gn
T

oo
ls

 s
et

up
C

->
V

H
D

L
M

an
ua

l s
yn

th
es

is
D

oc
um

en
ta

tio
n

N
ot

e:
 D

ou
bl

e
he

ig
ht

 s
ta

nd
s

fo
r

tw
o-

pe
rs

on
 w

or
k.

O
ct

-9
8

N
ov

-9
8

D
ec

-9
8

Ju
n-

98
Ju

l-9
8

A
ug

-9
8

S
ep

-9
8

��
��
��
��

��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

Figure 57: Vocoder project tasks schedule.

45

A C Reference Implementation Block Diagrams

This appendix contains the detailed block diagrams describing the architecture of the ANSI-C reference imple-
mentation of the GSM vocoder. The C implementation is supplied with the ETSI Enhanced Full Rate (EFR)
speech transcoding standard GSM 06.60 [9] and it represents the bit-exact reference for any implementation of
the standard.

46

A
.1

C
o
d
e
r:

c
o
d
e
r

Section

WMOPS

function_name

sid_codeword
_encoding

encoder_homing
_frame_test

reset_flag

txdtx_ctrl

pre_process coder_12k2 CN_encoding

txdtx_ctrl

communicate by shared variable

communicate by explicit parameter passing

Hierarchical functional block

Legend:

syn(for debug)

new_speech[160] new_speech[160]

serial[244] serial[244]

prm[57] prm[57]

prm[57]

input of a bidirectional port

module I/O port

inter-page I/O port

logical block of grouped statements

Prm2bits_12k2

CODER BLOCK DIAGRAM
6

3.1

Remote reset capability (in-band signalling)

Conditional functional block

Comment

Function
Call
Block

High-pass filter (2nd order)

Comfort Noise

SID: Silence Descriptor

0.19
160 samples / 20 ms
(4 x 5ms/40samples)

loop

inter-invocation I/O (state)

47

A.1.1 Encoding: coder 12k2

A.1.1.1 Linear prediction analysis

Windowing
&

Autocorrelation

Short term analysis:

Convert LP parameters

Speech

R[]

Levinson-
Durbin

A(z)

LSP

LSP
Quantization

LSP, LSP’

Interpolation for
1st and 3rd subframe

to Line Spectral Pairs

r_h r_l

rc

r_h r_l

Levinson

Lag_window

lsp_mid

3.2.1

3.2.1

3.2.2

0.12

3.2.3

0.45

3.2.5

3.2.6, 3.2.4 3.2.6, 3.2.4

1.29

0.21

Autocorr

0.01

lsp_mid_q lsp_new_q

txdtx_ctrl

Q_plsf_5

Az_lsp

Int_lpc2
0.7 1.3

Aq_t
Int_lpc

scal_acf

p_window_mid

r_h r_l

rc

r_h r_l

scal_acf

Levinson

Lag_window

3.2.1

0.21

3.2.1

0.01

3.2.2

0.45

Autocorr

0.12

Az_lsp

V
A

D

A_t A_t

A(z), A’(z)

3.2.3

F_gamma2

p_window

F_gamma1

A_t

Extract Linear Prediction (LP) Filter H(z) = 1/A(z) parameters (a0, a1, ..., a9)

lsp_new
lsp_old

lsp_old_q

prm

lsp_old

lsp_old lsp_old_q

speech[160]

speech[-80..0]

new_speech[160]

48

A.1.1.2 Open-loop pitch analysis

3.3

0.03

Residu

3.3

0.01

Weight_Ai

3.3

0.01

Weight_Ai

Ap2(z) = A(z/gamma2)
(ap2i = ai x gamma2, i = 0..9)

(ap1i = ai x gamma1, i = 0..9)
Ap1(z) = A(z/gamma1)

Filter 1/Ap2(z)

(filter speech through perceptual w
eighting filter W

(z) =
 A

(z/gam
m

a1)/A
(z/gam

m
a2))

Filter Ap1(z)
(= reverse 1/Ap1(z))

lags[0] lags[1]

lags

3.3

1.0

Pitch_ol

3.3

0.04

Syn_filt

Ap1

Ap2

F_gamma1

F_gamma2

A_t[i]

A_t[i]

3.3

1.0

Pitch_ol

T0_max[0]

T0_min[0]

T0_max[1]

T0_min[1]

to VAD

lag estimates
open-loop

find

C
om

pute w
eighted input speech for 4 subfram

es

mem_w mem_w

wsp[i..i+40]

wsp[i..i+40]

speech[i-10..i+40]

wsp[-143..0]

wsp[-143..0]Shift weighted speech buffer
to the left by 160 sampleswsp[18..160]

i=
[0,40,80,120]

wsp[-143..80] wsp[-63..160]

Long Term/Pitch Analysis (adaptive codebook) 1 / 2

49

A.1.1.3 Closed loop pitch analysis

Pitch_fr6
1.44

3.6

Calculate residual r(n)
(filter speech through A’(z))

C
om

pute adaptive codebook (pitch) gain

Codebook gain
quantization

Syn_filt

Residu
0.03

0.04

3.5

3.5
Ap2[i]

h1
Ap1[i]

xn

h1 xn

T0_min[i/80]

T0_max[i/80]

0.01

3.6
Enc_lag6

T0_frac

T0_min[i/80]

T0_max[i/80]

y1

gain_pit

Convolve

G_pitch

q_gain_pitch

3.6

3.6

3.6

3.6

0.21

0.07

0.02

Residu
0.03

3.5

Syn_filt
0.04

3.5
Aq_t[i]

Ap1[i]

error

txdtx_ctrl

C
om

pu
te

 I
m

pu
ls

e
R

es
po

ns
e

of
 w

ei
gh

te
d

sy
nt

he
si

s
fi

lt
er

 H
(z

)W
(z

)
(3

.4
)

(F
il

te
r

A
p1

(z
)

th
ro

ug
h

1/
A

’(
z)

 a
nd

 1
/A

p2
(z

))

(filter residual through 1/A
’(z) and A

p1(z)/A
p2(z))

C
om

pute T
arget Signal x(n) for Search (3.5)

Compute gain to
match x(n) and y(n)

y1 = exc[i] * h1
y(n) = filtered v(n)

T
arget =

 w
eighted speech plus effect of w

eighted synthesis filter

h1

y1

gain_pit

res2

Interpolate
codebook
vector v(n)
(excitation)

T0

T0

prm

prm

Syn_filt
0.04

3.4

zero

Syn_filt
0.04

3.4

mem_w0

mem_errzero

Pred_lt_6

(find best filtered past excitation)
find best pitch lag

speech[i-10..i+40]

exc[i-154..i+39] exc[i-154..i+39]

exc[i..i+39]exc[i..i+39]

exc[i..i+
39]

exc[i-154..i]0.05

Long Term/Pitch Analysis (adaptive codebook) 2 / 2

50

A.1.1.4 Algebraic codebook analysis and �lter updates

speech[80..160]

exc[6..160] exc[-154..0]

speech[-80..0]Shift buffers to the left
by 160 samples

exc[j]:= gain_pit*exc[j]
+gain_code*code[j]

Algebraic (innovative) codebook search

minus pitch contribution

Target signal (speech), Consider algebraic prefilter
F(z) by including it in
impulse response h(n)

Filter code vector c(n) through prefilter F(z)

Calculate codebook gain

return code vector c(n) and
Codebook search:

filtered code vector z(n)

Get final excitation signal u(n)

txdtx_ctrl

3.9

3.8

3.7

3.7

0.05

0.07

0.04

4.33

Quantization
Gain

gain_pit h1T0

code_10i40_35bits
prm

h1res2
xn2

G_code

exc

code

q_gain_code

prm

gain_code code
gain_pit

T0

Syn_filt

mem_syn mem_syn

y2

synth

mem_w0:= xn-gain_code*y2
-gain_pit*y1

mem_err:= speech[i]-synth

xn2:= xn - y1*gain_pit

code:= code
+code(-T0)*gain_pit

h1:= h1 + h1(-T0)*gain_pit

mem_err mem_w0

y2

y1 xn

Aq_t[i]

speech[i]
gain_pit

exc[i]

exc[i]

Synthesize speech

Update filter memories

res2:= res2 - exc[i]*gain_pit

exc[i] xn y1res2

residual (excitation)

gain_code

i=
[0,40,80,120]

51

A
.1
.1
.5

C
o
d
e
b
o
o
k
se
a
rch

:
c
o
d
e
1
0
i
4
0
3
5
b
i
t
s

set_sign

code_10i40_35bits

xn2

h1

res2

code

y2

prm

dncor_h_x
xn2

h1

res2

search_10i40

dn

pos_max

ipos

sign rr

cor_hh1

sign

sign

h1
build_code

codvec

0.313

0.171 2.643

0.146

1.034

d(n) = correlation between target x2(n) and impulse response h(n)

d’(n) = d(n)sign[b(n)]

Compute matrix of correlations of h(n)

Depth-first search (with pruning?)

Filter and encode
codebok vector

prm

y2

code

52

A
.2

D
e
c
o
d
e
r:

d
e
c
o
d
e
r

Section

WMOPS

function_name

decoder_12k2Bits2prm_12k2

6.2.1

Post_Filter

communicate by shared variable

communicate by explicit parameter passing

Hierarchical functional block

Legend: input of a bidirectional port

module I/O port

inter-page I/O port

logical block of grouped statements

Conditional functional block

Comment

Function
Call
Block

loop

inter-invocation I/O (state)

DECODER BLOCK DIAGRAM

TAF

SID_flagserial[0..246]

serial[246]

serial[245]

Az_dec[0..43]

synth[0..159]

(4 x 5ms/40samples)
160 samples / 20 ms

parm[0..57]

_frame_test
decoder_homing

reset_flag

Post filtering

synth[0..159]6.1

53

A.2.1 Decoding: decoder 12k2

D
_p

ls
f_

5

In
t_

lp
c

d_
ga

in
_c

od
e

Pr
ed

_l
t_

6

D
ec

_l
ag

6
d_

ga
in

_p
itc

h
de

c_
10

i4
0_

35
bi

ts

ag
c2

Sy
n_

fi
lt

0.
01

0.
05

0.
01

0.
01

0.
01

0.
02

0.
04

1.
3

pa
rm

ls
p_

ol
d

ls
p_

ol
d

ls
p_

ne
w

ls
p_

m
id

T
0

T
0_

fr
ac

co
de

:=
 c

od
e

+
 c

od
e(

-T
0)

*g
ai

n_
pi

t

ga
in

_p
it

co
de

ga
in

_c
od

e

m
em

_s
yn

m
em

_s
yn

ga
in

_p
it

co
de ex
c[

i]
:=

 e
xc

[i
]*

ga
in

_p
it

+
 c

od
e*

ga
in

_c
od

e

ex
cp

ex
cpC
om

pu
te

em
ph

as
iz

ed
 e

xc
it

at
io

n

ex
c[

i..
i+

39
]

ex
c[

i..
i+

39
]

ex
cp

sy
nt

h[
i]

ex
c[

i..
i+

39
]

C
om

pu
te

ex
ci

ta
ti

on

G
ai

n
co

nt
ro

l

Sy
nt

he
si

ze
 s

pe
ec

h

ex
c[

i-
15

4.
.i]

A
da

pt
iv

e
ve

ct
or

i=
[0

,4
0,

80
,1

20
]

D
ec

od
e

L
SP

s

pa
ra

m
et

er
s

C
on

st
ru

ct
 fi

lt
er

A
_t

A
_t

[i
]

Shift excitation buffer left by 160 samplesexc[-154..0] exc[6..160]

Decode adaptive codebook
(pitch lag and gain)

codebook vector and gain
Decode algebraic (fixed)

54

A.2.2 Post-processing: Post Filter

Weight_Ai

Syn_filt Weight_AiResidu

preemphasis

Syn_filt

agc
syn[i]

Az[i]

F_gamma3

Ap3

F_gamma4

Az[i]

zero

Ap4

hres2

res2

syn_pst[i]

temp2

h[11..22]=0

h[0..10]

syn_pst[i]

mem_syn mem_syn

syn[i-10..i+40]

syn[0..159]

syn[-10..0]
syn[0..10]

syn[-10..0] := syn[0..10]

syn[0..159] := syn_pst[0..159]

6.2.1

Post_Filter
syn[0..159]

syn[0..159]

Az[0..44]

i=[0,40,80,120]

Post-filtered
speech

Tilt filter

Produce residual

Postfilter
impulse
response

0.03

0.04

0.04

0.01

0.010.03

0.05

Compute
tilt factor

Adaptive Gain Control (AGC)

55

B Vocoder Speci�cation

This appendix describes the overall SpecC [1, 2, 4, 6] speci�cation of the GSM Enhanced Full Rate Vocoder [9].
The SpecC blocks are directly derived from the blocks of C reference implementation (see Appendix A).

B.1 General (shared) behaviors

Syn filt Implement the LP �lter (synthesis �lter) 1=A(z).

Given an input sequence x(n), n = 0 : : :39, the LP �lter coe�cients a(k), k = 1 : : :10 and the �lter memory
y(m � 10) = mem(m), m = 0 : : :9, the output sequence is

y(n) = x(n)�
10X
k=1

a(k)y(n � k); n = 0 : : :39:

In addition, the �lter memory can be updated, too:

mem(m) = y(30 +m); m = 0 : : :9:

Residu Implement the LP inverse �lter A(z) (to get the residual).

Given an input sequence x(n), n = �10 : : :39 and the LP �lter coe�cients a(k), k = 1 : : :10 the output
sequence is

y(n) = x(n) +
10X
k=1

a(k)x(n� k); n = 0 : : :39:

56

B.2 Coder

Filter memory

update

Closed-loop

pitch search

pitch search

Open loop

Algebraic (fixed)

codebook search

Linear prediction

(LP) analysis

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��

��

��

�
�
�
�

��

����

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�� ��

����

��
��
��
��

��
��
��
��

�
�
�
�

����

prm[57]

speech[160]

bits

pre_process

code_12k2

prm2bits_12k2

m
em

ory

2x p
er fram

e

A(z)
2 su

b
fram

es

code_12k2

prm

speech[160]

sample coder

Figure 58: Coder

Encoding is based on �nding the parameters for the speech synthesis model at the receiving side which will
then be transmitted to the decoder over the medium.

The speech synthesis model is code-excited linear predictive (CELP) model: to synthesize speech in the decoder
a 10th order linear predictive (LP) synthesis �lter H(z) = 1=A(z) (responsible for the short term e�ects) is excited
with a signal constructed by adding two vectors from two codebooks:

� The so-called adaptive codebook is based on a pitch synthesis �lter which is responsible for covering long
term e�ect. The output of the pitch �lter is simply a previous excitation signal delayed by a certain amount
(lag) and scaled with a certain gain. Since the delay/lag of the pitch �lter can be fractional the delayed
excitation has to be interpolated (using a FIR �lter) between the two adjacent (delayed by an integer lag)
excitation values.

� The so-called �xed or algebraic codebook covers any remaining pulse excitation sequence left after removing
the short-term and long- term contributions. The �xed codebook contains 5 tracks with 8 possible positions
each. For each track two positions are chosen (10 pulses all together) and transmitted.

In general, the parameters for the two codebooks are chosen such that the error between the synthesized speech
(at the output of the LP synthesis �lter!) and the original speech is minimized. However, for the codebook
searches the original speech is weighted (by a weighting �lter W (z)) in order to account for the special properties
of human acoustic perception.

57

B.2.1 Preprocessing: pre process

The pre-processing consists of high-pass �ltering and signal down-scaling (dividing the signal by two to reduce the
possibility of overows) of the input speech samples. The high-pass �lter Hh1(z) is as given in the speci�cation.

Given the input signal x(n) and the �lter coe�cients a and b the output sequence y(n) of the pre-processing
step is

y(n) =
b0
2
x(n) +

b1
2
x(n� 1) +

b2
2
x(n� 2) + a1y(n � 1) + a2y(n � 2):

B.2.2 Linear prediction analysis and quantization

��

��

LSP -> A(z)
Interpolation &

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�� ��

����

�� ��

�� ��

����

���� ����

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

�� ��

��

����

������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

��

��

�
�
�
�

���� ���� �����
�
�
�
�
�

�
�
�
�
�
���

��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

Windowing &
Autocorrelation

Windowing &
Autocorrelation

A1(z) A2(z)

LSP

A(z) -> LSP

Quantization
LSP

A(z) Aq(z) prm

LSP -> Aq(z)
Interpolation &

LevinsonLevinson

speech

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�
����

�� ��

�� ��

���� ����

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

��

��

�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�� ��

��

��

��

�
�
�
�
�
�

�
�
�
�
�
�

���������
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��

��

���� ����

�
�
�
�

����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�� ��
�
�
�
�

�
�
�
�
��

��

��

�� �����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�
�
�
�

�
�
�
�
���
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

Levinson Levinson

Az_LSP

Az_LSP

A1(z) A2(z)

LSP2LSP1

Int_lpc2

Int_lpc

Q_plsf_5

Lag_window Lag_window

Autocorr Autocorr

speech

A(z) Aq(z) prm

Figure 59: LP Analysis

Determine the parameters (coe�cients) of the LP (short term) synthesis �lter twice per frame, encode them
for transmission and recompute the coe�cients for every subframe (e.g. to include the e�ects due to encoding
losses):

Autocorr Windowing and autocorrelation computation.

Two �xed windows (see speci�cation) w(n) are applied to 80 samples from the past speech frame plus the
160 samples from the current frame to get the windowed speech

s0(n) = s(n)w(n); n = 0 : : :239:

The autocorrelation r(k) of the windowed speech is then computed as

r(i) =
239X
n=i

s0(n)s0(n� i); i = 0 : : :10:

58

In addition, the C reference implementation normalizes r(i) and checks for overows.

Lag window Lag windowing of the autocorrelations.

r(k) = r(k)wlag(k); k = 1 : : :10

where the �xed window wlag(k) is as given in the speci�cation.

Levinson Levinson-Durbin algorithm to recursively compute the LP (linear prediction) �lter coe�cients a(k),
k = 1 : : :10.

Az lsp Convert LP �lter coe�cients to line spectral pairs (LSPs) q(k), k = 1 : : :10.

Q plsf 5 Quantization of the two set of line spectral pairs (LSPs) per frame.

Int lpc, Int lpc2 Interpolation of the quantized and unquantized LSPs for intermediate subframes and re-
conversion of the LSPs to LP �lter coe�cients.

The two sets of LSPs, q2(k) and q4(k) previously computed are used directly for the 2nd and 4th subframes.
For the 1st and 3th subframe two sets of LSPs are calculated by linearly interpolating the LSPs from
adjacent subframes

q1(k) = 0:54q4;old(k) + 0:5q2(k);
q3(k) = 0:5q2(k) + 0:54q4(k); k = 1 : : :10:

For the unquantized case of the 2nd and 4th subframes the LP �lter coe�cients are already directly available.
For all other cases (quantized LSPs and unquantized but interpolated LSPs for 1st and 3rd subframes):

Lsp Az Convert the LSPs back to LP �lter coe�cients.

Once the LP �lter parameters are found in the next steps the signals at the input of the LP �lter, i.e. the two
codebook conttributions have to be found.

B.2.3 Open-loop pitch analysis

��

��

pitch delay
Find open loop

��

���� ������

��
��
��
��

����

��

�
�
�
�

�
�
�
�

���
���
���
���

������

��
��
��
��

���
���
���
���

speech
Weighted

2
su

b
fr

am
es

speech A(z)

wsp

T0 min/max Aw(z)

�
�
�
�
�

�
�
�
�
�

���� ��

���� ��

���� ����

������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�
�
�
�
�

�
�
�
�
�

����

����

����

����

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

Weighted
Coefficients

Weighted
Coefficients

speech

Aw1(z) Aw2(z)

Filter Aw1(z)

Filter 1/Aw2(z)

A(z)

wsp

Figure 60: Open-loop pitch analysis

Open-loop pitch analysis determines delay/lag estimates for the (closed-loop) calculation of the pitch �lter
parameters in order to narrow the actual adaptive codebook search.

59

Weight Ai Calculate the two sets of weighted �lter coe�cients for the implementation of the weighting �lter:

ai(k) = a(k)i(k); k = 1 : : :10; i = 1; 2

where the spectral expansion factors i(k) are given as in the speci�cation.

Residu, Syn filt, weighted coe�cients For each of the 4 subframes �lter the speech signal through the

weighting �lter W (z) = A(z=1)
A(z=2)

to obtain the weighted speech signal.

Pitch ol Perform open-loop pitch analysis based on the weighted speech twice per frame to obtain two pitch lag
estimates Top(s), s = 0; 1.

Open-loop pitch analysis is done by �nding maximal correlations in the weighted speech signal.

Finally, using the two open-loop pitch lag (pitch delay) estimates the closed-loop pitch analysis search ranges
[T0min; T0max] for the 1st and 3rd subframes are preset to

T0min(s) = Top(s) � 3; T0min(s) � 18;

T0max(s) = Top(s) + 3; T0max(s) � 143; s = 0; 1:

B.2.4 Closed loop pitch analysis

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

prm h(n) gain_pit x(n) v(n) T0

��

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�������� ����

�� ��

��

�
�
�
�

��

��

�
�
�
�

��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

Target
signal

Impulse
response

Compute
code vector

pitch gain
Calculate

pitch delay
Find

x(n)h(n)

Aq(z) Aw(z) speech T0 min/max

Figure 61: Closed loop pitch search.

Based on the open-loop lag estimates search for the pitch �lter parameters in the given intervals.

B.2.4.1 Impulse response computation For each subframe the impulse response h(n) of the weighted

synthesis �lter H(z)W (z) = A(z=1)

Â(z)A(z=2)
is computed by

Syn filt, quantized coe�cients â(k), zero-�lled memory Filtering of the weighted �lter coe�cients
a1(k) = a(k)1(k) through the quantized synthesis �lter 1=Â(z).

60

Syn filt, weighted coe�cients a2(k) = a(k)2(k), zero memory Filtering of the intermediate result
through the weighted �lter 1=A(z=2).

The impulse response is needed in the codebook searches to model the e�ects a certain excitation vector will have
on the error at the output of the LP synthesis �lter.

B.2.4.2 Residual computation For each subframe the residual signal resLP (n) is calculated by

Residu, quantized coe�cients â(k) Filter the speech signal s(n) through the inverse quantized synthesis �lter
Â(z).

The residual is basically the signal needed at the input of the LP �lter in order to get the original speech back at
its output.

B.2.4.3 Target signal computation For each subframe calculate the target signal x(n) (weighted speech
minus e�ect of weighted synthesis �lter H(z)W (z)) for the adaptive codebook search:

Syn filt, quantized coe�cients â(k) Filter the residual resLP (n) through the quantized synthesis �lter
1=Â(z).

Residu, Syn filt, weighted coe�cients Filter the result through the weighting �lter W (z) = A(z=1)
A(z=2)

.

The �lters for the target signal computation use a special memory which is updated separately using additional
�lters (see B.2.6).

B.2.4.4 Adaptive codebook search For each subframe compute the adaptive codebook parameters (de-
lay/lag and gain of the pitch �lter).

First, the pitch delay/lag is found and encoded for transmission:

Pitch fr6 Closed-loop search to �nd the best pitch delay/lag T0 (integer and fractional parts) such that the
error between the target signal x(n) (original speech) and the past LP �ltered excitation (past excitation
convolved with impulse response h(n)) at delay T0 is minimized.

First, the integer part of the lag is found. Then, the fractional part (with resolution 1=6) is found by
interpolating the error between the adjacent integer boundaries.

Since the past excitation for delays inside the current subframe is not known yet the excitation bu�er for
the current subframe is initialized with the residual resLP (n).

Enc lag6 Encoding of the pitch lag T0 into 9 bits (1st and 3rd subframes) or 6 bits (2nd and 4th subframes). If
necessary, adjusts the fractional part of T0 for the following gain calculations.

For the 1st and 3rd subframes the lag is encoded with a resolution of 1=6 in the range [1736 ; 94
3
6] and integers

only in the range [95; 143]. In the latter case the fractional part of the pitch lag is set to zero.

For the 2nd and 4th subframes the lag is encoded with a resolution of 1=6 in an interval around the lag in
the previous (1st or 3rd) frame.

In addition, in the 1st and 3rd subframes the search ranges [T0min; T0max] are updated for upcoming searches
in the 2nd and 4th subframes, respectively.

T0min(s) = [T0]� 5; T0min(s) � 18;

T0max(s) = [T0] + 4; T0max(s) � 143; s = 0; 1:

In the 2nd and 4th subframe the search ranges are based on the integer pitch lag parts [T0] found in the 1st and
3rd subframe.

Then, the actual adaptive codevector is calculated in order to compute the adaptive codebook gain:

61

Pred lt 6 Compute the adaptive codebook vector v(n) by interpolating the past excitation at T0 using two FIR
�lters.

Convolve Filter the adaptive codebook vector v(n) through the weighted synthesis �lter H(z)W (z) by convolving
it with the impulse response h(n): y(n) = v(n) � h(n), i.e.

y(n) =
nX
i=0

x(i)h(n� i); n = 0 : : :39:

G pitch Calculate the adaptive codebook gain

gp =

P39
n=0 x(n)y(n)qP39
n=0 y(n)y(n)

; 0 � gp � 1:2

q gain pitch Quantize the adaptive codebook gain for transmission.

B.2.5 Algebraic (�xed) codebook analysis

��

�� ��

��

���� ����

���� ���� ����

�� ��

�
�
�
�

����

��

���� ����

��

���� ����

��

�� ��

���� ����

����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��

����

��

����

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

Prefilter
response

Update
target

codebook

gain_pit x(n) v(n)h(n)T0

h(n) x2(n)

z(n)code

Prefilter
code vector

Calculate
codebook gain

prm code gain_code z(n)

Search

Figure 62: Algebraic (�xed) codebook search

B.2.5.1 Update target signal and residual The remaining target signal x2(n) and residual resLTP (n)
(after removing long-term prediction contributions) are computed for the �xed codebook search by subtracting
the adaptive codebook e�ects:

x2(n) = x(n)� ĝpy(n); resLTP (n) = resLP (n) � v(n); n = 0 : : :39:

where x(n) and resLP (n) are the target signal and the residual for the adaptive codebook search (see B.2.4.3)
and B.2.4.2), ĝp is the quantized adaptive codebook gain and v(n) is the adaptive codebook vector.

62

B.2.5.2 Update impulse response The impulse response h(n) is updated for the �xed codebook search by
including a pre�lter FE(z) =

1

1�ĝ�[T 0]
p

(where ĝp, ĝp � 1:0 is the quantized pitch gain and [T0] is the integer part

of the pitch lag) which enhances spectral components to improve quality:

hE(n) = h(n) +
ĝp
8
h(n� [T0]); n = [T0] : : :39:

B.2.5.3 Codebook search: code 10i40 35bits

cor h x Compute the correlation between the target x2(n) and the impulse response hE(n):

d(n) =
39X
i=n

x2(n)hE (i� n); n = 0 : : :39:

The vector d(n) corresponds to the backward �ltered target signal.

The C reference implementation adds some normalization of d(n) such that the sum of the maxima of d(n)
for each of the 5 tracks will not saturate.

set sign Calculate the pulse sign information

sign(n) = sign[en(n)]; n = 0 : : :39

with en(n) being the sum of the normalized long term residual and the normalized correlation vector d(n):

en(n) =
resLTP (n)qP39
i=0 res

2
LTP (n)

+
d(n)qP39
i=0 d

2(n)
; n = 0 : : :39:

The sign information is then included into d(n):

d(n) = d(n)sign(n); n = 0 : : :39:

Also, the position with maximum correlation in each of the 5 tracks is computed:

posmax(t) = p s.t. en(p)sign(p) = max
j=t;t+5;:::;39

en(j)sign(j); t = 0 : : :4:

Finally, the starting positions of each pulse are calculated:

ipos(0) = ipos(5) = t s.t. posmax(t) = max
j=0:::4

posmax(j);

ipos(i) = ipos(i + 5) = (ipos(0) + i) mod 5; i = 1 : : :4:

cor h Compute the matrix of correlations of the impulse response hE(n) and include the sign information in it:

rr(i; j) =

39X
n=i

hE(n � i)hE (n� j)

!
sign(i)sign(j); i � j; i; j = 0 : : :39:

search 10i40 Search the algebraic (�xed) codebook to �nd the optimal pulse positions mj :

/* Fix position of �rst pulse to global maximum position */
i0 = posmax(ipos(0));
/* Four iterations over local maxima in other tracks */
for each track t = 1 : : :4 do

i1 = posmax(ipos(1)); /* max. pos. in track */

63

/* Successively add pulses in pairs */
for each pair (a; b) = (2; 3); (4; 5); (5;7); (8;9) do

/* Search pair positions to maximize mean square error A */
for ia = ipos(a) : : :39, step 5 do

for ib = ipos(b) : : :39, step 5 do

C =
Pb

j=0 d(ij);

ED = 1
16

Pb
j=0 rr(ij; ij) +

1
8

Pb
j=0

Pj�1
k=0 rr(ik; ij);

if C2

ED
>

C2
max

ED;max
then

Cmax = C; ED;max = ED;
iamax = ia; ibmax = ib;

end if
end for

end for
/* Set pair positions to maximizer */
ia = iamax; ib = ibmax;

end for
/* All pulse positions assigned, is it global maximum? */

if
C2
max

ED;max
> Amax then

Amax =
C2
max

ED;max
;

/* Remember pulse positions */
for j = 0 : : :9 do mj = ij end for

end if
/* Cyclically shift starting positions for next iteration */
ipos(1 : : :9) = ipos(2 : : :9; 1);

end for

build code Given the positions and signs of the 10 pulses build the �xed codebook vector c(n) and encode it for
transmission.

In addition, the �xed codebook vector is �ltered by convolving with the impulse response hE(n):

z(n) =
nX
i=0

c(i)hE (n� i); n = 0 : : :39:

B.2.5.4 Codebook gain

G code Calculate the �xed codebook gain

gc =

P39
n=0 x2(n)z(n)P39
n=0 z(n)z(n)

B.2.5.5 Quantization of �xed codebook gain In a preprocessing step, the �xed codebook vector c(n) is
�ltered through the pre�lter FE(z):

cE(n) = c(n) +
ĝp
8
c(n� [T0]); n = [T0] : : :39:

(see B.2.5.2) followed by:

q gain code Quantize the �xed codebook gain for transmission.

64

��

��

��

��

��

�� ����

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

Synthesize
speech

Quantize
codebook gain

memories
Update filter

gain_codecode

prmmemory

Aq(z)v(n) gain_pitx(n) z(n)

Figure 63: Filter memory update

B.2.6 Filter memory updates

In this �nal step, the memories of the synthesis and weighting �lters for the calculation of the pitch analysis
target signals (B.2.4.3) are updated for the next subframe.

The excitation signal u(n) in the present subframe is calculated:

u(n) = ĝpv(n) + ĝccE (n); n = 0 : : :39

where ĝp and ĝc are the quantized gains, v(n) is the adaptive codebook vector and cE(n) is the �ltered �xed
codebook vector. The excitation signal is also copied to the past excitation bu�er for the pitch synthesis �lter.

Syn filt, quantized coe�cients â(k) Synthesized the speech ŝ(n) locally by �ltering the excitation signal
u(n) through the LP �lter 1=Â(z).

The memories of the synthesis and weighting �lters are then updated to

e(n) = s(n) � ŝ(n); n = 30 : : :39

and

ew(n) = x(n)� ĝpy(n) � ĝcz(n); n = 30 : : :39;

respectively.

B.2.7 Serialization: Prm2bits 12k2

Conversion of the set of parameters obtained by the encoder for a complete frame into a serial stream of 244 bits
corresponding to a transfer rate of 12:2 kbit/s.

65

P
re

fi
lt

er
p

it
ch

_c
o

n
tr

G
_c

o
d

e
P

re
fi

lt
er

co
r_

h
_x

se
t_

si
g

n

co
r_

h

se
ar

ch
_1

0i
40

b
u

ild
_c

o
d

e

C
o

d
eb

o
o

k

S
yn

_f
ilt

u
p

d
_m

em

ex
ci

ta
ti

o
n

q
_g

ai
n

_c
o

d
e

U
p

d
at

e

E
n

c_
la

g
6

P
re

d
_l

t_
6

C
o

n
vo

lv
e

G
_p

it
ch

q
_g

ai
n

_p
it

ch

R
es

id
u

S
yn

_f
ilt

R
es

id
u

S
yn

_f
ilt

S
yn

_f
ilt

S
yn

_f
ilt

C
lo

se
d

_l
o

o
p

P
it

ch
_f

r6

2
su

b
fr

am
es

R
es

id
u

S
yn

_f
ilt

W
ei

g
h

t_
A

i
W

ei
g

h
t_

A
i

2 subframes

O
p

en
_l

o
o

p

P
it

ch
_o

l

A
z_

ls
p

A
z_

ls
p

L
P

_a
n

al
ys

is

L
ev

in
so

n
L

ev
in

so
n

A
u

to
co

rr

L
ag

_w
in

d
o

w

A
u

to
co

rr

L
ag

_w
in

d
o

w

Q
_p

ls
f_

5

In
t_

lp
c

In
t_

lp
c2

2x
 p

er
 f

ra
m

e

co
d

e_
12

k2

P
re

_p
ro

ce
ss

p
rm

2b
it

s_
12

k2

Figure 64: Coder block diagram.

66

B.3 Decoder

����

����

����

����

�
�
�

�
�
�

��

�
�
�

�
�
�

��

��

��

��
��
��
��

��
��
��

��
��
��

decode_12k2

Post_Filter

Bits2prm_12k2

Decode

LP parameters
4 su

b
fram

es

bits

speech[160]

A(z)

synth[40]

synth[40]

prm[57]

prm[13]

decoder

Figure 65: Decoder

Decoding is basically the reverse process of encoding in the sense that simply the synthesis model described in
B.2 is implemented. Therefore, the steps are very similar to the routines described in the encoding part and the
reader is referred to the �rst part for details.

B.3.1 Parameter extraction: Bits2prm 12k2

Extract the decoder parameter set from the serial stream of 244 bits for a complete frame.

B.3.2 Decoding of LP �lter parameters

��

���� ��

Decode
LSPs

��
��
��
��

��

���� ��

��
��
��
��

Interpolate
filter coeff.

LSP

prm[5]

A(z)

Figure 66: LSP decoding

For each complete frame:

67

D plsf 5 The received LSP indices are used to reconstruct the two LSPs for the 2nd and 4th subframes.

Int lpc Interpolation of the LSPs for the 1st and 3rd subframes and conversion of the LSPs to LP �lter coe�cients
a(k), k = 1 : : :10 for all 4 subframes.

B.3.3 Decoding subframe and synthesizing speech

��

���� ��

Compute
adaptive vector

��

�
�
�
�

�
�
�
�

��

Excitation
Emphasize

��

�� ��

����

���� ������

���
���
���
���

���� ��

���� ������

��

����

��

����

��

���� ������

������������

������

��

��
��
��
��

����

����

�
�
�
�

����

����

���� ��

��
��
��
��

�
�
�
�

����

������

����

����

����

��
��
��
��

���
���
���
���

��
��
��
��

Decode Decode Decode
pitch gain code vectorpitch lag

Prefilter
code vector

Decode
code gain

Excitation
Compute

Adaptive
gain control

Synthesize
speech

synth[40]

prm[13] A(z)

gain_code

code

code

excp[40]

exc[40]

gain_pit

Figure 67: Subframe decoding

B.3.3.1 Decoding of the adaptive codebook vector For each subframe, the received pitch lag is decoded
and used to construct the adaptive codebook vector v(n) from the past excitation bu�er.

Dec lag6 Decode the received pitch index to construct the integer and fractional parts of the pitch lag T0.

Pred lt 6 Compute the adaptive codebook vector v(n) by interpolating the past excitation at T0.

B.3.3.2 Decoding of the adaptive codebook gain For each subframe:

d gain pitch Decode the received gain index to construct the adaptive codebook gain ĝp.

B.3.3.3 Decoding of the algebraic codebook vector For each subframe:

dec 10i40 35bits The received �xed codebook index is used to reconstruct the signs and positions of the 10
pulses which then give the �xed codebook vector c(n).

After decoding, the pre�lter FE(z) (see B.2.5.2) is applied to the �xed codebook vector:

cE(n) = c(n) +
ĝp
8
c(n� [T0]); n = [T0] : : :39

where ĝp and [T0] are the previously decoded pitch gain and integer part of the pitch lag.

68

B.3.3.4 Decoding of the algebraic codebook gain For each subframe:

d gain code Given the codebook vector cE(n) and the received gain index the �xed codebook gain ĝc is calculated.

B.3.3.5 Computing the reconstructed speech In each subframe, the basic excitation at the input of the
LP synthesis �lter is

u(n) = ĝpv(n) + ĝccE (n); n = 0 : : :39

given the previously decoded codebook vectors and gains.
If ĝp > 0:5 then the excitation is modi�ed to emphasize the contribution of the adaptive codebook vector:

û(n) = u(n) +
ĝp
16
ĝpv(n); n = 0 : : :39

is calculated and the excitation u(n) is updated by

agc2 Adaptive gain control to compensate for the di�erence between u(n) and û(n).

The gain scaling factor is

� =

sP39
n=0 u

2(n)P39
n=0 û

2(n)

and the �nal excitation signal is then calculated to

u(n) = �û(n); n = 0 : : :39:

In other cases (ĝp � 0:5) the excitation signal u(n) is not modi�ed.

Finally, the speech is synthesized by passing the excitation through the synthesis �lter 1=Â(z):

Syn Filt, coe�cients a(k), k = 1 : : :10 Filter the excitation signal u(n) through the LP synthesis �lter to get
the reconstructed speech signal ŝ(n).

B.3.4 Post-�ltering: Post Filter

In each of the 4 subframes a post-�ltering of the synthesized speech is performed.

Weight Ai Calculate the weighted �lter coe�cients

ân(k) = â(k)n(k);

âd(k) = â(k)d(k); k = 1 : : :10:

for the formant post�lter Hf (z) = =fracÂ(z=n)Â(z=d).

B.3.4.1 Produce residual signal

Residu, coe�cients ân Filter the speech ŝ(n) through the LP inverse �lter Â(z=n) to get the residual r̂(n).

B.3.4.2 Tilt compensation �lter First, calculate the truncated impulse response hf (n) of the formant
post�lter:

Syn filt, coe�cients âd, zero memory Filter the coe�cients ân(k) through the LP �lter 1=Â(z=d).

69

��

�� ��

����

����

��

����

Weighted
coefficients

Weighted
coefficients

�
�
�
�

�
�
�
�

��

Adaptive
gain control

����

���� ����

��

��

��

����

����
��

����

��

�
�
�
�

��

��

��

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

residual
Produce Compute

tilt factor

Tilt filter

speech
Postfiltered

syn[40] A(z)

syn_pst[40]

Figure 68: Post �ltering

Next, the correlations of the impulse response are calculated:

rh(i) =
21�iX
j=0

hf (j)hf (j + i); i = 0; 1:

The tilt factor is then given by

� =

(
0:8 rh(1)rh(0)

; rh(1) > 0

0 otherwise

Finally, the residual is passed through the tilt compensation �lter Ht(z) = 1� �z�1:

Preemphasis Filter the residual r̂(n) through the tilt compensation �lter:

r̂(n) = r̂(n)� �r̂(n� 1); n = 39 : : :0:

B.3.4.3 Post-�ltered speech

Syn filt, coe�cients âd Filter the compensated residual r̂(n) through the LP �lter 1=Â(z=d) to get the post-
�ltered speech signal ŝf (n).

agc Given the synthesized speech signal ŝ(n) and the post-�ltered speech signal ŝf (n) perform adaptive gain
control to compensate for the gain di�erence.

Computes the �nal gain-scaled post-�ltered speech signal ŝ0(n).

B.3.5 Up-scaling

Reverse the signal down-scaling done in the encoder by multiplying the post-�ltered speech signal ŝ0(n) by 2.
Finally, the signal is truncated to 13 bits according to the output format.

70

d
_g

ai
n

_p
it

ch
D

ec
_l

ag
6

d
ec

_1
0i

40

E
m

p
h

as
iz

e ag
c2

S
yn

_f
ilt

E
xc

it
at

io
n

d
ec

o
d

e_
12

k2

P
re

d
_l

t_
6

P
re

fi
lt

er

d
_g

ai
n

_c
o

d
e

W
ei

g
h

t_
A

i
W

ei
g

h
t_

A
i

R
es

id
u

ti
lt

_f
ac

S
yn

_f
ilt

p
re

em
p

h
as

is

S
yn

_f
ilt

ag
c

P
o

st
_F

ilt
er

D
_p

ls
f_

5

In
t_

lp
c

D
_l

sp

B
it

s2
p

rm
_1

2k
2

4
su

b
fr

am
es

Figure 69: Decoder block diagram.

71

C Simulation Results

C.1 Software

The following tables list the cycle-accurate results obtained for simulating the coder and decoder on the ISS for
the Motorola DSP5600. Tables are given for unoptimized, initial code and for the software after optimizations.

72

Routine calls cycles instructions
max total avg. max total avg

FAutocorr 18ae 6 104958 629748 104958 53938 323628 53938
FAz lsp 16df 6 41258 246714 41119 24798 148315 24719
FChebps 1822 628 322 202216 322 200 125600 200
FCoder 12k2 11cc 3 2715917 8142878 2714292 1561164 4680860 1560286
FConvolve 19a0 24 29702 712848 29702 16181 388344 16181
FEnc lag6 2852 12 99 928 77 52 503 41
FG code 2bd2 12 937 11244 937 842 10104 842
FG pitch 28ae 12 2826 33818 2818 1625 19449 1620
FGet lsp pol 36c4 36 1530 55080 1530 963 34668 963
FInt lpc 30e4 3 14879 44629 14876 9471 28409 9469
FInt lpc2 3140 3 7618 22840 7613 4866 14591 4863
FInterpol 6 37e6 70 270 18340 262 134 9180 131
FInv sqrt 3788 252 135 30946 122 77 17668 70
FLag max 25b0 18 86950 916735 50929 60707 641995 35666
FLag window 2fd2 6 443 2658 443 318 1908 318
FLevinson 2cb7 6 18650 111788 18631 10373 62168 10361
FLsf lsp 358b 6 404 2421 403 239 1434 239
FLsf wt 34af 6 419 2490 415 293 1758 293
FLsp Az 363b 18 3628 65195 3621 2300 41347 2297
FLsp lsf 35bc 6 1960 11616 1936 945 5606 934
FNorm Corr 271b 12 64233 733169 61097 39419 448217 37351
FPitch fr6 2669 12 66638 757923 63160 40623 460564 38380
FPitch ol 248b 6 158656 946007 157667 111212 664359 110726
FPre Process 383c 3 15248 45744 15248 10268 30804 10268
FPred lt 6 2c34 12 21995 263828 21985 11516 138150 11512
FPrm2bits 12k2 3013 3 9599 28592 9530 4731 14152 4717
FQ plsf 5 318f 3 116512 348864 116288 75269 225521 75173
FReorder lsf 361c 6 207 1239 206 126 756 126
FResidu 29d0 36 12528 451008 12528 8063 290268 8063
FSet zero 34f7 9 1299 3119 346 1289 3029 336
FSyn �lt 306f 72 11124 792192 11002 5885 418248 5809
FVq subvec 3331 12 22498 184014 15334 14900 122334 10194
FVq subvec s 33be 3 48033 143853 47951 30655 91860 30620
FWeight Ai 2a20 48 132 6336 132 110 5280 110
Fbuild code 2363 12 5730 68159 5679 3190 37976 3164
Fcode 10i40 35bits 19f7 12 246805 2957399 246449 132574 1589235 132436
Fcor h 1c25 12 80454 965331 80444 44758 537033 44752
Fcor h x 1a74 12 31074 371601 30966 17096 204580 17048
Fencoder reset 47a3 1 3553 3553 3553 3322 3322 3322
Fq gain code 2a7d 12 2471 28688 2390 1415 16661 1388
Fq gain pitch 2a40 12 584 6450 537 299 3402 283
Fq p 1bf7 120 60 6360 53 31 3120 26
Fsearch 10i40 1d21 12 124153 1485073 123756 64517 772537 64378
Fset sign 1b17 12 4633 55127 4593 2673 31697 2641

Table 8: Initial delays for coder behaviors.

73

Routine calls cycles instructions
max total avg. max total avg

FBin2int 195c 1425 160 119720 84 97 70635 49
FBits2prm 12k2 1920 25 6533 162495 6499 3676 91485 3659
FD plsf 5 1b14 25 2888 72194 2887 1801 44968 1798
FDec lag6 1516 100 140 12475 124 72 6453 64
FDecoder 12k2 116c 25 192021 4730059 189202 105919 2607675 104307
FGet lsp pol 1a06 200 1278 255600 1278 809 161800 809
FInit Decoder 12k2 112c 1 775 775 775 719 719 719
FInit Post Filter 13b6 1 270 270 270 235 235 235
FInt lpc 15b4 25 12295 306844 12273 8009 200022 8000
FInv sqrt 1ab6 191 142 27098 141 76 14504 75
FLog2 1fe8 200 118 23600 118 64 12800 64
FLsf lsp 206f 50 470 23475 469 246 12300 246
FLsp Az 1993 100 2982 297244 2972 1934 193072 1930
FPost Filter 13cc 25 153541 3838501 153540 85951 2148763 85950
FPow2 2035 100 84 8308 83 42 4154 41
FPred lt 6 14a8 100 21645 2163702 21637 11321 1131815 11318
FReorder lsf 1973 50 261 13025 260 144 7200 144
FResidu 1848 100 17044 1704400 17044 9300 930000 9300
FSet zero 1806 104 635 7334 70 625 6192 59
FSyn �lt 189c 300 11078 2821100 9403 5882 1497600 4992
FWeight Ai 1653 200 132 26400 132 110 22000 110
Fagc 1673 100 2585 258476 2584 1778 177788 1777
Fagc2 1747 91 2291 208481 2291 1607 146237 1607
Fd gain code 1d81 100 1242 123217 1232 742 73929 739
Fd gain pitch 1d12 100 109 10550 105 67 6560 65
Fdec 10i40 35bits 1f7e 100 845 82905 829 492 48455 484
Fdecoder homing frame test 2753 24 47 1128 47 24 576 24
Fdecoder reset 2774 1 1373 1373 1373 1222 1222 1222
Fpreemphasis 1815 100 490 49000 490 384 38400 384
Freset dec 27f7 1 2454 2454 2454 1776 1776 1776
Freset rx dtx 21fe 1 1064 1064 1064 545 545 545
Frx dtx 22e8 25 127 3175 127 48 1200 48
Fupdate gain code history rx 2550 100 29 2609 26 11 1100 11
Fupdate lsf history 2470 25 715 17875 715 548 13700 548

Table 9: Initial delays for decoder behaviors.

74

Routine calls cycles instructions
max total avg. max total avg

FAutocorr 1888 12 6228 74736 6228 5806 69672 5806
FAz lsp 16cc 12 34209 405440 33786 18818 223085 18590
FChebps 1820 1244 251 312244 251 142 176648 142
FCoder 12k2 11c9 6 1437055 8610119 1435019 812501 4866760 811126
FConvolve 4077 48 2297 110256 2297 1926 92448 1926
FEnc lag6 2680 24 98 1860 77 51 1007 41
FG code 2963 24 1231 29544 1231 805 19320 805
FG pitch 26da 24 2448 58585 2441 1291 30903 1287
FGet lsp pol 41cf 72 1276 91872 1276 807 58104 807
FInt lpc 2cc5 6 11911 71466 11911 7746 46476 7746
FInt lpc2 2d15 6 6096 36576 6096 3969 23814 3969
FInterpol 6 30ca 154 259 38478 249 124 18568 120
FInv sqrt 306c 504 142 68625 136 76 36765 72
FLag max 4033 36 13620 290418 8067 12517 265881 7385
FLag window 2c3a 12 226 2712 226 187 2244 187
FLevinson 29d5 12 14092 168872 14072 7549 90443 7536
FLsf lsp 2fb2 12 470 5634 469 246 2952 246
FLsf wt 2ee4 12 379 4470 372 231 2746 228
FLsp Az 4166 36 2898 104286 2896 1882 67752 1882
FLsp lsf 2fe0 12 2572 30364 2530 1216 14372 1197
FNorm Corr 25ad 24 15928 352299 14679 10859 241341 10055
FPitch fr6 2505 24 18283 403716 16821 11979 265867 11077
FPitch ol 23f5 12 28097 328942 27411 24770 291140 24261
FPre Process 311d 6 10766 64596 10766 7226 43356 7226
FPred lt 6 408a 24 2319 55617 2317 1938 46486 1936
FQ plsf 5 2d58 6 53627 321478 53579 37723 226206 37701
FReorder lsf 304c 12 261 3126 260 144 1728 144
FResidu 401f 72 1457 104904 1457 1126 81072 1126
FSet zero 2f20 9 339 908 100 328 809 89
FSyn �lt 3fec 144 1692 239712 1664 1263 179664 1247
FVq subvec 40ae 24 9020 149286 6220 6694 110736 4614
FVq subvec s 40f5 6 20551 123306 20551 15150 90900 15150
FWeight Ai 27db 96 102 9792 102 80 7680 80
Fbuild code 22ea 24 5326 126266 5261 2809 66806 2783
Fcode 10i40 35bits 18eb 24 248694 5958414 248267 128118 3070280 127928
Fcor h 1af7 24 82634 1983120 82630 42753 1026024 42751
Fcor h x 1965 24 28544 682536 28439 14511 347144 14464
Fencoder homing frame test 3f46 6 25 150 25 12 72 12
Fencoder reset 3f59 1 1242 1242 1242 999 999 999
Fq gain code 282f 24 2194 50136 2089 1097 25578 1065
Fq gain pitch 27f8 24 566 12840 535 267 6160 256
Fq p 1adc 240 41 8400 35 18 3480 14
Fsearch 10i40 1bdc 24 126468 3023685 125986 65225 1560428 65017
Fset sign 1a00 24 5199 122983 5124 2640 61886 2578

Table 10: Coder delays after software optimization.

75

Routine calls cycles instructions
max total avg. max total avg

FBin2int 17da 1425 143 109285 76 78 57010 40
FBits2prm 12k2 179e 25 6099 152060 6082 3131 77860 3114
FD plsf 5 186c 25 2588 64694 2587 1501 37468 1498
FDec lag6 148a 100 140 12475 124 72 6453 64
FDecoder 12k2 1168 25 72030 1736836 69473 44869 1087593 43503
FGet lsp pol 26f6 200 1276 255200 1276 807 161400 807
FInit Decoder 12k2 1128 1 283 283 283 225 225 225
FInit Post Filter 139e 1 120 120 120 83 83 83
FInt lpc 1528 25 11911 297775 11911 7746 193650 7746
FInv sqrt 180e 191 142 27104 141 76 14507 75
FLog2 1cf2 200 118 23600 118 64 12800 64
FLsf lsp 1d79 50 470 23475 469 246 12300 246
FLsp Az 268d 100 2898 289675 2896 1882 188200 1882
FPost Filter 13b4 25 29825 745607 29824 21315 532866 21314
FPow2 1d3f 100 84 8308 83 42 4154 41
FPred lt 6 25b1 100 2319 231729 2317 1938 193686 1936
FReorder lsf 17ee 50 261 13025 260 144 7200 144
FResidu 2546 100 1457 145700 1457 1126 112600 1126
FSet zero 1753 104 173 3392 32 162 2146 20
FSyn �lt 2513 300 1692 433400 1444 1263 322600 1075
FWeight Ai 15bb 200 102 20400 102 80 16000 80
Fagc 15d8 100 2228 222782 2227 1421 142091 1420
Fagc2 16a0 91 1934 175994 1934 1250 113750 1250
Fd gain code 1aac 100 1097 108717 1087 597 59429 594
Fd gain pitch 1a40 100 97 9350 93 55 5360 53
Fdec 10i40 35bits 1c8e 100 711 69505 695 357 34955 349
Fdecoder homing frame test 2421 25 47 1175 47 24 600 24
Fdecoder reset 2442 1 646 646 646 489 489 489
Fpreemphasis 175e 100 372 37200 372 266 26600 266
Freset dec 24b9 1 1629 1629 1629 938 938 938
Freset rx dtx 1e� 1 966 966 966 440 440 440
Frx dtx 1fe3 25 127 3175 127 48 1200 48
Fupdate gain code history rx 222f 100 29 2609 26 11 1100 11
Fupdate lsf history 215b 25 505 12625 505 338 8450 338

Table 11: Decoder delays after software optimization.

76

