
Speci�cation and Design of Embedded Systems

R. D�omer, D. Gajski, J. Zhu

Department of Information and Computer Science

University of California, Irvine

Irvine, CA 92697-3425, USA

Abstract

With the rising complexity of digital designs and the

deep sub-micron era right ahead, the speci�cation and

the design of embedded systems has to move to higher

levels of abstraction. Co-design, the design of systems

involving both hardware and software parts, consists

of a set of re�nement tasks that map an abstract spec-

i�cation of the design onto the intended system ar-

chitecture. This article describes a generic co-design

methodology including speci�cation of the design at a

high level of abstraction and step-wise re�nement.

1 Introduction

The continuing decrease in geometry size and in-

crease in chip density raises the complexity of digital

systems tremendously. Deep sub-micron design, deal-

ing with process technologies of 0.25�m and below,

leads to millions of gates on a chip. This makes it pos-

sible to integrate a complete complex system on a sin-

gle chip. System-on-a-chip is desirable especially for

multi-media applications and portable devices where

embedded systems save space, power and costs.

However, the problem is that such large complexi-

ties are beyond the size that established electronic de-

sign automation (EDA) tools (e.g. high-level synthe-

sis) can handle. Even more, time-to-market require-

ments are still shrinking, so an automated design ow

with e�cient tools is necessary.

One solution to handle such complexities is to move

to higher levels of abstraction. This essentially means

reducing the number of objects that have to be consid-

ered in a particular design task. Obviously, this can

be done by introducing a new level of hierarchy, which

is grouping of objects. This is a well-known technique

in computer aided design (CAD). For example at the

logic level transistors are grouped to logic gates, at

the register transfer level (RTL) gates are grouped to

build registers, ALUs and other RTL components.

At the system level the components used are o�-

the-shelf or application speci�c processors, memo-

ries, busses, and application speci�c integrated circuits

(ASICs). Furthermore, the integration of intellectual

property (IP) and reuse of formerly designed circuits

as core cells becomes an important issue.

System design simultaneously involves hardware

design as well as software design and therefore is called

co-design. Co-design usually starts from a formal, ab-

stract speci�cation of the intended design and per-

forms a sequence of re�nement tasks which eventually

map the initial speci�cation onto a target architecture.

The following section presents a generic co-design

methodology including design modeling, step-wise re-

�nement, simulation and veri�cation. The essen-

tial co-design tasks, namely allocation, partitioning,

scheduling, and communication synthesis, are dis-

cussed in detail.

2 A Generic Co-Design Methodology

This section presents a methodology that converts

a design speci�cation into an architecture leading to

manufacturing by use of standard methods and CAD

tools.

As shown in Fig. 1, co-design starts from a high-

level speci�cation which describes the functionality as

well as the performance, power, cost, and other con-

straints of the intended design. During the co-design

process, the designer will go through a series of well-

de�ned design steps that include allocation, partition-

ing, scheduling and communication synthesis, which

form the synthesis ow of the methodology.

The result of the synthesis ow will then be fed into

the backend tools, shown in the lower part of Fig. 1.

Here, a compiler is used to implement the functional-

ity mapped to processors (software synthesis), a high-

level synthesizer is used to implement the functionality

mapped to ASICs (hardware synthesis), and an inter-

face synthesizer is used to implement the functionality

of required interfaces.

During each design step, the design model will be

statically analyzed in order to estimate certain quality

Scheduling

Analysis &
Validation

Analysis &
Validation

Analysis &
Validation

Compilation Interface
synthesis

Synthesis Flow Analysis & Validation Flow

Backend

Spec

 Allocation,
Partitioning

Partitioning
 model

High Level
Synthesis

Analysis &
Validation

Simulation
 model

Simulation
 model

Analysis &
Validation

Manufacturing

Communication
 model

Scheduling
 model

Simulation
 model

Simulation
 model

Simulation
 model

Implementation
 model

Communication
 Synthesis

Figure 1: A generic co-design methodology.

metrics and to check whether these satisfy the con-

straints. This design model will also be used to gener-

ate a simulation model, which is used to dynamically

validate the functional correctness of the design. In

case the validation fails, a debugger can be used to lo-

cate and �x the errors. Simulation is also used to col-

lect pro�ling information which in turn will improve

the accuracy of the quality metrics estimation. This

set of tasks forms the analysis and validation ow of

the methodology as shown on the right part of Fig. 1.

It should be noted that for this methodology it is

desirable that all the design models are captured in the

same language [7]. Only in this case the analysis and

validation ow can use the same tools at each stage.

Also, all the tools can share the same design represen-

tation, possibly even the same data structures. Fur-

thermore, the designer can compare the models at dif-

ferent design stages easily.

2.1 System speci�cation

The system speci�cation should describe the func-

tionality of the system without specifying the imple-

mentation. It should also be executable to make it

dynamically veri�able.

Although the language for specifying and model-

ing a system is an important issue, we use in this

article only a graphical representation that focusses

on the hierarchy, concurrency and transitions between

behaviors of the design. For more information about

languages supporting these and other concepts please

refer to [2, 5, 7].

B0

B1

B2

B3

B4

B5

B6

B7

shared sync

sync

write read

Figure 2: System speci�cation

Fig. 2 shows an example where the system itself is

speci�ed as the top behavior B0, which contains an

integer variable shared and a boolean variable sync.

Behavior B0 contains three child behaviors, B1, B2,

B3, with sequential ordering. While B1 and B3 are

atomic behaviors speci�ed by a sequence of impera-

tive statements, B2 is a composite behavior consist-

ing of two concurrent behaviors B4 and B5. B5 in

turn consists of B6 and B7 in sequential order. While

most of the actual behavior of an atomic behavior is

omitted in the �gure for space reasons, we do show a

producer-consumer example relevant for later discus-

sion: B6 computes a value for variable shared, and B4

consumes this value by reading shared. Since B6 and

B4 are executed in parallel, they synchronize with the

variable sync using signal/wait primitives to make sure

that B4 accesses shared only after B6 has produced the

value for it.

2.2 Allocation and Partitioning

Given a library of system components such as pro-

cessors, memories and custom IP modules, the task of

allocation is de�ned as the selection of the type and

number of these components, as well as the determi-

nation of their interconnection, in such a way that the

functionality of the system can be implemented, the

constraints are satis�ed, and the objective cost func-

tion is minimized. Allocation is usually done manually

by designers and is the starting point of design explo-

ration.

Proc1 ASIC1

PE1 PE2

IF1 IF2 IF3

Arbiter1

system bus

bus 2bus1 bus3

LMem1 GMem1 LMem2

Figure 3: Target architecture model

The result of the allocation task can be a customiza-

tion of a generic target architecture. Fig. 3 shows an

example of an architecture that consists of two pro-

cessing elements and one global memory. Both pro-

cessing elements have a local memory connected to

their local busses and can access the global memory

via interfaces and system busses.

Partitioning de�nes the mapping between the set of

behaviors in the speci�cation and the set of allocated

components in the selected architecture. The quality

of such a mapping is determined by how well the re-

sult can meet the design constraints and minimize the

design costs.

PE0 PE1

B0

B2

B5
B6

B7

B3

B4_ctrl

B1

B4

Top
shared sync B1_start B1_done B4_start B4_done

B1_ctrl

sync

B1_start

B1_done

B4_start

B4_done

Figure 4: System model after partitioning

The system model after allocation and partition-

ing must reect the partitioning decision and must

be complete in order to allow validation. As shown in

Fig. 4 an additional level of hierarchy is inserted in the

design model which describes the selected partitioning

into two processing elements (PE), PE0 and PE1. Ad-

ditional controlling behaviors are also inserted when-

ever child behaviors are assigned to di�erent PEs than

their parents. For example, in Fig. 4, behavior B1 ctrl

and B4 ctrl are inserted in order to control the exe-

cution of B1 and B4, respectively. Furthermore, in

order to maintain the functional equivalence between

the partitioned model and the original speci�cation,

synchronization operations between PEs must be in-

serted. In Fig. 4 synchronization variables , B1 start,

B1 done, B4 start, B4 done are added so that the exe-

cution of B1 and B4, which are assigned to PE1, can be

controlled by their controlling behaviors B1 ctrl and

B4 ctrl through inter-PE synchronization.

However, the model after partitioning is still far

from implementation for two reasons: there are con-

current behaviors in each PE that have to be serial-

ized; and di�erent PEs communicate through global

variables which have to be localized.

2.3 Scheduling

Given a set of behaviors and optionally a set of per-

formance constraints, the scheduling task determines a

total order in invocation time of the behaviors running

on the same PE, while respecting the partial order im-

posed by dependencies in the functionality as well as

minimizing the synchronization overhead between the

PEs and context switching overhead within the PEs.

Depending upon how much information on the par-

tial order of the behaviors is available at compile time,

several di�erent scheduling strategies can be used. At

one extreme, where ordering information is unknown

until runtime, the system implementation often relies

on the dynamic scheduler of an underlying runtime

system. In this case, the model after scheduling is

not much di�erent from the model after partition-

ing, except that a runtime system is added to per-

form the scheduling. In general this strategy su�ers

from context switching overhead when a running task

is blocked and a new task is scheduled.

B1

B3

B4

B6

B7

shared sync

PE0 PE1

Top B6_start B3_start

B6_start

sync

B3_start

Figure 5: System model after scheduling

On the other extreme, if the partial order is com-

pletely known at compile time, a static scheduling

strategy can be taken, provided a good estimation on

the execution time of each behavior can be obtained.

This strategy eliminates the context switching over-

head completely, but may su�er from inter-PE syn-

chronization especially in the case of inaccurate per-

formance estimation. On the other hand, the strategy

based on dynamic scheduling does not have this prob-

lem because whenever a behavior is blocked for inter-

PE synchronization, the scheduler will select another

one to execute. Therefore the selection of the schedul-

ing strategy should be based on the trade-o� between

context switching overhead and CPU utilization.

The model generated after static scheduling will

remove the concurrency among behaviors inside the

same PE. As shown in Fig. 5, all child behaviors in

PE0 are now sequentially ordered. In order to main-

tain the partial order across the PEs, synchronization

between them must be inserted. For example, B6 is

synchronized by B6 start, which will be asserted by

B1 when it �nishes. Note that B1 ctrl and B4 ctrl in

Fig. 4 now are eliminated by the optimization carried

out by static scheduling.

It should be mentioned that here we de�ne the

tasks, rather than the algorithms of co-design. Good

algorithms are free to combine several tasks together.

For example, an algorithm can perform the partition-

ing and static scheduling at the same time, in which

case intermediate results, such as B1 ctrl and B4 ctrl,

are not generated at all.

2.4 Communication Synthesis

Up to this stage, the communication and syn-

chronization between concurrent behaviors are accom-

plished through shared variable accesses. The task of

communication synthesis is to resolve the shared vari-

able accesses into an appropriate inter-PE communi-

cation scheme at implementation level. If the shared

variable is a shared memory the communication syn-

thesizer will determine the location of such variables

and change all accesses to the shared variables in the

model into statements that read or write to the cor-

responding addresses. If the variable is in the local

memory of one particular PE all accesses to this shared

variable in the models of other PEs have to be changed

into function calls to message passing primitives such

as send and receive. In both cases the synthesizer also

has to insert interfaces for the PEs and shared mem-

ories to adapt to di�erent protocols on the buses.

IF0 IF1 IF2

S
hared_m

em

Top
lbus0 lbus1 lbus2 sbus

PE1

B1

B4

PE0

B0

B2
B5

B6

B7

B3

B4_ctrl

B1_ctrl

A
rbiter

Figure 6: System model after communication synthe-

sis

The generated model after communication synthe-

sis, as shown in Fig. 6, di�ers from previous models in

several aspects. New behaviors for interfaces, shared

memories and arbiters are inserted at the highest level

of the hierarchy. In Fig. 6 the added behaviors are IF0,

IF1, IF2, Shared mem, and Arbiter.

The shared variables from the previous model are

all resolved. They either exist in shared memory or

in local memory of one or more PEs. The commu-

nication channels of di�erent PEs now become local

or system buses. In Fig. 6, we have chosen to put all

the global variables in Shared mem, and hence all the

global declarations in the top behavior are moved to

the behavior Shared mem. New global variables in the

top behavior are the buses lbus0, lbus1, lbus2, sbus.

If necessary, a communication layer is inserted into

the runtime system of each PE. The communication

layer is composed of a set of inter-PE communication

primitives in the form of driver routines or interrupt

service routines, each of which contain a stream of I/O

instructions, which in turn talk to the corresponding

interfaces. The accesses to the shared variables in the

previous model are transformed into function calls to

these communication primitives. For the simple case

of Fig. 6 the communication synthesizer will deter-

mine the addresses for all variables in Shared mem

and transforms all accesses to these variables appropri-

ately. Direct accesses to the variables are exchanged

with reading and writing to the corresponding ad-

dresses.

2.5 Analysis and validation ow

Before each design re�nement, the input design

model must be functionally validated through simu-

lation or formal veri�cation. It also needs to be ana-

lyzed, either statically, or dynamically with the help

of the simulator or estimator, in order to obtain an

estimation of the quality metrics, which will be evalu-

ated by the synthesizer to make good design decisions.

This motivates the set of tools to be used in the anal-

ysis and validation ow of the methodology in Fig. 1.

Such a tool set typically includes a static analyzer, a

simulator, a debugger, a pro�ler and a visualizer.

The static analyzer associates each behavior with

quality metrics such as program size and program per-

formance in case it is to be implemented as software, or

metrics of hardware area and hardware performance if

it is to be implemented as an ASIC. To achieve a fast

estimation with satisfactory accuracy, the analyzer re-

lies on probabilistic techniques and the knowledge of

backend tools such as a compiler and high-level syn-

thesizer.

The simulator serves the dual purpose of func-

tional validation and dynamic analysis. The simula-

tion model runs on a simulation engine, which in the

form of a runtime library provides an implementation

for the simulation tasks such as simulation time ad-

vance and synchronization among concurrent behav-

iors.

Simulation can be performed at di�erent levels of

accuracy, such as functional, cycle-based, and discrete-

event simulation. A functionally accurate simulation

compiles and executes the design model directly on a

host machine without paying special attention to sim-

ulation time. A clock-cycle-accurate simulation ex-

ecutes the design model in a clock-by-clock fashion.

A discrete-event simulation incorporates a even more

sophisticated timing model of the components, such

as gate delay. Obviously there is a trade-o� between

simulation accuracy and simulator execution time.

It should be noted that, while most design method-

ologies adopt a �xed accuracy simulation at each de-

sign stage, applying a mixed accuracy model is also

possible. For example, consider a behavior represent-

ing a piece of software that performs some compu-

tation and then sends the result to an ASIC. While

the part of the software which communicates with the

ASIC needs to be simulated at cycle level so that tricky

timing problems become visible, it is not necessary to

simulate the computation part with the same accu-

racy.

A debugger renders the simulation with break point

and single step ability. This makes it possible to exam-

ine the state of a behavior dynamically. A visualizer

can graphically display the hierarchy tree of the design

model as well as make dynamic data visible in di�er-

ent views and keep them synchronized at all times.

All these e�orts are invaluable in quickly locating and

�xing design errors.

A pro�ler is a good complement of a static analyzer

for obtaining dynamic information such as branching

probability. Traditionally, this is achieved by instru-

menting the design description, for example, by in-

serting a counter at every conditional branch to keep

track of the number of branch executions.

2.6 Backend

At the stage of the backend, as shown in the lower

part of Fig. 1, the leaf behaviors of the design model

will be fed into di�erent tools in order to obtain their

implementations. If the behavior is assigned to a stan-

dard processor, it will be fed into a compiler for this

processor which translates the design description into

machine code for the target processor. If the behavior

is to be mapped on an ASIC, it will be synthesized by

a high-level synthesis tool which translates the behav-

ioral design model into a netlist of RTL components.

If the behavior is an interface, it will be fed into an

interface synthesis tool.

As shown in Fig. 3, an interface is de�ned as a spe-

cial type of ASIC which links its associated PE (via

the local bus) with other components of the system

(via the system bus). Such an interface implements

the behavior of a communication channel. An exam-

ple of such an interface translates a read cycle on a

processor bus into a read cycle on the system bus.

The communication tasks between di�erent PEs are

implemented jointly by the driver routines and inter-

rupt service routines implemented in software and the

interface circuitry implemented in hardware. While

partitioning the communication task into software and

hardware, and model generation for the two parts is

the job of communication synthesis, the task of gen-

erating an RTL design from the interface model is the

job of interface synthesis. The synthesized interface

must harmonize the hardware protocols of the com-

municating components.

3 Conclusion
Codesign represents the methodology for speci�ca-

tion and design of systems that include hardware and

software components. A codesign methodology con-

sists of design tasks for re�ning the design and the

models representing the results of these re�nements.

In this article a co-design methodology was presented

starting from a design speci�cation at a high level of

abstraction which is then stepwise re�ned using allo-

cation, partitioning, scheduling, and communication

synthesis.

4 References
[1] F. Balarin, M. Chiodo, A. Jurecska, H. Hsieh,

A. Lavagno, C. Passerone, A. Sangiovanni-Vin-

centelli, E. Sentovich, K. Suzuki, B. Tabbara

Hardware-Software Co-Design of Embedded Sys-

tems: A Polis Approach. Kluwer Academic Pub-

lishers, 1997.

[2] D. Gajski, F. Vahid, S. Narayan, J. Gong, Spec-

i�cation and Design of Embedded Systems, New

Jersey, Prentice Hall, 1994.

[3] C. Liem. Retargetable Compilers for Embedded

Core Processors: Methods and Experiences in In-

dustrial Applications. Kluwer Academic Publish-

ers, 1997.

[4] P. Marwedel, G. Goosens. Code Generation for

Embedded Processors. Kluwer Academic Publish-

ers, 1995.

[5] J. Staunstrup, W. Wolf, et al. Hardware/Software

Co-Design: Principles and Practice. Kluwer Aca-

demic Publishers, 1997.

[6] T. Y. Yen, W. Wolf. Hard-

ware-software Co-synthesis of Distributed Embed-

ded Systems. Kluwer Academic Publishers, 1997.

[7] J. Zhu, R. D�omer, D. Gajski. Syntax and Seman-

tics of the SpecC Language. Proceedings of the

Synthesis and System Integration of Mixed Tech-

nologies 1997, Osaka, Japan, December 1997.

