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Abstract— Embedded software is playing an increasing role in
todays SoC designs. It allows a flexible adaptation to evolving
standards and to customer specific demands. As software emerges
more and more as a design bottleneck, early, fast, and accurate
simulation of software becomes crucial. Therefore, an efficient
modeling of programmable processors at high levels of abstrac-
tion is required.

In this article, we focus on abstraction of computation and de-
scribe our abstract modeling of embedded processors. We com-
bine the computation modeling with task scheduling support and
accurate interrupt handling into a versatile, multi-faceted proces-
sor model with varying levels of features.

Incorporating the abstract processor model into a communi-
cation model, we achieve fast co-simulation of a complete cus-
tom target architecture for a system level design exploration. We
demonstrate the effectiveness of our approach using an industrial
strength telecommunication example executing on a Motorola
DSP architecture. Our results indicate the tremendous value of
abstract processor modeling. Different feature levels achieve a
simulation speedup of up to 6600 times with an error of less than
8% over a ISS based simulation. On the other hand, our full fea-
tured model exhibits a 3% error in simulated timing with a 1800
times speedup.

I. INTRODUCTION

With increasing complexity of modern SoC designs a larger
design space has to be explored throughout the design process.
At the same time, shorter product life cycles require a reduc-
tion in time-to-market, which demands more and more efficient
design cycles. System-Level-Design is one solution to address
this need based on an increased level of abstraction.

Transaction Level Modeling (TLM) [10] is a widely ac-
cepted approach for abstracting communication. It dramati-
cally increases the simulation speed and is an efficient enabler
for exploring a larger design space. Motivated by the more than
encouraging results of communication TLM, we will focus in
this paper on abstraction of computation. We address the need
for abstract modeling and simulation of programmable pro-
cessors, which play an increasingly significant role in todays
SoCs, allowing adaptation to emerging standards and specific
customer demands.

Traditionally, computation is simulated using an Instruction
Set Simulator (ISS), which provides functional and timing ac-
curate simulation on a host platform at a very fine granularity.
However, an interpreting ISS simulates very slowly, making it
unacceptable for a realistic system design space exploration.
Host compiled ISS schemes have been developed to address

the speed disadvantage. They simulate faster, but may not be
accurate in all cases. In addition, their execution performance
is not yet sufficient to match the needs for a rapid design space
exploration at the system level. Thus, a higher level of abstrac-
tion is needed.

In this article, we describe our approach to the abstraction of
a software execution environment as a complement to the TLM
for communication abstraction. In particular, we will describe
our abstract modeling of a processor as an integral part of a
typical system design.

Using an abstract processor model in conjunction with
the communication TLM dramatically increases the execution
speed in a co-simulation environment. With high accuracies in
timing, it enables an early functional and fast simulation of the
desired target architecture, exposing the implications of archi-
tectural decisions, and thus allowing rapid design space explo-
ration.

A. Problem Definition

We address the need for fast software simulation by abstract-
ing the software execution environment providing timed exe-
cution, dynamic scheduling and external communication. We
develop a corresponding high-level, abstract processor model.
We aim to significantly increase simulation performance while
maintaining an acceptable accuracy in simulated timing and ex-
posing the structure of the software architecture (e.g. drivers
and interrupts).

Our target architecture (see Fig. 1) is a CPU/DSP subsys-
tem with a single embedded processor driving one system bus.
We consider processors that contain an internal memory, which
stores the execution binaries and local variables. The processor
communicates with external memory (holding globally shared
variables) and with custom hardware IP blocks (through mem-
ory mapped I/O and interrupts) over the shared single bus.

At the input, we assume that the user application is given in
the form of C code for each task, including information about
task relations. Furthermore, we assume that data about execu-
tion delays for each task is available.
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Fig. 1. Generic target architecture.



B. Outline

After introducing the relevant related work in Section II, we
will outline our high-level processor modeling approach in Sec-
tion III, discussing feature candidates for processor abstraction.

Section IV constitutes the main part of the article. We will
incrementally lay out our processor modeling feature by fea-
ture. In total, we distinguish five separate feature levels.

Typically, the speedup through abstraction comes at a loss
in accuracy. To validate our approach, we will quantitatively
analyze each feature level in Section V, allowing us to deter-
mine essential features for an efficient processor abstraction.
We conclude the paper with a summary in Section VI.

II. RELATED WORK

System level modeling has become an important research
area that aims to improve the SoC design process and its pro-
ductivity. Languages for capturing SoC models have been de-
veloped, e.g. SystemC [10] and SpecC [9]. The languages pro-
vide means to describe systems, but by themselves do not offer
any modeling solutions.

Using TLM [10] for capturing and designing communication
architectures has received much attention. Abstracting compu-
tation, on the other hand, as an essential element of the system
level exploration has been introduced only recently.

Bouchhima et al. [3] describe an abstract CPU subsystem
that allows execution of target code on top of a hardware ab-
straction layer that simulates the processor capabilities. Their
approach includes multiple processors on a higher level of ab-
straction. In contrast, our proposed solution provides a finer
grained model with the resulting feature observability advan-
tages at similar simulation performance levels.

Kempf et al. [11] introduce their Virtual Processing Unit for
analysis of task mapping and scheduling effects using a quan-
titative model. They do not, however, include any processor
specific features, such as interrupts.

At the very high abstraction level of application modeling,
Ptolemy [4] uses a modeling environment that integrates dif-
ferent models of computation (such as petri nets and boolean
dataflow) in a hierarchically connected graph.

The traditional approach of an ISS based co-simulation is
provided by several commercial vendors, such as ARM’s SoC
Designer with MaxSim Technology [1], VaST Systems’ [16]
virtual system prototyping tools and CoWare’s [7] Virtual Plat-
form Designer. In addition, ISS based co-simulation is used in
many academic projects, such as the MPARM [2] platform.

III. APPROACH

Traditionally, software is simulated using an Instruction Set
Simulator (ISS), which emulates the target Instruction Set Ar-
chitecture (ISA). For co-simulation, the ISS is wrapped to adapt
the ISS API to the simulation environment, as shown in Fig. 2
The wrapper translates the ISS bus accesses to and relays the
interrupt inputs from the simulation environment.

The ISS includes internal memory for storing the executed
binaries and local variables. It provides a complete software
execution environment with all features. Our abstract processor
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Fig. 2. Bus Functional Model with ISS.

model replaces the ISS plus the surrounding wrapper with an
abstract, high-level representation. With the ISS as our refer-
ence model in mind, we will now discuss features as candidates
for an expressive simulation with regards to exposed functional
aspects and timing accuracy.

For simulation of the application given in the input, we em-
ploy an approach that executes the user C code natively on
the simulation host. This dramatically increases the simula-
tion speed. We achieve target processor specific execution tim-
ing, which is the most fundamental requirement for any perfor-
mance evaluation, by back-annotating timing information into
the C code at the function level.

In terms of processor features, we abstract away the pro-
cessor micro structure and do not simulate the Instruction Set
Architecture. Instead, we abstractly model the behavior of
the processor and the software environment, including task
scheduling, interrupt handing and external communication.

In a typical software architecture, a processor executes more
than one function. In such a case, the application is mapped to
different tasks and a task scheduler dynamically assigns tasks
to the CPU for execution. To observe the effects of dynamic
scheduling, an accurate model of the hierarchical task graph
and the target specific dynamic scheduling is necessary.

For communication with external components, the choices
within the low level drivers are important to the overall system
performance. Therefore, a software simulation environment
should expose the concepts of interrupts and low level drivers.
Additionally, proper scheduling of interrupts is desired, includ-
ing models for suspension of task execution, interrupt priorities
and interrupt nesting.

IV. PROCESSOR MODELING

In previous work related to communication modeling [15],
we have observed the effectiveness of a layered approach.
Therefore, we structure our processor model in layers along
features. Our model has five different feature levels with an in-
creasing number of represented features. The subsequent para-
graphs will describe each feature level. Later, we will use the
feature levels for a fine grained analysis and evaluate each fea-
ture for its cost in simulation speed and contribution to timing
accuracy.



A. Application
Our first feature level, the application level, is equivalent to

a timed simulation of the user application natively on the sim-
ulation host. We use it as the innermost layer of our abstract
processor, as depicted in Fig. 3. In addition, we wrap the user
code in an SLDL as a hierarchical composition of behaviors
separating computation and communication.

Communication is expressed using abstract channels for
high-level, typed message passing. Global variables, which
are shared between processing elements, are accessed directly
at this abstraction level without special synchronization or bus
communication.
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Fig. 3. Application model.

The user application is executed natively on the simulation
host inside the discrete event simulation environment. The na-
tive execution allows for highest simulation speeds. Wait-for-
time statements, inserted at the function level, emulate the tar-
get specific execution timing.

B. Task Scheduling

Concurrent execution of software on the same processor re-
quires an operating system on the target. In order to explore
the effects of dynamic scheduling decisions, we wrap behav-
iors to tasks and schedule them using an abstract task sched-
uler as shown in Fig. 4. Abstractly modeling a task scheduler,
in contrast to using a real RTOS implementation, integrates bet-
ter with the simulation environment, enables highest execution
performance and thus allows early exploration of scheduling
decisions.

OSCP U

T a s k
B2

T a s k
B3

C1
C2

B1

T a s k  Sc h e d u l e r

Fig. 4. Task model.

The behaviors of the user application are mapped to indi-
vidual tasks in this model. Each primitive that could trigger
scheduling (e.g. task start, channel communication, wait-for-
time statements) is wrapped to interact with the abstract sched-
uler, which emulates the dynamic scheduling on top of the
SLDL framework. Furthermore, in this step, the communi-
cation via external global variables is properly wrapped into
channel communication. All external communication simu-
lates concurrently and untimed at this feature level.

C. Firmware
The firmware model adds the features of interrupt handling

and low level software drivers as shown in Fig. 5. This model
is the first that contains the complete software. Its layer marks
the boundary between software implementation and hardware
features.

At this abstraction level, the interrupt sources trigger the sys-
tem interrupt by a direct channel call. Thus, interrupts are not
scheduled and may execute concurrently to the user applica-
tion. The utilized system interrupts are connected to the user
interrupt handler. In the example of Fig. 5, the system inter-
rupt INTC is shared between two interrupt sources. Hence, the
system interrupt handler demultiplexes it to two user interrupts
(UsrInt1 and UsrInt2).
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Fig. 5. Firmware model.

External communication is refined down to low level soft-
ware drivers. The drivers implement synchronization with ex-
ternal components, e.g. through interrupts or polling. They
also introduce system absolute addressing and communication
with external components using a Transaction Level Model
(TLM). The bus TLM simulates the bus at a granularity of
user transactions (arbitrary sized blocks of data) and introduces
timed communication with external components on the simu-
lated bus.

D. Processor Transaction Level Model
Our complete processor model adds a description of the pro-

cessor hardware. This includes hardware interrupt handling
and bus accesses at bus transaction granularity, as shown in
Fig. 6.

For a correct interrupt simulation, the behavior HW Int mon-
itors the interrupt lines. Upon occurrence of an interrupt, HW
Int suspends the main simulation thread, which executes the
user application and the scheduler, and triggers the activated
system interrupt handler. The HW Int observes interrupt priori-
ties and interrupt nesting for an accurate scheduling. Addition-
ally, it provides interrupt related control registers to the driver
software e.g. for enabling and disabling interrupts.

The processor TLM also introduces a bus specific Media
Access Layer (MAC). It splits the arbitrary sized user transac-
tions into bus transactions (bus protocol primitives) for access-
ing the processor bus. The Arbitrated TLM (ATLM) simulates
the bus protocol with a granularity of bus transactions. In the
more general case, the ATLM can perform accurate arbitration.
However, in our single master target architecture arbitration is
not necessary.
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Fig. 6. Processor Transaction Level Model.

E. Processor Bus Functional Model
The bus functional variant of our processor model, see Fig. 7,

uses a pin- and cycle-accurate model of the processor bus inter-
face. Its modeling of computation is identical to the Transac-
tion Level Model. However, the BFM includes an implemen-
tation of the bus interface state machines that realize the bus
protocol by driving and sampling the individual wires.
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Fig. 7. Processor Bus Functional Model.

Tab. I summarizes the features we capture in our processor
model. It also indicates at which level each feature is intro-
duced. The most abstract model at the application level imple-
ments only a single feature. On the other hand, the ISS refer-
ence realizes all listed features.

TABLE I
SUMMARY OF MODEL FEATURES.

Level

Task
Firm

w
are

TLM BFM
BFM

 -ISS

F ea t u r es
Target approx. c om pu tati on  ti m i n g
Tas k  m appi n g,  d y n am i c  s c h ed u l i n g
Tas k  c om m u n i c ati on ,  s y n c h ron i z ati on
I n terru pt h an d l ers ,  l ow  l ev el  S W  d ri v ers
H W  i n terru pt h an d l i n g,  i n t. s c h ed u l i n g
C y c l e ac c u rate c om m u n i c ati on
C y c l e ac c u rate c om pu tati on

A ppl .

V. EXPERIMENTAL RESULTS

To validate our abstract processor modeling approach, we
will now separately analyze each function level to determine
their effects with respect to simulation speed and timing accu-
racy. We have applied our approach to an industrial strength
telecommunication example: the GSM 06.60 [8] voice encod-
ing and decoding algorithm. We mapped the application to a
Motorola DSP 56600 [13] architecture, as shown in Fig. 8.
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Fig. 8. Example Architecture.

The DSP executes separate tasks for the encoder and the de-
coder. We use a primitive custom task scheduler that executes
priority based scheduling of the two tasks (the encoder with
lower priority than the decoder) and uses interrupts for context
switching. In the target architecture, the time critical function
of the codebook search is mapped to a custom hardware block
for increased performance. Four additional custom hardware
I/O blocks perform the input and output of the speech frames.

A. Setup

Following our abstraction approach, we have incrementally
implemented the processor model with the outlined feature lev-
els using an SLDL1. We have measured all feature levels exe-
cuting on a Sun Fire V240 with a UltraSPARC IIIi processor
running at 1.5GHz. For all tests, we use a common data set of
163 speech frames. The hardware blocks are simulated at the
behavioral level with cycle approximate timing.

For our accuracy analysis, we focus on the simulated timing.
Generally, the error in simulated timing may stem from two
main sources: first, the feature abstraction in modeling of the
processor, and second, the error due to inaccurate or too coarse
grain profiling and back annotation of task execution delays.

In this paper, we focus on the processor model and related in-
accuracies due to the feature abstraction. To isolate processor
features from task delay errors, we back-annotate accurate exe-
cution timing obtained by executing the application on a cycle
accurate ISS. While this approach for the timing back annota-
tion is not efficient for exploration of new designs, it allows us
to separate the quality of processor modeling. An automatic
target specific profiling of user code [6] is outside the scope of
this paper and considered as an input as described in the prob-
lem definition.

1We used SpecC[9] for our experiments. The concepts, however, should be
equally applicable to other SLDLs, like SystemC.



We analyze each feature level of our processor model focus-
ing on two aspects: since the main goal of abstraction is to
increase the simulation speed, we will first examine the perfor-
mance. Second, we analyze the loss in accuracy as a side effect
of abstracting features. Combining both, we can evaluate the
quality of our processor abstraction.

B. Performance Analysis
Fig. 9 shows the simulation time for each feature level when

encoding and decoding the test data set of 163 speech frames.
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Fig. 9. Simulation time per model.

The measurements confirm the expectation of an increase
in simulation performance with abstraction. In other words,
the simulation time increases exponentially with the amount
of modeled features. Modeling only the application is by far
the fastest. Including the interrupt structure, as introduced by
the firmware feature level, increases the simulation effort only
minimally. Adding interrupt modeling and communication as
performed by the TLM and the BFM increases the simulation
time by a factor of four. The ISS-based cycle accurate simula-
tion of our reference model is by far the slowest, about 1800
times slower than the TLM. Tab. II shows the detailed numeri-
cal results.

In summary, our proposed model, the TLM, is four orders
of magnitude faster than the ISS based co-simulation. Elimi-
nating the abstract feature of hardware interrupt handling and
scheduling results in another fourfold speed increase.

C. Accuracy Analysis
In the previous section, we have quantified the significant

speedup of our abstract models. Now, we will evaluate the ac-
curacy limitations as a trade-off for achieving these high simu-
lation speeds.

We focus on the timing accuracy and use the metric of the
simulated delay per individual speech frame. While executing
the model under test, we record the simulated delay for each
frame and compare it against the reference model with the cy-
cle accurate ISS to calculate the timing error. For this paper,
we define the error in simulated frame delay as a percentage
error over the reference model:

dISS : frame delay in ISS simulation
dtest : frame deleay in model under test

errori = 100 ∗
|dtest − dISS |

dISS

(1)

Given this definition, an accurate model exhibits 0% error.

TABLE II
EXPERIMENTAL RESULTS FOR TIMING AND ACCURACY.

Appl. Task FW TLM BFM ISS
Sim. Time [s] 3.0 3.0 3.1 11.1 17.3 20462
Speedup
over ISS 6821 6821 6601 1843 1183 1

Avg. Enc.
Error 20.3% 8.8% 8.5% 3.8% 3.7% 0.0%

Avg. Dec.
Error 2.4% 2.4% 2.6% 2.0% 2.3% 0.0%

Tab. II shows the measurement results in detail for both the
encoder and the decoder. Fig. 10 shows the average error in the
transcoding frame delay for each model. It also includes error
bars for the maximal and minimal observed error. For the anal-
ysis, we have chosen the transcoding frame delay, the summa-
tion of the encoding delay and the decoding delay individually
per frame. It expresses the overall accuracy in the system sim-
ulation, including effects of dynamic scheduling and external
communication.
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Fig. 10. Average error in simulated encoding delay per frame.

The results indicate that a loss in accuracy has to be accepted
due to feature abstraction. The observed error reduces when
including more features.

Modeling the application only yields the most inaccurate re-
sults with 18% error. Including task scheduling, as done in the
task model, achieves the largest accuracy improvement and re-
duces the timing error by 10% down to 8%. This improvement
is especially pronounced in the encoder, the low priority task
(see Tab. II), since it includes preemption influences from all
higher priority tasks. For the high priority task of the decoder,
on the other hand, we measured no improvement.

Adding low level drivers and the concept of interrupts for
external communication only marginally improves accuracy,
since the firmware model still executes interrupts concurrently.
Including proper hardware interrupt handling and interrupt
scheduling, as we propose in our TLM, reduces the error down
to 3%. This model includes suspension of the main software
thread on execution of the interrupt handler, and it also models
the actual interrupt delays.

Increasing the accuracy of communication, as done in the



BFM variant, does not significantly increase the accuracy since
the target architecture uses a single bus master only. As ana-
lyzed in [15], a coarse grain abstract communication simulation
can already be accurate under the absence of bus contention.

The execution on the cycle accurate ISS yields a timing accu-
rate simulation. Data dependencies can influence the execution
timing. As indicated by the error bars for each of the model
stages, the timing accuracy varies by 2.1%, caused by data de-
pendencies in the code execution. Due to the timing annotation
at the function level such effects are not completely captured in
our model. Furthermore, although we have used accurate cycle
information from the reference model, our back annotation is
only accurate for leaf functions that do not call other functions.
The overhead due to the function call hierarchy is not yet ad-
equately reflected. Finally, the execution of the task scheduler
contributes to the timing inaccuracy. In our model, we have not
modeled the overhead of context switches and the delays due
to the custom scheduler.

VI. SUMMARY AND CONCLUSION

In this paper, we presented our abstract model of embed-
ded processors. We used a layered approach, incrementally de-
scribing our processor modeling with essential features of task
mapping, dynamic scheduling, interrupt handling, low level
firmware and hardware interrupt handling.

We validated our abstraction approach using an industrial
strength example of a GSM 06.60 speech transcoder mapped
to a Motorola DSP plus external IPs. We applied our processor
modeling approach with its five feature levels, and we analyzed
each level with respect to the gain in simulation performance
and the loss in accuracy.

Our results show the tremendous benefits of our proposed
processor model. Based on the analysis, we identified two main
feature levels. Our firmware feature level, which covers the
complete software including low level drivers and interrupts,
executes 6600 times faster than the traditional ISS based co-
simulation approach with an error of less than 8%. It is suitable
for early rapid design space exploration. For an even higher
accuracy, e.g. for system validation, our TLM feature level can
be used. It simulates 1800 times faster than the ISS with an
error of less than 3%.

In future work, we plan to extend our concept to general pur-
pose processors that include peripherals, like a programmable
interrupt controllers. Furthermore, we plan to add a more de-
tailed model of a full Real-Time Operating System and further
improve the timing accuracy.
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