
Multi-Metric and Multi-Entity Characterization of Applications for

Early System Design Exploration

Lukai Cai, Andreas Gerstlauer, and Daniel Gajski

Center for Embedded Computer Systems, University of California, Irvine

{lcai, gerstl, gajski}@cecs.uci.edu

Abstract— At system level, intensively analyzing

the system application will produce a variety of use-

ful characteristics and provide designers valuable ex-

ploration indications. In this paper, we present such

an analysis approach based on the instrumentation-

based profiling. The proposed approach analyzes com-

plex system application and generates multi-metric

and multi-entity characteristics. Experimental results

show the applicability of the approach for efficient

early design space exploration.

I. Introduction

At system level, system behavior and the interaction
between behavior blocks must be completely understood
and explored. This initial behavior-based analysis allows
for better heuristics for application-architecture mapping.
A simple example is to find out the behavior block which
contains most of computation for later optimization.

Behavior-based analysis demands a new approach to
derive the characteristics of the application during the
simulation. Because system design involve processes,
channels, and variables in the system behavior as well
as PEs, buses, and memories in the architecture plat-
form, the required approach should analyze all the appli-
cation entities including process, channel, variable, and
port (multi-entities). It should also intensively derive
static and dynamic characteristics for operation, traffic,
and storage metrics (multi-metrics).

Traditionally, estimation approaches are based on ei-
ther a purely static analysis or a purely dynamic simula-
tionr [7, 9, 4, 8]. These approaches are applied after design
space exploration. In contrast to them, there is only a
limited number of approaches that aim to analyze system
behavior. Traditional software profiling tools [3, 6] usu-
ally provide target/host machine-dependent characteris-
tics. Even though such profilers can produce some charac-
teristics of system behavior, they only support operation-
related data such as function call statistics.

Based on instrumentation-based profiling approach [2],
in this paper, we target for the system behavior before de-
sign space exploration, and automatically generate multi-
entities and multi-metrics characteristics. The compuated
characteristics can be used extensively for behavior analy-

sis and earily design space exploration before exploration.
The rest of this paper is organized as follows. In Sec-

tion II, we introduce the specification characteristics. In
Section III, we describe the usage of the generated charac-
teristics for early design space exploration . In Section IV,
experimental results that show the applicability of the ap-
proach to the space exploration are presented. Finally, the
paper concludes with a summary in Section V.

II. Specification Characteristics

Our previous work [2] introduced the design flow of the
adopted instrumentation-based profiling. We first instru-
ment and simulate the system behavior to collect exe-
cution counts that capture the dynamic behavior of the
application at the basic block level NBB . We then com-
pute specification characteristics ri,d, i ∈ I, d ∈ D by
statically analyzing the code together with the collected
counters NBB . Specification characteristics are computed
hierarchically for each behavior, port, variable, and chan-
nel in the specification. I is the set of possible item types
defined by the characteristics’ category and D is the set
of data types found in the code.
Specification characteristics are classified into three cat-

egories: operation, traffic, and storage. In each category
static and dynamic metrics are computed. Static charac-
teristics are derived directly from the code of the specifi-
cation model whereas dynamic characteristics depend on
data collected during simulation. In general, static and
dynamic specification metrics R =

∑

i

∑

d ri,d in each cat-
egory are computed by summation of corresponding char-
acteristics r over a subset of item and data types.

A. Operation Characterization

Operation characteristics signify the complexity of the
computation in the specification. They are attached to
behaviors as the computational units of the system.
Static operation characteristics are defined as the

number of operations in the code of each behavior. They
represent the code complexity which is related to code
size or implementation complexity of the control unit in
general.
The static operation characteristics of a leaf behavior

equals to the summation of the characteristics of all its

B2

B1

p2

p1

Main

f1 f2

..
void main(){
 f1(p2);
};

void f1(int i1){
 f2 (i1);
};

void f2 (int i2){
 v1 = i2;
}
..

(a) Behavior hierarchy (b) Functions in B2

Fig. 1. Example of dynamic traffic computation

local functions. The static operation characteristics of
a hierarchical behavior equals to the summation of the
characteristics of all its child/instantiated behaviors.

Dynamic operation characteristics are defined as the
number of operations executed by each behavior during
simulation. Dynamic operations represent the compu-
tational complexity in the system which is related to
performance issues.

In general, the dynamic operation characteristics of a
leaf behavior equals to the characteristics of its main func-
tion. The characteristics of a hierarchical behavior equals
to the summation of the characteristics of its child be-
haviors. More detailed algorithms of dyanamic operation
computation, including for hierarchical behavior instanti-
ation and recursive function calls, are described in [1].

B. Traffic Characterization

Traffic characteristics signify the complexity of the com-
munication in the specification as the amount and type
of data exchanged, providing separate input and output
traffic characteristics via corresponding item types. As
behaviors communicate through variables and channels
connected to their ports, traffic characteristics are at-
tached to behavior ports and variables and channels con-
nected to them. Furthermore, traffic characteristics are
also attached to behaviors.

Static traffic characteristics are defined as the num-
ber of connected ports of a certain type. They represent
connectivity complexity, which relates to the message
passing traffic incurred between two dependent behaviors
in order to make the output of a behavior available at the
next behavior’s inputs.

For a behavior’s port, static traffic characteristics re-
duce to the size of the port itself (1 in most cases). For a
variable or channel, they are equivalent to the number of
connected behaviors. The static traffic characteristics of
behavior equals to the summation of the static traffic of
its ports.

Dynamic traffic characteristics are defined as the
number of times a port or a variable/channel of a cer-
tain type is accessed during simulation. An access is gen-
erated whenever a statement in the code reads from a
port variable, writes to a port variable, or calls a port in-
terface method. Dynamic traffic characteristics represent
access complexity which relate to the traffic incurred
for a shared memory implementation of communication
between dependent behaviors.
We compute dynamic traffic characteristics for vari-

ables, ports, and behaviors. To our knowledge so far,
there is no any profiling approach for traffic computation.
Traditionally, in order to get traffic information, designers
add a monitor on the interested port of behavior and trace
the data through the port. However, adding monitors to
all the ports of behaviors is unskillful because it not only
requires designers to tediously add such monitors, but also
slow down the simulation speed.
This paper proposed a traffic profiling approach, which

is illustrated by the example in Figure 1. Behavior B1
has an instantiation B2. The port p2 of B2 is directly
connected to p1 of B1. Behavior B2 contains three func-
tions: main, f1, and f2, the codes of which are displayed
in Figure 1(b). Because i2 of f2 is bound to i1 of f1, p2 of
B2, and further p1 of B1 during function calls and behav-
ior instantiations, a read access of i2 will generate a read
access of p2 and p1. The proposed algorithm analyzes
such port-parameter binding information and computes
the traffic of ports accordingly. Details of this algorithm
can be found in [1].
The dynamic traffic for a channel equals to summation

of the dynamic traffic of channel’s functions. We com-
pute dynamic traffic of channel’s function by treating the
total number of function’s parameter access as the read
access and treating the total execution number of channel
functions with return value as the write access. The dy-
namic traffic for a variable equals to the summation of the
dynamic traffic of ports that the variable is directly con-
nected to . The dynamic traffic for a behavior equals to
the summation of the dynamic traffic of behavior’s ports.

C. Storage Characterization

Storage characteristics signify the amount of storage
required to hold the system’s data. For each behavior
and channel, storage requirements are computed where
item types distinguish between local and global storage.
Static storage characteristics are defined as the num-

ber of static variables of a certain data type declared in-
side the behavior/channel and its children. This includes
variables declared at the behavior/channel level and static
variables inside functions. Static storage represents static
storage requirements, i.e. storage that needs to be al-
located globally for the whole lifetime of the system.
The static storage of leaf behavior equals to the sum-

mation of the size of variables declared at its the be-
havior/channel level and the size of static variables in-

Fig. 2. Vocoder specification characteristics GUI.

side functions. The static storage of hierarchical behavior
equals to the summation of the size of variables declared
at its the behavior/channel level and the size of static
storage of all its child behaviors.
Dynamic storage characteristics are defined as the

number of variables of a certain data type allocated and
deallocated dynamically during runtime. The local item
type of dynamic storage represents stack requirements
based on the number of local variables declared inside
functions. The global item type of dynamic storage, on
the other hand, represent heap requirements based on
the amount of storage allocated dynamically on the heap
during runtime (e.g. via malloc() calls).
The stack storage of leaf behavior equals to the stack

storage of its main function. The stack storage of hier-
archical behavior equals to the summation of the stack
storage of its child behaviors. For a function, its stack
storage contains not only the summation of the size of
variables declared in it, but also contains the maximum
of the stack storage of its called functions.

III. Usage for Exploration

The computed specification characteristics are critical
because it helps for the system design. In this section, we
introduce a number of the usage scenarios of specification
characteristics in the design space exploration.
Concurrency optimization. Concurrency optimiza-

tion derives all the parallelism existing among behaviors
of the system behavior and generates the behavior hier-
archy which explicitly specifies all the parallelism. The
derived parallelism implies the possibility of mapping dif-
ferent behaviors to different PEs for concurrent execution.
We analyze the parallelism based on the static/dynamic
traffic characteristics and the port connections. For ex-
ample, an application contains two behaviors: B1 and B2.

The only port p1 of B1 is connected to the only port p2
of B2 through variable v1. If the traffic 1.of v1 is 0, then
we conclude that behaviors B1 and B2 can be executed
concurrently.

Architecture selection. In the system synthesis ap-
proach, designers are responsible to select PEs from PE
library to assembly the system architecture. We select
PEs by matching the behavior’s operation characteristics
with PE attributes. For example, if the application are
multiplication-intensive identified by operation character-
istics, we then prefer to select DSP with a hardware mul-
tiplier.

Behavior mapping. We map the system behavior
to the system architecture. Similar to architecture se-
lection, we match the attributes of behaviors and PEs.
Furthermore, operation characteristics identifies the most
complex behaviors, which may be the best candidates for
mapping to the fastest PE. We also prefer to map the be-
haviors which communicate heavily (identified by traffic
characteristics) to the same PE or to the PEs connected
by dedicated busses.

Variable mapping. We map variables to local mem-
ories of PEs, or global memories in order to pursue the
fastest memory access time and smallest memory size. We
compute memory access time based on traffic character-
istics of variables and compute memory size based on the
storage characteristics.

Design alternative estimation. By giving weight to
the specification characteristic of each data and item type,
the attributes of different design alternatives such as per-
formance and power are estimated. For example, assum-
ing a behavior B1 is mapped to PE PE1. If B1 contains
30 integer-type multiplication operations, and executing
such an operation on PE1 requires 2 clock cycles, then
the executing time of B1 on PE1 for these operations is
30 * 2 = 60 clock cycles.

Multi-level profiling. In addition to use the proposed
approach on system behavior, we can also applied it on
models at different abstraction levels, such as transaction
level or RTL level. For example, using the proposed ap-
proach on bus functional level can obtain PE’s fan-in fan-
out and communication delay, based on the traffic char-
acteristics.

We developed two tools: System Profiler and Sys-

tem Explorer. System Profiler implemented multi-matric,
multi-entity, and multi-level profiling/estimation covering
the content in this paper and tasks 5 and 6. System

Explorer automatically makes design space exploration,
which includes automation of tasks 1 to 4. The output
of System Profiler such as specification characteristics is
directly read by System Explorer as the evaluation base.
The details of System Profiler and System Explorer are
described in [1].

1Global variables are not allowed in the specification

LP Analysis 377.0 MOp
Open Loop 337.1 MOp
Closed Loop 478.7 MOp
Codebook 646.5 MOp
Update 43.6 MOp

TABLE I
Computational complexity of top-level vocoder behaviors.

IV. Experimental Results

We use System Profiler on the design examples of a
voice codec for mobile phone applications (vocoder) [5].
The vocoder specification consists of appr. 13,000 lines
of code. For a testbench that exercises the design with
163 frames, this translates to a total timing constraint
of 3.26 s. The produced specification characteristics of
Vocoder provide the following indications.
Computation-intensive application. The total

number of executed operations during simulation is
1,921,874,900. The total number of data transferred
among behaviors is 472,944. The operations and trans-
ferred data are both for basic data types, such as integer
and float. The comparison of operation and traffic in-
dicates that the Vocoder is computation-intensive appli-
cation. Therefore, designers should more concentrate on
computation optimization.
Sequentiality. Based on the traffic and operation

characteristics, we also conclude that the Vocoder is a
mostly sequential application. The possible parallel ex-
ecuted behaviors contains 261,813,860 operations. In
terms of the dynamic operation characteristics, it denotes
the maximin 13.6% speed up by exploiting the concur-
rency. Therefore, while keeping such limited concurrency
in mind, designers should more focus on optimizing the
critical parts of the behavior sequence.
Criticality. Table I shows the computational complex-

ity for the vocoder’s five top-level behaviors in millions of
operations (MOp). The Codebook search behavior is by
far the most critical vocoder block. It takes up 33.7% of
the whole computation and is a good candidate for further
optimization.
PE matching. Table II shows the mix of operations in

the Codebook behavior. (a screenshot of the operation mix
pie chart and the bar graph of the top-level behaviors as
displayed in the design environment GUI is shown in Fig-
ure 2). The codebook search (and the vocoder in general)
does not contain any floating-point but only integer-type
operations, i.e. processors with dedicated floating-point
units are not necessary and processor selection should fo-
cus on integer performance instead. Furthermore, most of
the operations are multiplications, i.e. selected processors
should have dedicated hardware multipliers.
Behavior mapping. Table III shows the traffic among

five top-level behaviors, in the unit of data transfer per
basic data type. Because the traffic between Codebook

and other behaviors are relatively small, mapping Code-

(*,int) (+,int) (-,int) (/,int) others

46.2% 33.5% 9.1% 7.1% 4.1%

TABLE II
Codebook operation mix.

Open Closed Code- Update
Loop Loop book

LP Analysis 8802 0 163 0
Open Loop - 272 0 0
Closed Loop - - 79544 315568
Codebook - - - 69112

TABLE III
Communication among top-level vocoder behaviors.

book to faster PE for optimization while mapping rests
to slower one will not generate big communication over-
head. On the other hand, because heavy traffic between
Closed loop and Update, these two behaviors should be
mapped to the same PE.

V. Conclusions

This paper presents a characterization approach to
characterize the system behavior for early design space ex-
ploration. The proposed approach generates multi-metric
(operation, traffic, and storage) and multi-entity (behav-
ior, channel, port, and variable) characteristics. In order
to obtain above characteristics, new algorithms, such as
an algorithm for profiling traffic, are proposed. The intro-
duced usage for exploration and experience results shows
that our approach not only helps designers to intensively
comprehend the application, but also provides valuable
indications for early design space exploration.

References

[1] L. Cai. Estimation and Exploration Automation of System Level
Design. Ph.D. Dissertation, CECS, UC, Irvine, Apr 2004.

[2] L. Cai, A. Gerstlauer, and D. Gajski. Retargetable Profiling for
Rapid, Early System-Level Design Space Exploration. In DAC,
June 2004.

[3] J. Fenlason and R. Stallman. The GNU Profiler
(http://www.gnu.org/software/binutils/manual/gprof-
2.9.1/gprof.html).

[4] P. Gerin et al. Scalable and Flexible Cosimulation of SoC De-
signs with Heterogeneous Multi-Processor Target Architectures.
In ASPDAC, 2001.

[5] A. Gerstlauer et al. Design of a GSM Vocoder using SpeccC
Methodology. Technical Report ICS-TR-99-11, UC Irvine, 1999.

[6] R. Grehan. Code Profilers: Choosing a Tool for Anlyzing Per-
formance. A Metrowerks White Paper.

[7] Y. Li et al. Performance Estimation of Embedded Software with
Instruction Cache Modeling. In ICCAD, 1995.

[8] P. Lieverse et al. A Trace Transformation Techinique for Com-
munication Refinement. In CODES, 2001.

[9] Y. Zhao and S. Malik. Exact Memory Size Estimation for Array
Computation without Loop Unrolling. In DAC, 1999.

