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ABSTRACT
Message-passing mechanism is commonly used to preserve
data coherency in distributed systems. This paper presents
an algorithm for insertion of minimal message-passing in
system-level design to guarantee data coherency. The tar-
get architecture is a multi-component heterogeneous sys-
tem, where some components have local memory (or they
are memory components by themselves. The algorithm en-
ables automatic insertion of message-passing during system-
level design to relieve designers from tedious and error-prone
manual work. The optimal solution given by the algorithm
also ensures the quality of automatic insertion. Experiments
show that the automatic approach achieves a productivity
gain of 200X over manual refinement.

Categories and Subject Descriptors
C.1.4 [Computer System Organization]: Processor Ar-
chitectures—parallel architectures; C.3 [Computer Sys-
tem Organization]: Special Purpose and Application-Based
Systems—real-time and embedded systems

General Terms
Algorithms

Keywords
system level design, architecture refinement, automatic vari-
able refinement

1. INTRODUCTION
In order to handle the ever increasing complexity and

time-to-market pressures in the design of system-on-chip
(SOCs) or embedded systems, design abstraction has been
raised to system level to increase productivity. At the sys-
tem level, designers deal with system components includ-
ing microprocessors, special-purpose hardware units, mem-
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ories and busses. System level design usually starts with a
specification model written in system level design languages,
such as C++, VHDL, SystemC and SpecC. The specifica-
tion model is a pure functional description of the system,
which is composed of a hierarchy of modules. Leaf module in
the hierarchy encapsulates a small part of the computation
(code segment). Other non-leaf modules can be a parallel,
sequential, pipelined or finite-state-machine composition of
sub-modules. Inter-module communication is realized using
shared variables and channels. As a pure functional model,
the specification does not assume any implementation de-
tail of the modules and variables. Specification model can
be simulated to get profiling data, which can help designer
make good design decisions.
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Figure 1: Module/Variable Mapping.

During the process called architecture exploration, design-
ers come up with a system architecture by selecting a set of
system components and connecting them with busses. Then
modules in the specification are partitioned and mapped to
the system components, shared variables are partitioned and
mapped to the memories of these components (Figure 1)
while channels are partitioned and mapped to the busses. A
new description, called architecture model, is developed to
reflect the selected architecture and channel/variable/channel
mapping decisions. In the architecture model, additional
component modules representing allocated components are
introduced in the module hierarchy. The design then is de-
scribed as a parallel de-compostition of these component
modules since they run concurrently. Architecture model
can be simulated to verify the desired functionality and to
estimate performance metrics thus to evaluate the quality
of the selected architecture.



Since the architecture allocation and mapping decisions
have first order impact on the quality of final design, archi-
tecture exploration usually is an iteratve process seeking for
the best solutions. We can divide architecture exploration
into two tasks, synthesis and refinement. Synthesis task
makes decisions on system architecture and module/variable
mapping onto the architecture. There have been extensive
studies on architecture allocation and mapping problems. In
practice designers would like more control during synthesis
and prefer to make decisions based on their own experience.
Refinement task then transforms a specification model into
architecture module by adding implementation details based
on aforementioned synthesis decisions. Currentlt, this task
is usually performed manually by designers. For a normal
size design, the time and effort to manually transform a spec-
ification model into the architecture model become critical
to the iterative process. However, we believe that the refine-
ment task can be automated because designer’s involvement
is no longer needed once all design decisions are made. This
automation would significantly shorten design cycle and in-
crease productivity.

There are four major tasks in refinement from a specif-
cation into architecture model. The first task, behavior re-
finement, is to synchronize execution of modules running
in parallel on different components after module mapping,
in order to preserve the original execution order specified
(or implied) in the specification model. The second task,
scheduling refinement, is to serialize module execution on
components that are single-threaded. The third task, vari-
able refinement, is to insert message-passing among com-
ponents to ensure data coherency after shared variables are
mapped to local memories of different components. The last
task, channel refinement is to implement channels using bus
interfaces of the components.

The focus of this paper is on variable refinement. We will
identify and discuss the major issue to achieve automated
variable refinement. The paper is presented in the following
way. In section 2, we point out some related works. Data
coherency at system level is discussed in section 3. The prob-
lem is formulated in section 4. In section 5 we present our
algorithm to the problem. Experimental results are shown
in section 6. At the end, we give our conclusions.

2. RELATED WORK
Most of the work in system level design has focused on

synthesis problems including architecture allocation ([1], [2])
and software/hardware partitioning ([3], [4]) and co-simulation
([1]). However, automatic refinement has not received much
attention from the system level design community.

Automatic model refinement, including control-related re-
finement, data-related refinement and interface synthesis, is
described in [5]. In [6], a set of formal models and tran-
formations between model are defined to enable automatic
model refinement. In [7], behavior refinement is elaborated
in detail. In [8], Gradule Communication Refinement is pro-
posed. It is divided into two steps, Module Refinement and
Channel Refinement.

3. DATA COHERENCY WITH MESSAGE
PASSING

The goal of variable refinement is to gurantee data co-
herency in a multi-component architecture when variables

are mapped to memories. Depending on how and where vari-
ables are mapped, there are different approaches to achieve
data coherency. Shared-memory and message-passing have
been two commonly used mechanisms to map shared vari-
ables.

3.1 Shared-Memory Mechanism
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Figure 2: Shared-Memory Example.

In the shared-memory mechanism, there is a dedicated
memory component in the system architecture. Shared vari-
ables are all stored in this memory component and other
components all have access to the memory through the sys-
tem bus. In this case, the original correct order of accesses to
the variable can be preserved by synchronizing the execution
of modules on different components. An example is shown
in Figure 2. In the original specification, module A produces
data x for module B, which in turn modifies it and passes it
to C. After partitioning, A and C run on PE1 and B runs
on PE2. Here, x is mapped to a global memory component.
Synchronizations, wait and notify, are inserted to preserve
the correct accessing order to x. The issue of inserting syn-
chronizations was discussed in [7]. With this mechanism, the
memory component becomes the critical component, which
dictates the overall performance. There have been a variety
of techniques proposed to reduce memory access latency.
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Figure 3: Message-Passing Example.

3.2 Message-Passing Mechanism
In the message-passing mechanism, there is no global shared

memory component in the system architecture. Some com-



ponents have their own associated local memories and shared
variables are stored locally on the accessing components.
(Note that in this mechanism, a global memory can be mod-
eled as a (special) component whose only task is to store and
retrieve data.) The values of the local copies are kept con-
sistent by sending messages through message-passing chan-
nels. Message-passing channels encapsulate the implemen-
tation details of communication methods, i.e., send and recv.
Channels are widely used in system level design. The use
of channels separates communication from computation so
that they can be refined separately without any interfer-
ence. Continuing with the same example, but now x is
mapped to both PE1 and PE2’s local memories (Figure 3).
The values of x on PE1 and PE2 are updated via message-
passing (send(x) and recv(x)). The issue of adding appro-
priate message-passings is our focus.

3.2.1 Send-before-read and send-after-write
Although message-passing can be inserted at any point

between the writing module and the reading module, it is
advantageous to send the data across after it is produced
(send-after-write), rather than send it when data is needed
by the reading party (send-before-read). This will allow
prompt delivery of the data through the channel. For in-
stance, if the data size is big, it takes considerable com-
munication time to transfer the data. In addition, since it
is common to have single-write-multiple-read instead of the
other way around, another advantage of send-after-write is
to avoid redundant messages when data is written only once,
but read multiple times (or the read is inside a loop). An
example is shown in Figure 4. Send-before-read results in
two message-passings while send-after-write needs only one
message-passing. Therefore, send-after-write is to be used
in our approach.
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Figure 4: Send-before-read vs. Send-after-write.

3.2.2 Potential Redundancy
Because of rich control constructs (branch, loop, fsm) in

most languages, it is expected to have a very complex con-
trol flow graph of modules in a specification other than a
simple sequential execution as the example shown in the
Figure 3. Furthermore, the same variable is usually accessed
by multiple modules. Simply broadcasting a message to all
other components after each write to the variable will defi-
nitely guarantee data coherency. But this method will most
probably introduce redundant messages thus increase inter-
component communication overhead. In practice, designers

usually determine the needed message-passing manually by
looking at the data dependency in the original specification.
This manual approach is time-consuming for a normal size
design. Even worse, it is error-prone and difficult to de-
bug. To determine a minimal number of messages needed
requires thorough data dependency analysis, to which some
compiler techniques can be applied. In this paper, we will
propose a graph algorithm to find the true data dependency
between modules and insert message-passing as needed to
avoid redundancy.

4. PROBLEM FORMULATION
As being pointed out in the previous section, the problem

here is to derive a minimal set of messages sent across com-
ponents to keep data consistent. A couple of definitions are
introduced to formulate our problem.

Definition 1 A message is a tuple of
{var, module, source, destination}, where
1) var denotes the content of the message
2) module denotes the write module, after which

the message is sent
3) source denotes the component from which

the message is sent
4) destination denotes the component to which

the massage is sent

Definition 2 A transition graph is G(V, E), where
1) V represents modules in the specification
2) E represents transitions between modules

In the transition graph, each node has two attributes, PE
and TYPE. PE stores the module mapping information, i.e.,
which component the module is mapped to. (Note that leaf
modules are indivisible and can not be partitioned to differ-
ent components.) TYPE stores variable access information,
which is initialized and used internally by the algorithm de-
scribed later. Each edge has one attribute, Length, which is
also initialized and used by later algorithm. The transition
graph is a directed graph that can be constructed from the
original specification. It can be cyclic if loops or finite-state-
machines present in the specification.

The optimal message-passing problem can be formulated
as follows.

Given:
1) a specification in the form of a transition graph G(V, E);
2) a set of variables D: {variable1, variable2, ...}.

Determine:
A set of messages M: {message1, message2, ...}.

Such that:
1) data coherence is kept (Correcteness) and
2) the number of messages is minimal. (Optimality)



5. OPTIMAL MESSAGE-PASSING APPROACH

5.1 Eliminate redundancies
As we pointed out earlier, sending a message to each of

other components following the writer would satisfy the cor-
rectness requirement but not the optimal requirement. To
obtain a minimal set of messages, a number of conditions
can be checked to eliminate all potential redundancies.

A module that reads from a given varible is called reader
and a module that writes to that variable is called writer.
Each variable may have mutiple writers and readers, which
are partitioned and mapped to different components.

We claim that a message is needed only when following
conditions on a pair of writer and reader are satisfied:
1) writer and reader are mapped to different components;
2) there exists at least one path from writer to reader in the
transition graph;
3) among all paths from writer to reader, at least one path
does not contain other writers (overwrite);
4) the message is not already in the message set.

Conditions 1), 2) and 4) are easy to check. To check condi-
tion 3), we can augment the transition graph to reduce the
problem of finding data dependency into a shortest path
problem, to which we can apply existing algorithms.

5.2 Algorithm
The input to our algorithm is a transition graph G repre-

senting the specification and a set of variables D. The output
of the algorithms is a set of messages M. The algorithm is a
two-step iteration over all variables in D. The first step aug-
ments the transition graph with variable access information
for a given variable. The second step then checks all pairs of
writers and readers against aforementioned conditions and
adds messages as needed.
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Figure 5: Augmented Transition Graph.

5.2.1 Augment transition graph
Assumption 1 Operation FindAccess(m, d) is available

to query access type of module m on variable d.
To perform data dependency analysis, the access type of
module on a variable is needed. Since it is very common
for current system-level design languages to specify port di-
rections (in, out, inout) for modules, it is trivial to obtain
access type of any module on a given variable. For languages
that do not support port directions, access type can be ob-

tained by checking at source line level inside the module.
To simplify our explanation, we will abstract the process of
finding the access type of a module (m) on a variable (v)
as an operation FindAccess(m, v). FindAccess(m, v) simply
returns the access type, which can be R (read), W (write),
RW (read-write) or X (no access).

In this step, both the nodes (V) and edges (E) of the tran-
sition graph are augmented with information that will be
used in the later step. First, each node is assigned a TYPE
value depending on its access type to the given varaible.
Secondly, each edge is assigned a length. The edge length
is set to 1 if its tail has type of W or RW, 0 otherwise. An
example of augmented transition graph is shown in Figure 5.
Each node has a PE number and a TYPE while each edge
has a length. The pseudo-code for this step is shown here.

proc AugumentGraph (G, d)
begin

for each node ∈ V do
node.TYPE = FindAccess(node, d);
if (node.TYPE == W ‖ node.TYPE == RW)

for each e(node, x) ∈ E do
e.length = 1;

endfor
else

for each e(node, x) ∈ E do
e.length = 0;

endfor
endif

endfor
end

5.2.2 Analyze transition graph
This step checks all 4 conditions stated in section 5.1 for

each pair of W (or WR) type node w and R (or WR) type
node r to decide if a message is needed. Sub-routine Short-
estPath(G, w, r) is called to return the length of the shortest
path from node w to node r in graph G. An infinite length
implies there is no path from w to r. This sub-routine can
employ any Directed Graph shortest path algorithms, for in-
stance, Dijkstra’s Algorithm. The pseudo-code of this step
is shown here.

proc AddMessages (G, M, d)
begin

for each r.TYPE == R ‖ r.TYPE = RW ∈ V do
for each w.TYPE == W ‖ w.TYPE == RW ∈ V do

if (r == w ‖
r.PE == w.PE) ‖
ShortestPath(G, w, r) > 1 ‖
{d, w, w.PE, r.PE} ∈ M)

continue;
else

M = M ∪ {d, w, w.PE, r.PE};
endif

endfor
endfor

end
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The following observations help understand the algorithm.
Observation 1 Length of path from a write node to a read
node is equal to the number of write nodes on the path.

Observation 2 No data dependency between write node
and read node if the shortest path is greater than 1.

Although the algorithm presented here operates on a non-
hierarchical graph, it is straightforward to extend it to han-
dle a hierarchical graph, where each node itself is a transi-
tion graph. The only modification needed is to introduce
a source node and a sink node for each transition graph to
glue a hierarchical node. The source node and sink node
have no functionality internally.

6. EXPERIMENTS AND RESULTS
The algorithm has been implemented and integrated into

the SpecC Architecture Refinement tool. The input to the
tool is a system specification model and architectural param-
eters, such as allocation and mapping decisions. The output
is an architecture model reflecting the selected architecture.

A GSM Vocoder design, an industrial-strength example,
was taken to perform our experiments. The original specifi-
cation model has 10,000 lines of SpecC code. It is composed
of a hierarchy of 120 modules with more than 100 variables
used to connect these modules hierarchically (Figure 6). For
clarity, not all modules are shown in the figure. After archi-
tecture exploration is performed, a system architecture com-
posed of a DSP56600 and an ASIC connected with a system
bus was decided. The module code book, which is the per-
formance bottleneck, is decided to be implemented in a cus-

tomer ASIC to speed it up. The rest of the specification is to
be executed on DSP56600. Since there is no global memory
component in the architecture, all data shared by code book
and the rest of the system are mapped to local memories of
both components, i.e., registers and DSP local memory. The
module code book is 5-depth down the module hierarchy and
it accesses more than a dozen of shared variables. Therefore,
it has been much effort to perform data dependency analysis
and insert message-passing between these two components.
Before the automatic refinement tool was available, it took
24 hours (3 days) for a person to manually write and debug
the architecture model. The architecture model has 11,000
lines of SpecC code with 14 global message-passing channels
used for inter-component communications. With the auto-
matic refinement, the only work here is to input architec-
ture parameters and module/variable mapping information
to invoke the tool. By using a graphical user interface, this
work usually can be done within 5 minutes. Then the tool
performs the refinement in less than 1 minute. The auto-
matically generated model has the same number of channels
and synchronizations as in the manually refined model.

The generated architecture model was successfully simu-
lated to validate functional equivalence against the specifi-
cation. As we can see, the productivity increase is over 200X
for this example with only two components. We can expect
even better gain for a typical SOC design that consists of
more than a hardware and a software components.

Another example, JPEG Encoder design, was also exper-
imented with the tool (Figure 7). The size is relatively
smaller than the Vocoder design. But the speed up with
the automatic tool is also significant. This automatic model
refinement not only saves designers from tedious yet error-
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Figure 7: Experiment Results.

prone work, but also enables extensive architecture explo-
ration in a short amount of time because of the speed.

7. CONCLUSIONS
In order to automate model refinement tasks in system

level design, in particular, variable refinement, issues on data
coherency were discussed and algorithm for inserting mini-
mal number of message-passing was presented. Experiments
demonstrated the speedup of the automatic refinement over
the manual approach. This speedup enables extensive ar-
chitecture exploration at system level. Issues on automat-
ing other tasks, including channel refinement and schedul-
ing refinement, are our future work in order to achieve fully
automated refinement from a spcification model to an archi-
tecture model.
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