
1

EDP 2002
9th IEEE/DATC Electronic Design Processes Workshop

SpecC Methodology for High-Level Modeling

Rainer Dömer
Daniel D. Gajski

Andreas Gerstlauer

Center for Embedded Computer Systems
Universitiy of California, Irvine, USA

Abstract
The key for managing the complexity of embedded system design is a well-defined methodology supported by a
clearly structured system-level design language. The SpecC methodology described in this paper is based on the
SpecC language and consists of a set of well-defined and unambiguous design models and a set of well-defined
transformations that refine one model to the next. Given these models and transformations, the generic SpecC
methodology can be customized to produce a system design framework that can be easily integrated with a given
design flow and environment.

This paper describes four SpecC models at different levels of abstraction, namely at the specification, architecture,
communication and implementation level. It also defines the refinement transformations between them, namely
architecture exploration, communication synthesis, and software and hardware implementation. Both, the models
and the transformations, are sufficiently formalized to allow automatic model refinement, synthesis, and verification.

1 Introduction
The generic SpecC methodology follows a top-down approach. A high-level, abstract specification of the intended
system is step-wise refined down to a clock-cycle accurate implementation at the register transfer level (RTL). In
other words, the SpecC framework will transform a pure behavioral system description into a fully structural netlist
of system components such as processors, custom hardware units, memories, and intellectual property (IP) units,
interconnected by system busses. Here, the behavioral input is basically plain C code, whereas the output is basically
a hierarchical block diagram.

Specification
+ constraints

Memory

Memory

µProcessor

Interface

Comp.
IP

Bus

Interface

Interface

Interface

Custom HW

System architecture
+ estimates

Processors
IPs

Memories
Busses

RTL/IS Implementation
+ results

Registers
ALUs/FUs
Memories

Gates

Mem RF
State

Control

ALU

Datapath

PC

Control Pipeline

State

IF FSM

State

IF FSM
IP Netlist

RAM

IR

Memory

Figure 1: System-On-Chip Design.

Within the SpecC framework, the transformations on the models will be performed semi-automatically, that is,
tedious model refinement tasks are performed by automated tools, whereas actual design decisions are made by the
designers based on their experience and guided by data obtained from analysis tools such as profilers and static code
analyzers.

2

To overcome the difficulties involved with the complexities of this system design task, the SpecC framework
structures the synthesis process into a set of well-defined models that are refined gradually, in a straightforward and
step by step manner.

Figure 1 shows this task divided into two major steps. First, the system architecture is derived from the specification.
Then, the system components are implemented down to their register-transfer level (RTL) or instruction-set (IS)
architecture.

During the first step, the system architecture is defined by allocating a set of components like processors, memories,
custom hardware or IP components that communicate via a set of system busses. The functionality of the
specification is then mapped onto this architecture.

In the second step, called component synthesis, the components of the system architecture are implemented by
designing their micro-architecture. For each component, a datapath is defined, consisting of functional units, register
files, memories and busses. Finally, the desired behavior of custom hardware and software components is
implemented on top of their RTL or instruction-set micro-architecture, respectively.

As described later, the first major step can be subdivided into smaller refinement steps. Chapter 2 covers this in
detail and defines the four main models used in the SpecC design flow, namely the specification, architecture,
communication and implementation models. In addition, the exact transformations used throughout the system
refinement process are defined as well.

Since, in the real world, only very few systems are designed fully from scratch, the SpecC methodology puts
emphasis on the reuse of legacy and intellectual property (IP) components. These can be easily integrated with the
system description at any time by use of the "plug-and-play" feature of the SpecC language [3]. In addition, mixed
levels of abstraction may be used freely in the same design model. This allows independent refinement of different
parts of the system. Also, mixed levels of abstractions in the same design model may be used to speed up simulation
by using low-level models only in the area of interest, while other parts are kept at the fast-executing high level.

1.1 SpecC Language
The SpecC methodology is based on the SpecC language [1]. The SpecC language was specifically developed to
address the challenges of system-on-chip (SOC) design. It is based on ANSI-C and offers special extensions
(keywords) to cover the needs of embedded designs including hardware. As such, the SpecC language provides a
minimal, well-defined set of orthogonal constructs that precisely covers the concepts identified in embedded systems
in a one-to-one fashion.

It should be emphasized that the concepts supported by the SpecC language cannot be extended by the user. While
this intuitively sounds like a limitation, it is actually an important feature of the language. Having a fixed and well-
defined set of constructs in the language is of crucial importance for the development of CAD tools because tools
need to "understand" the semantics of each construct in order to be able to support the particular concept.

Note that this is contrast to other approaches, such as SystemC [4], where the extendability of the language (adding
user-defined classes with special functionality) is part of the methodology. While such language extendability can be
easily supported in simulation (after all, it is just C++ code to be compiled), this leads to significantly higher
complexity. Moreover, support of such extensions by general synthesis and verification tools becomes impossible.

In that kind of methodology, the support of CAD tools will always be restricted to only a (typically small) subset of
the language (remember VHDL!). As a result, the typical system specification may simulate nicely, but cannot be
used with automated refinement and synthesis tools without tedious and error-prone manual modification by the
user.

For more information on the SpecC language and its features and benefits, please refer to [2,3].

2 SpecC Design Flow
The SpecC design flow is based on four abstraction levels, namely specification, architecture, communication, and
implementation level. As shown in Figure 2, the design starts with a specification model captured by the user based
on algorithms of his/her choice.

3

System design Validation flow

Specification model

Algor.
IP

Proto.
IP

Architecture model

Communication synthesis

Communication model

Comp.
IP

Estimation

Validation
Analysis

Compilation Simulation model

Estimation

Validation
Analysis

Compilation Simulation model

Estimation

Validation
Analysis

Compilation Simulation model

Implementation model

Software
compilation

Interface
synthesis

Hardware
synthesis

Backend Estimation

Validation
Analysis

Compilation Simulation model

RTOS
IP

RTL
IP

Architecture exploration

Capture

Figure 2: SpecC Design Flow.

The system synthesis process is then subdivided into two tasks: architecture exploration maps the computation in
the specification onto system components that are instantiated out of a component library. During architecture
exploration, the specification model is refined into the intermediate architecture model.

Then, communication synthesis refines the abstract communication in the architecture model into an implementation
over actual wires of system busses. The system components are refined into bus functional models that communicate
over bus wires using protocols selected from a protocol library.

The result of the system synthesis process is the communication model, which is then handed off to the backend
tools for RTL or instruction-set level implementation. Hardware components are synthesized into a micro-
architecture of RTL components, software is compiled into the processor’s instruction set, and interface logic and
bus drivers are generated on the hardware and software side, respectively.

The final result of the system design process is the implementation model.

At any abstraction level, the design models are represented by a corresponding description written in the SpecC
language. Thus, all models are executable for validation through simulation and can reuse the same test bench
throughout the whole design process. In addition to simulation, the formal nature of the models enables the
application of formal methods for verification, analysis and estimation. Also, the well-defined nature of the whole
design process is the basis for rapid design space exploration through automatic model refinement and synthesis.

The following sections explain the different models and refinement steps of the SpecC design flow in detail. Using a
simple design example, we will walk through the methodology step by step.

2.1 Specification Model
The SpecC design flow starts with the specification model, written by the user to specify the desired system
functionality. It forms the input to architecture exploration, the first step of the system design process. As such, the
specification model defines the basis for all exploration and synthesis. In particular, the specification model defines
the granularity for exploration through the size of the leaf behaviors, it exposes the available parallelism, it separates
communication from computation, and it uses hierarchy to group related functionality and to manage complexity.

The specification model is a purely functional, abstract model that is free of any implementation details. The
hierarchy of behaviors in the specification model solely reflects the system functionality without implying anything
about the system architecture to be implemented.

4

The specification model is also free of any notion of time. The model executes in zero simulation time. Events in the
specification model are used for synchronization, which establishes a partial ordering among the behaviors based on
desired causality.

In general, at each level of hierarchy the specification is an arbitrary serial-parallel composition of behaviors.
Behaviors communicate through variables and synchronize through events attached to their ports. At the lowest
level of hierarchy, leaf behaviors execute the algorithms in the form of C code.

B1

v1

v2

e2

B1

B2 B3

Figure 3: Specification Model Example.

Figure 3 shows an example of a simple yet quite typical specification model. Execution starts with leaf behavior B1,
followed by the parallel composition of leaf behaviors B2 and B3. B1 produces variable v1, which then is consumed
by both B2 and B3. In addition, the concurrent behaviors B2 and B3 exchange data and synchronize through variable
v2 and event e2. B2 writes to v2 and notifies B3 about the availability of data via event e2. After receiving event e2,
B3 in turn then reads the data from variable v2.

2.2 Architecture Exploration
Architecture exploration derives the system architecture from the specification model. The purpose of architecture
exploration is to map the computational parts of the specification represented by the behaviors onto the components
of the system architecture.

The main steps involved in this process are behavior partitioning, variable partitioning, and scheduling.

2.2.1 Behavior Partitioning
Behavior partitioning starts with the allocation of a set of processing elements (PEs) and the mapping of the
specification behaviors onto the allocated PEs. This process determines the groups of behaviors that will define the
functionality to be implemented by each PE.

In the SpecC description, PE allocation and behavior mapping is modeled by inserting an additional level of
hierarchy at the top of the behavior hierarchy. Here, a set of concurrent behaviors representing the PEs of the system
architecture is introduced.

The leaf behaviors are grouped under those newly added PE behaviors according to the selected mapping,
replicating the original behavior hierarchy in each PE as necessary. In order to preserve the execution semantics of
the original specification, synchronization is added between PEs for each pair of sequential behaviors mapped to
concurrent PEs.

Finally, communication between behaviors on different PEs becomes system-global communication and is moved to
the top-level that contains the PE behaviors.

2.2.2 Variable Partitioning
At this point, the set of global variables instantiated between the PE behaviors represents global storage that has to
be mapped to actual memories in the system architecture. In a straightforward implementation, global variables are
mapped to a dedicated shared memory that is allocated together with the processing elements and included in the
system architecture.

Alternatively, in a message-passing architecture shared variables are mapped to the local memories of the processing
elements. A local copy of the variable is created in each component that is accessing the variable. The behaviors
inside the PEs are then operating on the data in the local memory instead of accessing a global variable.

5

However, in order to preserve the shared semantics of the variable and to keep the local copies inside the PEs in
sync, updated data values have to be exchanged between the components at synchronization points. Therefore,
updated data values are communicated over the existing channels together with behavior synchronization.

2.2.3 Scheduling
The next step in the architecture exploration process is the scheduling of behavior executions on the processing
elements. Processing elements have a single thread of control only. Therefore, behaviors mapped to the same PE can
only execute sequentially and have to be serialized.

In general, scheduling can be performed statically or dynamically. For space reasons, however, we simply assume a
static scheduling for our example and refer to [3] for more details.

B3

B13rcv

B34snd

B2

B1B1

B13snd

B34rcv

PE1

c2

v1

cb13

cb34

PE2

v1

Figure 4: Architecture Model Example.

The final model of the design after scheduling is shown in Figure 4. At the top level, the model consists of the two
PEs allocated for our example. The design is a parallel composition of component behaviors PE1 and PE2
communicating via message-passing channels cb13, c2, and cb34.

2.3 Architecture Model
After architecture exploration has been performed, the resulting model is therefore called architecture model. It is an
intermediate model of the system design process.

The architecture model reflects the component structure of the system architecture. At the top-level of the behavior
hierarchy, the design is a set of concurrent, non-terminating component behaviors. However, communication is still
on an abstract level and components communicate via message-passing channels. The communication synthesis task
that follows will implement the abstract communication over busses with real protocols.

The behaviors grouped under the components specify the desired functionality for the implementation of the
component during later stages. Concurrency is limited to the top-level of the design in the architecture model. All
the concurrency in the design at this point is captured by the set of components running in parallel. Inside each
component, behaviors execute sequentially in a certain order.

The architecture model is timed in terms of the computational parts of the design. Behaviors are annotated with
estimated execution delays for simulation feedback, verification and further synthesis.

2.4 Communication Synthesis
Communication synthesis refines the abstract communication between components in the architecture model into an
actual implementation over wires and protocols of system busses.

The steps involved in this process are channel partitioning, protocol insertion, protocol inlining.

2.4.1 Channel Partitioning
The first step in communication synthesis is the allocation of a set of busses and the mapping of communication
channels onto those busses. This process determines the groups of channels to be implemented by each bus.

In our design example, we have only two components communicating with each other. Therefore, only one system
bus, Bus1, is allocated connecting PE1 and PE2. All communication channels are mapped onto that bus.

6

In the SpecC description, bus allocation and channel mapping is modeled by inserting an additional level at the top
of the channel hierarchy. The new top-level channels represent the allocated system busses. The channels
instantiated between the components are grouped under the bus channels according to the selected mapping.

2.4.2 Protocol Insertion
The next step is the insertion of actual bus protocols into the model. Here, the abstract bus channels are replaced
with an actual implementation of their semantics over the real bus protocol.

A description of the protocol is taken out of the protocol library in the form of a protocol channel. The protocol
channel encapsulates the bus wires and implements the bus protocol by driving and sampling bus wires according to
the protocol timing constraints. At its interface, the protocol channel provides methods for all primitive transactions
supported by the protocol like read, write, burst read, burst write, and so on.

On top of the protocol layer, an application layer is created that implements the abstract message-passing semantics
over the bus protocol. The application layer wraps around the protocol layer and instantiates the protocol channel
internally. The functionality of the application layer includes synchronization, arbitration, bus addressing, and data
slicing.

Finally, the abstract bus channels in the model are replaced with their equivalent hierarchical combinations of
protocol and application layers that implement the communication of each bus.

2.4.3 Protocol Inlining
After protocols have been inserted for the busses in the system, the communication is finally inlined into the
components. The communication functionality is moved into the components where it will later be implemented
together with the behaviors mapped onto the components.

During inlining, the application layer and protocol layer channels are split and the code is moved into the
components according to their connectivity. After inlining, the bus wires internal to the protocol layer are exposed
and the components are connected to the bus wires via corresponding ports. Inside the components, adapter channels
containing application layer and protocol layer methods required by the component are instantiated. On the one side,
the hierarchical adapters are connected to the component ports and their methods drive and sample the bus wires via
the adapter ports. On the other side, the behaviors inside the PEs are connected to the interfaces of the adapter
channels, calling the bus interface methods provided by the adapters.

As shown in Figure 5, the single channel in our example is split into two halves that are moved into the component
behaviors PE1 and PE2, respectively. The variables representing the bus wires are exposed and the PEs are
connected to the wires via corresponding ports.

ready

ack

address[15:0]

data[31:0]

B3

B34snd

v1

B13rcv

B2

B1B1

B13snd

B34rcv

PE1

v1

PE2

Figure 5: Communication Model Example.

2.5 Communication Model
The model after communication synthesis is called the communication model. It is the final result of the system
synthesis process and as such defines the structure of the system architecture in terms of both components and
connections. Computation has been mapped onto components and communication onto busses.

At the top-level of the hierarchy, the communication model is a parallel composition of a set of non-terminating
components communicating via a set of system busses. Inside the components, a sequence of behaviors describes

7

their functionality. The behaviors also define the timing of bus transactions as determined by the communication
calls executed by the code.

At their interfaces, the components therefore provide a timing-accurate model of the component functionality down
to the level of events on the bus wires. As a result, the communication model is timed in terms of both computation
and communication.

2.6 Backend
In the backend, the behavioral views of the components in the communication model are converted into structural
descriptions of each component’s micro-architecture. The functionality of each component is implemented as
custom hardware described by its RTL model, as processor software compiled into an instruction-set stream, or as
an IP with fixed functionality. In the process, timing is refined down to the level of individual clock cycles based on
each component’s clock period. Therefore, the implementation model is cycle-accurate.

The backend process encompasses three parallel synthesis tasks for hardware, software, and interfaces.

2.6.1 Hardware Synthesis
On the hardware side, high-level synthesis (HLS) is performed. High-level synthesis of custom hardware requires
scheduling of the code into clock cycles. The C code inside the leaf behaviors of the component is scheduled by
drawing clock boundaries between the statements. The list of statements between clock boundaries defines the data-
path operations performed in each clock cycle and the set of clock boundaries defines the states of the hardware
control unit.

2.6.2 Software Synthesis
On the software side, the computation represented by the behaviors executing on the programmable processor
component is implemented by compiling the code into the instruction set of the processor. For our design example,
we assume that the PE1 component will be implemented as a general-purpose microprocessor.

Software synthesis is a two-step process: code is generated from the SpecC model of the component and the
generated code is compiled into the instruction-set of the target processor.

2.6.3 Interface Synthesis
Also, the communication functionality represented by the application and protocol layers of the bus adapter channels
needs to be implemented on the target components as part of the backend process.

On the hardware side, bus interface logic is synthesized as part of the custom hardware. For example the bus adapter
PE1Bus is refined into an FSMD model that drives and samples the bus wires in terms of the component clock.

Software processor Custom hardware

ready

ack

address[15:0]

data[31:0]

PE2

PE2_CLKPE1_CLK

OBJ

PORTA

PORTB

INTA

PORTC

PE1

Instruction
Set
Simulator
(ISS)

S0

S1

S2

S3

S4

Figure 6: Implementation Model Example.

On the software side, bus drivers are generated which implement the application and protocol layer functionality
over the processor’s I/O instructions. For example, the bus adapter PE2Bus on the processor PE2 is compiled into a
bus driver library, which will be linked against the rest of the processor’s program.

Figure 6 shows the implementation model after the refinement in the backend process. The PE behaviors are
replaced with refined models of hardware, software and interfaces.

8

2.7 Implementation Model
The implementation model is the result of the backend process and as such the final end-result of the whole system
design flow. It is a structural description of the system down to the component micro-architectures.

At the top-level, the system architecture is a set of non-terminating, concurrent components communicating via
system busses. At the component level, computation and communication functionality is described on top of the
component’s micro-architecture: FSMD models for custom hardware and instruction-set models for software on
programmable processors.

The implementation model is a cycle-accurate system description. The order and timing of computation and
computation in the system is described in terms of component clocks. A global order is imposed among the system’s
components via the order of events on the common bus wires.

3 Summary and Conclusions
In this paper, we presented the SpecC system-level design methodology. The customizable SpecC design flow
defines four major models and three major transformations that bring an initial, abstract system specification down
to a cycle-accurate RTL implementation.

The specification model is a purely functional description of the desired system functionality. It is free of any
implementation details and there is no notion of time. The architecture model describes the component structure of
the system architecture and orders computation based on estimated execution delays. The communication model
refines communication into bus-functional component models. It is accurate in timing for both computation and
communication. Finally, the implementation model is a cycle-accurate description of the system at the
RTL/instruction-set level.

The SpecC design flow contains three major tasks: System synthesis consists of architecture exploration and
communication synthesis, which map computation behaviors and communication channels in the specification onto
components and busses of a system architecture, respectively. Then, in the backend, the components are
implemented by synthesizing hardware, software and bus interfaces.

The models and transformations are sufficiently formalized to allow automatic refinement, synthesis and
verification. The SpecC design flow can also be easily customized to fit an existing design environment.

Based on the SpecC language, the SpecC framework seamlessly integrates IP components into the system at any
level, and supports mixed levels of abstractions as well.

Today, the SpecC methodology is supported by the SpecC Technology Open Consortium (STOC) [5] and is backed
by more than 30 companies and 30 universities worldwide. STOC promotes the SpecC technology by presentations
and seminars. It also offers an Open Source reference implementation of the SpecC compiler and simulator [6] and
further works on research and development to streamline the system design process by use of SpecC.

References
[1] R. Dömer, A. Gerstlauer, D. Gajski: “SpecC Language Reference Manual, Version 1.0”. SpecC Technology
Open Consortium, 2001.
[2] D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, S. Zhao. “SpecC: Specification Language and Methodology”.
Kluwer Academic Publishers, 2000.
[3] A. Gerstlauer, R. Dömer, J. Peng, D. Gajski. “System Design: A Practical Guide with SpecC”. Kluwer Academic
Publishers, 2001.
[4] T. Grötker, S. Liao, G. Martin, S. Swan. “System Design with SystemC”. Kluwer Academic Publishers, 2002.
[5] http://www.specc.org/
[6] http://www.cecs.uci.edu/~specc/

