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Abstract

System level synthesis is widely seen as the solution for
closing the productivity gap in system design. High level
system models are used in system level design for early de-
sign exploration. While real time operating systems (RTOS)
are an increasingly important component in system design,
specific RTOS implementations can not be used directly in
high level models. On the other hand, existing system level
design languages (SLDL) lack support for RTOS modeling.
In this paper we propose a RTOS model built on top of ex-
isting SLDLs which, by providing the key features typically
available in any RTOS, allows the designer to model the dy-
namic behavior of multi-tasking systems at higher abstrac-
tion levels to be incorporated into existing design flows. Ex-
perimental result shows that our RTOS model is easy to use
and efficient while being able to provide accurate results.

1. Introduction
In order to handle the ever increasing complexity and

time-to-market pressures in the design of systems-on-chip
(SOCs), raising the level of abstraction is generally seen as
a solution to increase productivity. Various system level de-
sign languages (SLDL) [1, 2] and methodologies have been
proposed in the past to address the issues involved in sys-
tem level design. However, most SLDLs offer little or no
support for modeling the dynamic real-time behavior often
found in embedded software. In the implementation, this
behavior is typically provided by a real time operating sys-
tem (RTOS) [3, 4]. At an early design phase, however, using
a detailed, real RTOS implementation would negate the pur-
pose of an abstract system model. Furthermore, at higher
levels, not enough information might be available to target
a specific RTOS. Therefore, we need techniques to capture
the abstracted RTOS behavior in system level models.

In this paper, we address this design challenge by intro-
ducing a high level RTOS model for system design. It is
written on top of existing SLDLs and doesn’t require any

specific language extensions. It supports all the key con-
cepts found in modern RTOS like task management, real
time scheduling, preemption, task synchronization, and in-
terrupt handling [5]. On the other hand, it requires only a
minimal modeling effort in terms of refinement and simu-
lation overhead. Our model can be integrated into existing
system level design flows to accurately evaluate a poten-
tial system design (e.g. in respect to timing constraints) for
early and rapid design space exploration.

The rest of this paper is organized as follows: Section 2
gives an insight into the related work on software modeling
and synthesis in system level design. Section 3 describes
how the RTOS model is integrated with the system level
design flow. Details of the RTOS model, including its inter-
face and usage as well as the implementation are covered in
Section 4. Experimental results are shown in Section 5 and
Section 6 concludes this paper with a brief summary and an
outlook on future work.

2. Related Work
A lot of work recently has been focusing on automatic

RTOS and code generation for embedded software. In [8],
a method for automatic generation of application-specific
operating systems and corresponding application software
for a target processor is given. In [6], a way of combining
static task scheduling and dynamic scheduling in software
synthesis is proposed. While both approaches mainly focus
on software synthesis issues, their papers do not provide any
information regarding high level modeling of the operating
systems integrated into the whole system.

In [10], a technique for modeling fixed-priority preemp-
tive multi-tasking systems based on concurrency and ex-
ception handling mechanisms provided by SpecC is shown.
However, their model is limited in its support for different
scheduling algorithms and inter-task communication, and
its complex structure makes it very hard to use.

Our method is similar to [7] where they present a high-
level model of a RTOS called SoCOS. The main difference
is that our RTOS model is written on top of existing SLDLs
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Figure 1. Design flow.

whereas SoCOS requires its own proprietary simulation en-
gine. By taking advantage of the SLDL’s existing modeling
capabilities, our model is simple to implement yet powerful
and flexible, and it can be directly integrated into any sys-
tem model and design flow supported by the chosen SLDL.

3. Design Flow
System level design is a process with multiple stages

where the system specification is gradually refined from
an abstract idea down to an actual heterogeneous multi-
processor implementation. This refinement is achieved in a
stepwise manner through several levels of abstraction. With
each step, more implementation detail is introduced through
a refined system model. The purpose of high-level, abstract
models is the early validation of system properties before
their detailed implementation, enabling rapid exploration.

Figure 1 shows a typical system level design flow. The
system design process starts with the specification model. It
is written by the designer to specifiy and validate the desired
system behavior in a purely functional, abstract manner, i.e.
free of any unnecessary implementation details. During
system design, the specification functionality is then par-
titioned onto multiple processing elements (PEs), some or
all of the concurrent processes mapped to a PE are stati-
cally scheduled, and a communication architecture consist-
ing of busses and bus interfaces is synthesized to implement
communication between PEs. Note that during communi-
cation synthesis, interrupt handlers will be generated inside
the PEs as part of the bus drivers.

Due to the inherently sequential nature of PEs, processes
mapped to the same PE need to be serialized. Depending on
the nature of the PE and the data inter-dependencies, pro-
cesses are scheduled statically or dynamically. In case of
dynamic scheduling, in order to validate the system model
at this point a representation of the dynamic scheduling im-
plementation, which is usually handled by a RTOS in the
real system, is required. Therefore, a high level model of
the underlying RTOS is needed for inclusion into the system
model during system synthesis. The RTOS model provides
an abstraction of the key features that define a dynamic
scheduling behavior independent of any specific RTOS im-
plementation.

The dynamic scheduling step in Figure 1 refines the un-
scheduled system model into the final architecture model.
In general, for each PE in the system a RTOS model cor-
responding to the selected scheduling strategy is imported
from the library and instantiated in the PE. Processes in-
side the PEs are converted into tasks with assigned prior-
ities. Synchronization as part of communication between
processes is refined into OS-based task synchronization.
The resulting architecture model consists of multiple PEs
communicating via a set of busses. Each PE runs multiple
tasks on top of its local RTOS model instance. Therefore,
the architecture model can be validated through simulation
or verification to evaluate different dynamic scheduling ap-
proaches (e.g. in terms of timing) as part of system design
space exploration.

In the backend, each PE in the architecture model is then
implemented separately. Custom hardware PEs are synthe-
sized into a RTL description. Bus interface implementa-
tions are synthesized in hardware and software. Finally,
software synthesis generates code from the PE description
of the processor in the architecture model. In the process,
services of the RTOS model are mapped onto the API of a
specific standard or custom RTOS. The code is then com-
piled into the processor’s instruction set and linked against
the RTOS libraries to produce the final executable.

4. The RTOS Model
As mentioned previously, the RTOS model is imple-

mented on top of an existing SLDL kernel. Figure 2 shows
the modeling layers at different steps of the design flow. In
the specification model (Figure 2(a)), the application is a
serial-parallel composition of SLDL processes. Processes
communicate and synchronize through variables and chan-
nels. Channels are implemented using primitives provided
by the SLDL core and are usually part of the communica-
tion library provided with the SLDL.

In the architecture model (Figure 2(b)), the RTOS model
is inserted as a layer between the application and the SLDL
core. The SLDL primitives for timing and synchroniza-
tion used by the application are replaced with correspond-
ing calls to the RTOS layer. In addition, calls of RTOS
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Figure 2. Modeling layers.

task management services are inserted. The RTOS model
implements the original semantics of SLDL primitives plus
additional details of the RTOS behavior on top of the SLDL
core. Existing SLDL channels (e.g. semaphores) from the
specification are reused by refining their internal synchro-
nization primitives to map to corresponding RTOS calls.
Using existing SLDL capabilities for modeling of extended
RTOS services, the RTOS library can be kept small and ef-
ficient. Later, as part of software synthesis in the backend,
channels are implemented by mapping them to an equiva-
lent service of the actual RTOS or by generating channel
code on top of RTOS primitives if the service is not pro-
vided natively.

Finally, in the implementation model (Figure 2(c)), the
compiled application linked against the real RTOS libraries
is running in an instruction set simulator (ISS) as part of the
system co-simulation in the SLDL.

We implemented the RTOS model on top of the SpecC
SLDL [1]. In the following sections we will discuss the
interface between application and the RTOS model, the re-
finement of specification into architecture using the RTOS
interface, and the implementation of the RTOS model. Due
to space restrictions, implementation details are limited. For
more information, please refer to [11].

4.1. RTOS Interface
Figure 4 shows the interface of the RTOS model. The

RTOS model provides four categories of services: operating
system management, task management, event handling, and
time modeling.

Operating system management mainly deals with initial-
ization of the RTOS during system start whereinit initial-
izes the relevant kernel data structures whilestart starts the
multi-task scheduling. In addition,interrupt return is pro-
vided to notify the RTOS kernel at the end of an interrupt
service routine.

Task management is the most important function in
the RTOS model. It includes various standard rou-
tines such as task creation (task create), task termination
(task terminate, taskkill ), and task suspension and acti-
vation (tasksleep, task activate). Two special routines

1 interface RTOS {
2 /* OS management */
3 void init( void );
4 void start( int sched_alg);
5 void interrupt_return( void );
6 /* Task managment */
7 proc task_create( char *name, int type,
8 sim_time period, sim_time wcet);
9 void task_terminate( void );

10 void task_sleep( void );
11 void task_activate(proc tid);
12 void task_endcycle( void );
13 void task_kill(proc tid);
14 proc par_start( void );
15 void par_end(proc p);
16 /* Event handling */
17 evt event_new( void );
18 void event_del(evt e);
19 void event_wait(evt e);
20 void event_notify(evt e);
21 /* Time modeling */
22 void time_wait(sem_time nsec);
23 };

Figure 4. Interface of the RTOS model.

are introduced to model dynamic task forking and joining:
par start suspends the calling task and waits for the child
tasks to finish after whichpar endresumes the calling task’s
execution. Our RTOS model supports both periodic hard
real time tasks with a critical deadline and non-periodic real
time tasks with a fixed priority. In modeling of periodic
tasks,taskendcyclenotifies the kernel that a periodic task
has finished its execution in the current cycle.

Event handling re-implements the semantics of SLDL
synchronization events in the RTOS model. SpecC events
are replaced with RTOS events (allocated and deleted
through eventnew and eventdel). Two system calls
eventnotify andeventwait are used to replace the SpecC
primitives for eventnotify and eventwait .

During simulation of high level system models, the log-
ical time advances in discrete steps. SLDL primitives (such
as waitfor in SpecC) are used to model delays. For
the RTOS model, those delay primitives are replaced by
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Figure 3. Model refinement example.

time wait calls which model task delays in the RTOS while
enabling support for modeling of task preemption.

4.2. Model Refinement
In this section, we will illustrate application model re-

finement based on the RTOS interface presented in the pre-
vious section through a simple yet typical example of a sin-
gle PE (Figure 3). In general, the same refinement steps
are applied to all the PEs in a multi-processor system. The
unscheduled model (Figure 3(a)) executes behaviorB1 fol-
lowed by the parallel composition of behaviorsB2 andB3.
BehaviorsB2andB3communicate via two channelsc1and
c2 while B3 communicates with other PEs through a bus
driver. As part of the bus interface implementation, the in-
terrupt handlerISRfor external events signals the main bus
driver through a semaphore channelsem.

The output of the dynamic scheduling refinement pro-
cess is shown in Figure 3(b). The RTOS model implement-
ing the RTOS interface is instantiated inside the PE in the
form of a SpecC channel. Behaviors, interrupt handlers and
communication channels use RTOS services by calling the
RTOS channel’s methods. Behaviors are refined into three
tasks.TaskPE is the main task which executes as soon as
the system starts. WhenTaskPE finishes executingB1, it
spawns two concurrent child tasks,TaskB2 andTaskB3,
and waits for their completion.
4.2.1 Task refinement

Task refinement converts parallel processes/behaviors in
the specification into RTOS-based tasks in a two-step pro-
cess. In the first step (Figure 5), behaviors are converted
into tasks, e.g. behaviorB2 (Figure 5(a)) is converted into
TaskB2 (Figure 5(b)). A methodinit is added for construc-
tion of the task. Allwaitfor statements are replaced with
RTOS time wait calls to model task execution delays. Fi-
nally, the main body of the task is enclosed in a pair of
taskactivate/ task terminatecalls so that the RTOS kernel
can control the task activation and termination.

The second step (Figure 6) involves dynamic creation of
child tasks in a parent task. Everypar statement in the
code (Figure 6(a)) is refined to dynamically fork and join

1 behavior B2() {
2 void main( void ) {
3 ...
4 waitfor (500);
5 ...
6 }
7 };

(a) specification model

1 behavior task_B2(RTOS os) implements Init {
2 proc me;
3 void init( void ) {
4 me = os.task_create("B2", APERIODIC, 0, 500);
5 }
6 void main( void ) {
7 os.task_activate(me);
8 ...
9 os.time_wait(500);

10 ...
11 os.task_terminate();
12 }
13 };

(b) architecture model

Figure 5. Task modeling.

child tasks as part of the parent’s execution (Figure 6(b)).
Theinit methods of the children are called to create the child
tasks. Then,par startsuspends the calling parent task in the
RTOS layer before the children are actually executed in the
par statement. After the two child tasks finish execution
and thepar exits, par end resumes the execution of the
parent task in the RTOS layer.

4.2.2 Synchronization refinement

In the specification model, all synchronization in the ap-
plication or inside communication channels is implemented
using SLDL events. Synchronization refinement replaces
all events and event-related primitives with corresponding
event handling routines of the RTOS model (Figure 7).
All event instances are replaced with instances of RTOS
eventsevtandwait / notify statements are replaced with
RTOSeventwait / eventnotifycalls.
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1 channel c_queue() {
2 event eRdy, eAck;
3 void send(...)
4 { ...
5 notify eRdy;
6 wait (eAck);
7 ... }
8 };

(a) before

1 channel c_queue(RTOS os) {
2 evt eRdy, eAck;
3 void send(...)
4 { ...
5 os.event_notify(eRdy);
6 os.event_wait(eAck);
7 ... }
8 };

(b) after

Figure 7. Synchronization refinement.

After model refinement, both task management and syn-
chronization are implemented using the system calls of the
RTOS model. Thus, the dynamic system behavior is com-
pletely controlled by the the RTOS model layer.

4.3. Implementation
The RTOS model library is implemented in 2000 lines of

SpecC channel code [11]. Task management in the RTOS
model is implemented in a customary manner [5] where
tasks transition between different states and a task queue is
associated with each state. Task creation (task create) allo-
cates the RTOS task data structure andtaskactivateinserts
the task into the ready queue. Thepar start method sus-
pends the task and calls the scheduler to dispatch another
task whilepar endresumes the calling task’s execution by
moving the task back into the ready queue.

Event management is implemented by associating addi-
tional queues with each event. Event creation (eventnew)
and deletion (eventdel) allocate and deallocate the corre-
sponding data structures in the RTOS layer. Blocking on
an event (eventwait) suspends the task and inserts it into
the event queue whereaseventnotify moves all tasks in the
event queue back into the ready queue.

In order to model the time-sharing nature of dynamic
task scheduling in the RTOS, the execution of tasks needs
to serialized according to the chosen scheduling algorithm.
The RTOS model ensures that at any given time only one
task is running on the underlying SLDL simulation ker-
nel. This is achieved by blocking all but the current task on

SLDL events. Whenever task states change inside a RTOS
call, the scheduler is invoked and, based on the scheduling
algorithm and task priorities, a task from the ready queue is
selected and dispatched by releasing its SLDL event. Note
that replacing SLDL synchronization primitives with RTOS
calls is necessary to keep the internal task state of the RTOS
model updated.

In high level system models, simulation time advances
in discrete steps based on the granularity ofwaitfor
statements used to model delays (e.g. at behavior or basic
block level). The time-sharing implementation in the RTOS
model makes sure that delays of concurrent task are accu-
mulative as required by any model of serialized task execu-
tion. However, additionally replacingwaitfor statements
with corresponding RTOS time modeling calls is necessary
to accurately model preemption. Thetime wait method is
a wrapper around thewaitfor statement that allows the
RTOS kernel to reschedule and switch tasks whenever time
increases, i.e. in between regular RTOS system calls.

Normally, this would not be an issue since task state
changes can not happen outside of RTOS system calls.
However, external interrupts can asynchronously trigger
task changes in between system calls of the current task
in which case proper modeling of preemption is important
for the accuracy of the model (e.g. response time results).
For example, an interrupt handler can release a semaphore
on which a high priority task for processing of the external
event is blocked. Note that, given the nature of high level
models, the accuracy of preemption results is limited by the
granularity of task delay models.

Figure 8 illustrates the behavior of the RTOS model
based on simulation results obtained for the example from
Figure 3. Figure 8(a) shows the simulation trace of the un-
scheduled model. BehaviorsB2 andB3 are executing truly
in parallel, i.e. their simulated delays overlap. After execut-
ing for time d1, B3 waits until it receives a message from
B2 through the channelc1. Then it continues executing for
time d2 and waits for data from another PE.B2 continues
for time (d6 +d7) and then waits for data fromB3. At time
t4, an interrupt happens andB3 receives its data through the
bus driver.B3executes until it finishes. At timet5, B3sends
a message toB2 through the channelc2which wakes upB2
and both behaviors continue until they finish execution.

Figure 8(b) shows the simulation result of the architec-
ture model for a priority based scheduling. It demonstrates
that in the refined modeltaskB2 andtask B3 execute in an
interleaved way. Sincetask B3 has the higher priority, it
executes unless it is blocked on receiving or sending a mes-
sage from/totaskB2 (t1 throught2 andt5 throught6), wait-
ing for an interrupt(t3 throught4), or it finishes (t7) at which
points execution switches totask B2. Note that at timet4,
the interrupt wakes uptaskB3andtaskB2 is preempted by
taskB3. However, the actual task switch is delayed until



0

logical  time
B1

C1

interrupt

C2
d1 d2 d3 d4

d5 d6 d8

B3

B2

t4

d7

t1 t2 t3 t7t5(t6)

(a) unscheduled model

logical  time

0

task_PE

task_B2

task_B3
C1

interrupt

C2
d1

t4 t5

d2 d3 d4

d5 d6 d8d7

t1 t2 t3 t6 t7t4'

(b) architecture model

Figure 8. Simulation trace for model example.

unsched. arch. impl.

Lines of Code 13,475 15,552 79,096
Execution Time 24.0 s 24.4 s 5 h

Context switches 0 326 326
Transcoding delay 9.7 ms 12.5 ms 11.7 ms

Table 1. Vocoder experimental results.

the end of the discrete time stepd6 in task B2 based on the
granularity of the task’s delay model. In summary, as re-
quired by priority based dynamic scheduling, at any time
only one task, the ready task with the highest priority, is
executing.

5. Experimental Results
We applied the RTOS model to the design of a voice

codec for mobile phone applications [9]. Table 1 shows the
results for this vocoder consisting of two tasks for encoding
and decoding running in software. For the implementation
model, the model was compiled into assembly code for the
Motorola DSP56600 processor and the RTOS model was re-
placed by a small custom RTOS kernel, described in more
detail in [9]. The transcoding delay is the latency when run-
ning encoder and decoder in back-to-back mode and it is
related to response time in switching between encoding and
decoding tasks.

The results show that refinement based on the RTOS
model requires only a minimal effort. Refinement into the
architecture model was done by converting relevant SpecC
statements into RTOS interface calls following the steps de-
scribed in Section 4.2. For this example, manual refinement
took less than one hour and required changing or adding
104 lines or less than 1% of code. Moreover, we have de-
veloped a tool that performs the refinement of unscheduled
specification models into RTOS-based architecture models
automatically.

The simulation overhead introduced by the RTOS model
is negligible while providing accurate results. Compared
to the huge complexity required for the implementation
model, the RTOS model enables early and efficient evalu-
ation of dynamic scheduling implementations.

6. Summary and Conclusions
In this paper, we proposed a RTOS model for system

level design. To our knowledge, this is the first attempt
to model RTOS features at such high abstraction levels in-
tegrated into existing languages and methodologies. The
model allows the designer to quickly validate the dynamic
real time behavior of multi-task systems in the early stage
of system design by providing accurate results with min-
imal overhead. Using a minimal number of system calls,
the model provides all key features found in any standard
RTOS but not available in current SLDLs. Based on this
RTOS model, refinement of system models to introduce dy-
namic scheduling is easy and can be done automatically.
Currently, the RTOS model is written in SpecC because of
its simplicity. However, the concepts can be applied to any
SLDL (SystemC, Superlog) with support for event handling
and modeling of time.

Future work includes implementing the RTOS interface
for a range of custom and commercial RTOS targets, includ-
ing the development of tools for software synthesis from the
architecture model down to target-specific application code
linked against the target RTOS libraries.
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