
Retargetable Profiling for Rapid, Early System-Level
Design Space Exploration

Lukai Cai and Andreas Gerstlauer and Daniel Gajski
Center for Embedded Computer Systems

University of California, Irvine
Irvine, CA 92697-3425, USA

{lcai, gerstl, gajski}@ics.uci.edu

ABSTRACT
Fast and accurate estimation is critical for exploration of any de-
sign space in general. As we move to higher levels of abstraction,
estimation of complete system designs at each level of abstraction
is needed. Estimation should provide a variety of useful metrics
relevant to design tasks in different domains and at each stage in
the design process.

In this paper, we present such a system-level estimation approach
based on a novel combination of dynamic profiling and static retar-
geting. Co-estimation of complete system implementations is fast
while accurately reflecting even dynamic effects. Furthermore, re-
targetable profiling is supported at multiple levels of abstraction,
providing multiple design quality metrics at each level. Experi-
mental results show the applicability of the approach for efficient
design space exploration.

Categories and Subject Descriptors: B.8 [Performance and Reli-
ability]: Performance Analysis and Design Aids

General Terms: Performance.

Keywords: Profiling, Retargetable, System Level Design, Explo-
ration.

1. INTRODUCTION
Recently, as system design is becoming more and more challeng-

ing due to decreasing time-to-market windows and increasing sys-
tem complexities, trends are emerging to move the design process
to higher levels of abstraction. System-level design, however, de-
mands corresponding approaches that enable efficient exploration
of the complete system design space in order to rapidly evaluate a
large number of design alternatives in a short amount of time.

One of the most critical aspects is the feedback about design
quality metrics based on which designers can make decisions. In
order to meet the challenges of system-level design, estimation of
metrics must be fast while providing accurate results in the sense
that they are relevant and useful for evaluating and comparing al-
ternatives. Estimation must be supported at all levels of abstrac-
tion, including early stages of the design process. At high levels of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC’04 June 7–11, 2004, San Diego, California, USA
Copyright 2004 ACM 1-58113-828-8/04/0006 ...$5.00.

abstraction, however, absolute accuracy is impossible. Rather, rela-
tive accuracy (fidelity) [11] allows designers to prune design space
of infeasible alternatives. Furthermore, in order to evaluate com-
plete system architectures in a comprehensive and unified manner,
it must be possible to estimate a wide variety of target implemen-
tations in combination. Also, a wide range of metrics for perfor-
mance, traffic, storage, etc. should be available for use in different
design domains.

In this paper, we propose a novel profiling and estimation tech-
nique for system-level design based on a unique combination of
dynamic profiling and static retargeting. Initial profiling derives
the characteristics of the application through simulation of the de-
sign specification. By then coupling application profiles with tar-
get characteristics based on the designer’s application-architecture
mapping, profiling is retargetable for static co-estimation of com-
plete system designs in linear time without the need for time con-
suming re-simulation or re-profiling. Since the system is only sim-
ulated once during the entire design process, the proposed approach
is ultra-fast yet accurate enough to make high-level decisions in
that it captures both static and dynamic effects. Furthermore, at
each level of abstraction, the retargetable profiler delivers a set of
results relevant to the design tasks at that stage of the design pro-
cess for multi-level, multi-metric estimation.

The rest of this paper is organized as follows. An overview of
related work is shown in Section 2. In Section 3, the proposed
system-level estimation and exploration design flow consisting of
profiling, retargeting, and simulation-estimation stages is introduced.
Details of multi-level, multi-metric system profiling and retargeting
are described in Section 4 and Section 5, respectively. In Section 6,
experimental results that show the applicability of the approach to
design space exploration are presented. Finally, the paper con-
cludes with a summary and an outlook on future work in Section 7.

2. RELATED WORK
The estimation of embedded system has been well studied for

decades. Traditionally, estimation approaches are based on either a
purely static analysis or a purely dynamic simulation.

In static analysis-based approaches, upper and/or lower bounds
for design metrics are computed by analyzing the code that will be
running on a single target processor. In performance estimation,
for example, computing the worst-case execution time (WCET) of
a process [13] requires an analysis of possible program paths at
the basic block level together with a micro-architecture model to
determine the execution time of each basic block. Given WCETs,
scheduling analysis of a group of tasks running on a processor can
then determine upper bounds for overall response times [2]. Simi-
larily, static analysis is employed to compute other metrics, e.g. to

� � � � � � � �
� � � � � � � �

Spec
model

Refined
model

Back
annotation

Refining

Instru-
menting

 Profiling

Retargeting

Simulation

Instrumented
model

Simulation

Spec
characteristics

N_BB

Implt
Characteristics

Implt.
Estimates

Comp.
Libaray

GUIEstimationRefinement

Design
decision

P
ro

fil
in

g
R

et
ar

ge
tin

g
S

im
ul

at
io

n-

es
tim

at
io

n

Estimation

Figure 1: Estimation and exploration flow.

determine bounds for memory sizes [16]. In all cases, static analy-
sis can be complex and time-consuming while the tightness of the
bounds often depends on manual interference.

In dynamic simulation-based approaches, metrics are collected
during simulated execution of the code. Traditional software pro-
filing tools [6] collect profiling data while running the code on
the actual target processor. Instruction-set simulators, on the other
hand, execute the code on an abstracted model of the target pro-
cessor. In both cases, the actual object code compiled into the
processor’s instruction-set has to be available and processors can
only be simulated in isolation. For validation of complete systems,
co-simulation of multiple processors, possibly at multiple different
levels of abstraction, is supported [3, 7]. Finally, there are sev-
eral approaches speeding up successive re-simulation of the same
design at different abstraction levels by driving slow low-level sim-
ulations with traces collected from fast, abstract simulation runs
[14, 12]. In all cases, however, time-consuming simulation of the
system design is necessary for each design alternative.

In comparison to the proposed approach, although traditional ap-
proaches can provide more accurate results, they are too slow for
exhaustive initial design space exploration. The proposed retar-
getable profiling approach can be used as their complementary ap-
proach at high abstraction levels. Because it is ultra-fast and rel-
ative accurate, it allows designers to exhaustive explore the initial
design space and to prune the design space of infeasible alternatives
before traditional estimation.

In contrast to implementation-dependent estimation, there is only
a limited number of approaches that aim to derive implementation-
independent characteristics of design specifications for system level
design. Traditional profilers such as [6] and [9] usually provide
target/host machine-dependent characteristics. Even though such
profilers can produce some implementation-independent character-
istics, they only support operation-related data such as function call
statistics. In comparison, our profiling approach is targeted for sys-
tem level design, and it computes not only operation-related char-
acteristics, but also traffic- and storage-related characteristics.

3. DESIGN FLOW
We propose an estimation and exploration flow, which is shown

in Figure 1. The flow is based on a explore and trim paradigm for
design space exploration (Figure 2). As design progresses through
profiling, retargeting, and simulation-estimation stages, the design

Exploration
Space

Design
Time

Profiling
stage

Retargeting
stage

Simulation-
estimation

stage

...

...

One-time
retargeting Implt

dependent
simulation
/estimation

Implt
independent
simulation

Profiling

Figure 2: Design space exploration.

space is gradually trimmed and pruned of unsuitable design alter-
natives until a final optimal solution is reached.

In each step, design starts from a specification of the desired
system functionality. In the profiling stage, the specification is in-
strumented and simulated to collect execution counts that capture
the dynamic behavior of the application at the basic block level
(NBB). Because this stage requires simulation for the specification,
we call it dynamic. Using the counters collected during simulation
together with a static analysis of the code, a profiling of the spec-
ification then computes the specification characteristics. Specifi-
cation characteristics are implementation-independent and provide
information about the inherent characteristics of the application.
Based on these specification characteristics, the design space can
be reduced to a large part. For example, if the specification does not
contain any floating point operations, allocating dedicated floating
point processors is counterproductive.

In the retargeting stage, designers allocate a target architecture of
processing elements (PEs) and/or busses from a component library
by matching specification characteristics and component attributes.
Given the allocated architecture or a predefined platform, designers
then map the computation and communication in the specification
onto PEs and busses, respectively. A retargeting of the specification
then computes the implementation characteristics for computa-
tion and communication by coupling the design decisions and spec-
ification characteristics. These characteristics are implementation-
dependent and represent the characteristics of the system design
reflecting the designer’s decisions. In an iterative process, the re-
targeting stage is executed repeatedly for different decisions in or-
der to prune the design space of unpromising design alternatives.
Because this stage doesn’t require simulation, it is a purely static
analysis. As will be explained later, retargeting is very fast in com-
parison with simulation and profiling. Therefore, retargeting en-
ables designers to explore many alternatives and tr im a large part
of the design space in a short amount of time.

Finally, the most promising design alternatives remaining after
the retargeting stage are then evaluated further in the simulation-
estimation stage. For each alternative, a refinement tool [15] gen-
erates a refined model of the design from the specification, inte-
grating and implementing the corresponding design decisions. In
the process, implementation characteristics are back-annotated into
the resulting model. By simulating the refined model, accurate im-
plementation estimates including dynamic implementation effects
not observable by profiling and retargeting the specification (e.g.
bus contention or dynamic scheduling) are generated. In order to
derive the accurate implementation estimates, traditional estima-
tion approaches introduced in section 2 can also be applied in this

stage. Using the implementation estimates, a final evaluation of the
remaining alternatives can be performed, possibly requiring to re-
turn to the retargeting stage. Implementation estimates provide the
accuracy of traditional simulation- or estimation-based approaches
while similarly requiring time-consuming simulation or analysis of
each design alternative. However, as the design space has been re-
duced down to a few alternatives through profiling and retargeting,
exhaustive simulation and anlysis becomes feasible.

4. PROFILING
The profiling stage generates the specification characteristics from

the system specification model. In general, design models are usu-
ally captured in the form of a system-level design language (SLDL).
In our case, specification models are written in the SpecC SLDL
[1]. However, the concepts apply equally to any other C-based
SLDL such as SystemC [10].

Profiling computes the specification characteristics for each com-
putation and communication entity in the specification. In the case
of SpecC, computation in the form of C code is encapsulated as be-
haviors. Behaviors can be composed hierarchically in a sequential
or concurrent fashion. Behaviors communicate through ports con-
nected to shared variables or channels where a channel provides
complex communication services to the behaviors through meth-
ods declared in its interface.

Given the execution counts of each basic block collected during
simulation and the code for the basic blocks in each entity, profiling
attaches raw characteristics ri,d , i ∈ I, d ∈D to each behavior, port,
variable, and channel in the specification where characteristics are
computed hierarchically by summation over the characteristics of
an entity’s children. I is the set of possible item types defined by
the characteristics’ category and D is the set of data types found in
the code. SpecC defines 26 basic, standard data types where data
types are further divided into integer data types, floating point data
types, and other data types. In addition, profiling can optionally
treat composite, user-defined data types (such as arrays or structs)
separately, expanding D dynamically as needed. Otherwise, user-
defined data types will be mapped down to the basic data types of
the individual elements they are composed of.

Specification characteristics are classified into three categories:
operation, traffic, and storage. In each category static and dynamic
metrics are computed. Static characteristics are derived directly
from the code of the specification model whereas dynamic char-
acteristics depend on data collected during simulation. In general,
static and dynamic specification metrics R = ∑i ∑d ri,d in each cat-
egory are computed by summation of corresponding characteristics
r over a subset of item and data types.

4.1 Operation
Operation characteristics (spec.) signify the complexity of the

computation in the specification. Therefore, they are attached to
behaviors as the computational units of the system. Each operation
characteristic corresponds to a certain operation of a certain data
type (as determined in C by the type of the result). Item types for
operation characteristics are defined as the 84 different operations
available in SpecC. They are further classified into ALU opera-
tions (‘+’, ‘&&’, ‘<<’, ‘>=’, etc.), memory access operations (‘=’,
‘->, etc.), control operations (‘if’, ‘for’, ‘f()’, etc.), and oth-
ers (braces and other syntactical overhead). In addition, similar to
data types, profiling can optionally treat global functions as special
operation types instead of mapping them down to the operations in-
side the function. In any case, operation metrics can be computed
for different classes of operations, different categories of data types,
or as the sum over all operation and data types.

Static operation characteristics are defined as the number of op-
erations in the code of each behavior. They represent the code com-
plexity which is related to code size or implementation complexity
of the control unit in general.

Dynamic operation characteristics are defined as the number of
operations executed by each behavior during simulation. Note that
in the presence of recursive function calls, dynamic operation char-
acteristics need to be computed by solving a set of linear equations
details of which are omitted due to space reasons [4]. Dynamic
operations represent the computational complexity in the system
which is related to performance issues. By identifying the most
complex behaviors, they can point the exploration to the most crit-
ical aspects and the best candidates for optimization. Furthermore,
the mix of operations in all or parts of the system can be used to de-
termine the type of processor used for implementation, e.g. a DSP
with a hardware multiplier for multiplication-intensive behaviors.

4.2 Traffic
Traffic characteristics (spec.) signify the complexity of the com-

munication in the specification as the amount and type of data ex-
changed, providing separate input and output traffic characteristics
via corresponding item types. As behaviors communicate through
variables and channels connected to their ports, traffic characteris-
tics are attached to behavior ports and variables and channels con-
nected to them. Furthermore, traffic characteristics for behaviors is
computed as the sum of the traffic over all their ports. Note that at
each abstraction level, communication is modeled differently. For
example, at the transaction level [10], behaviors communicate via
abstract, complex channels whereas variables connecting behaviors
at the bus-functional level represent physical bus wires.

Static traffic characteristics are defined as the number of con-
nected ports of a certain type. For a behavior’s ports, they reduce
to the size of the port itself (1 in most cases). For a variable or chan-
nel, they are equivalent to the number of connected behaviors. In
all cases, static traffic characteristics represent connectivity com-
plexity. For example, at the application level connectivity relates to
the message passing traffic incurred between two dependent behav-
iors in order to make the output of a behavior available at the next
behavior’s inputs. At the bus-functional level, on the other hand,
connectivity complexity relates to fan-in/fan-out and bus wire ca-
pacity.

Dynamic traffic characteristics are defined as the number of times
a port or a variable/channel of a certain type is accessed during sim-
ulation. An access is generated whenever a statement in the code
reads from a port variable, writes to a port variable, or calls a port
interface method. Note that a special port-parameter binding algo-
rithm resolves port accesses in the presence of recursive calls or
multiple invocations of the same function. Details of this algorithm
can be found in [4]. In summary, dynamic traffic characteristics
represent access complexity. For example, at the application level,
dynamic accesses relate to the traffic incurred for a shared memory
implementation of communication between dependent behaviors.
At bus-function level, they relate to the traffic over pins of the bus,
e.g. data traffic in case of the data bus.

4.3 Storage
Storage characteristics (spec.) signify the amount of memory

required to hold the system’s data. For each behavior and channel,
storage requirements are computed where item types distinguish
between local and global storage.

Static storage characteristics are defined as the number of static
variables of a certain data type declared inside the behavior/channel
and its children. In SpecC, this includes variables declared at the

behavior/channel level and static variables inside functions. Static
storage represents static memory requirements, i.e. memory that
needs to be allocated globally for the whole lifetime of the system.

Dynamic storage characteristics are defined as the number of
variables of a certain data type allocated and deallocated dynam-
ically during runtime. The local item type of dynamic storage rep-
resents stack requirements based on the number of local variables
declared inside functions. The global item type of dynamic stor-
age, on the other hand, represent heap requirements based on the
amount of memory allocated dynamically on the heap during run-
time (e.g. via malloc() calls). Note that in contrast to other
characteristics, dynamic storage requirements are computed hierar-
chically as the maximum over all children at each level.

5. RETARGETING
The retargeting stage computes implementation characteristics

of an implementation of each design entity based on design deci-
sions made by the user. Decisions include component allocation
(PEs and busses) and entity mapping (behaviors and variables to
PEs and channels to busses).

Given the design decisions and the specification characteristics
computed during profiling, retargeting attaches implementation char-
acteristics ei,d , i ∈ I, d ∈ D to each behavior, port, variable, and
channel. These characteristics are computed by multiplying speci-
fication characteristics ri,d with weights wc

i,d for a mapping of the
design entity to component c. Weight tables have to be defined for
each component in the library. Depending on the component, they
can be derived from the component’s data sheet or from accurate
simulations of selected, typical code kernels on the target compo-
nent. In addition to the standard weights for basic data and item
types stored in the library, the designer can manually tune weights
for retargeting. Furthermore, the designer can specify weights for
custom data and item types collected during profiling instead of
mapping them down to the basic data and item types they are com-
posed of.

Based on the specification characteristics, implementation char-
acteristics can be classified into operation, traffic, and storage cate-
gories, and each category can be further subdivided into static and
dynamic metrics. Static and dynamic implementation metrics E in
each category are then computed by summation of the weighted
characteristics e over subsets of item and data types:

E = ∑
i

∑
d

(ri,d ×wc
i,d)

where wc is the weight table for component c from the library. Be-
cause ri,d has been computed in the profiling stage and wc

i,d is pre-
defined in the weight table, retargeting avoids the time-consuming
simulation and profiling. Due to the simplicity of the computation,
retargeting is fast and its time complexity is O(n) where n is the
number of behaviors, ports, variables, and channels in the system.

Similar to specification characteristics, implementation charac-
teristics are computed hierarchically by adding implementation char-
acteristics of children at each level. Retargeting supports two modes
for hierarchical computation: analysis mode and estimation mode.
The analysis mode provides mapping-independent results. It com-
putes characteristics for each entity on each allocated component
assuming that the whole entity (including children) is mapped to
the target component. Results can be used by designers after allo-
cation to select the most appropriate component to map each entity
to. Estimation mode, on the other hand, computes characteristics
based on both allocation and mapping decisions. For each entity, it
generates characteristics on each target for those parts of the entity
that are mapped onto this component. Results can therefore be used

to evaluate mapping decisions.

5.1 Operation
Operation characteristics (implt.) are computed for behaviors

mapped onto target PEs. For static operation characteristics, PE
weights define the number of instruction or control words for each
operation where, in the case of custom hardware, the number of
control words is equal to the number of control states. By multi-
plying the characteristics with the PE’s instruction or control word
width, metrics for program memory size or size of the custom hard-
ware controller can be computed, respectively. Therefore, static op-
eration metrics represent code size requirements for each behavior.

PE weights for dynamic operation characteristics define the num-
ber of clock cycles needed to execute each operation. By multiply-
ing the number of cycles with the clock period, execution time
metrics for behaviors can be derived. In a similar manner, power
consumption metrics can be computed through energy per cycle
weights.

5.2 Traffic
Traffic characteristics (implt.) are computed for ports of be-

haviors mapped to PEs and for variables and channels mapped
to busses. A PE’s traffic weight table is equivalent to its storage
weight table (see Section 5.3) and it defines for each data type the
number of machine characters transfered over the PE’s bus. To-
gether with the PE’s machine character width and bus bandwidth,
the amount of data and time needed for each transfer are computed.
A bus’ weight table, on the other hand, defines the number of bus
cycles needed to transfer each data type over the bus. Dividing
bus traffic characteristics by the bus bandwidth, required commu-
nication time is computed. In all cases, static and dynamic traffic
characteristics represent communication delays. For example, at
the application level, communication delays for message passing
or shared memory implementations are estimated, respectively. At
the bus-functional level, on the other hand, characteristics for the
traffic over the data bus pins and wires provide actual bus access
times.

5.3 Storage
Based on a mapping of behaviors and channels to PEs, storage

characteristics (implt.) determine the memory size requirements in
each PE. A PE’s storage weight table defines the number of ma-
chine characters needed to store variables of different data types.
Multiplying storage characteristics with the PE’s machine charac-
ter bit-width, required memory size metrics are computed. Static
and dynamic metrics for local and global storage therefore repre-
sent static memory size, stack size, and heap size requirements.

6. EXPERIMENTAL RESULT
A retargetable profiler supporting instrumentation, profiling, and

retargeting has been implemented and integrated into our system
design environment. We applied the estimation and exploration
methodology using the profiler to the design examples of a voice
codec for mobile phone applications (vocoder) [8] and a JPEG en-
coder [5]. The vocoder example demonstrates the usage of the pro-
filer in the design space exploration and the profiler’s ultra-fast at-
tribute. The JPEG example demonstrates accuracy and fidelity [11]
of the retargeting.

6.1 Vocoder
The vocoder is assumed to be part of a mobile phone baseband

platform using a Motorola ColdFire processor as the CPU. The

LP Analysis 377.0 MOp
Open Loop 337.1 MOp
Closed Loop 478.7 MOp
Codebook 646.5 MOp
Update 43.6 MOp

Table 1: Computational complexity of top-level vocoder behav-
iors.

(*,int) (+,int) (-,int) (/,int) others

46.2% 33.5% 9.1% 7.1% 4.1%

Table 2: Codebook operation mix.

vocoder specification consists of appr. 13,000 lines of code. It en-
codes and decodes a frame of speech every 20 ms. For a testbench
that excercises the design with 163 frames, this translates to a total
timing constraint of 3.26 s.

The vocoder is a computation-dominated design. Therefore, de-
sign space exploration is focused on computation design. We esti-
mated an upper bound for the communication overhead using the
profiler by mapping all system communication onto a ColdFire bus.
Leaving a margin for the estimated communication delay of appr.
280 ms, we derived a timing constraint of appr. 3 s for the vocoder
computation.

In the profiling stage, we instrumented, simulated, and profiled
the vocoder specification to generate the specification characteris-
tics. Table 1 shows the computational complexity for the vocoder’s
five top-level behaviors in millions of operations (MOp). Note that
as a typical multimedia application, parallelism in the vocoder is
limited and at the top level behaviors execute sequentially in a loop.
Therefore, there is little promise of exploiting concurrency and de-
sign should focus on optimizing the critical parts of the behavior
sequence. As the profiling results show, the Codebook search be-
havior is by far the most critical vocoder block. The profiler also
provides the mix of operations in the Codebook behavior (Table 2;
a screenshot of the operation mix pie chart and the bar graph of
the top-level behaviors as displayed in the design environment GUI
is shown in Figure 3). The codebook search (and the vocoder in
general) does not contain any floating-point but only integer-type
operations, i.e. processors with dedicated floating-point units are
not necessary and processor selection should focus on integer per-
formance instead. Furthermore, most of the operations are multi-
plications, i.e. selected processors should have dedicated hardware
multipliers.

For further exploration in the retargeting stage, we allocated a
system architecture with three PEs: in addition to the Motorola
ColdFire CPU running at 60 MHz, we selected a DSP (Motorola
DSP56600 at 60 MHz) and a custom hardware processor (100 MHz)
to explore vocoder speedups. Mappings of eight top-level behav-
iors (five top-level vocoder behaviors plus three levels of hierarchy
of behaviors inside Codebook) to every PE were evaluated. Using
the scripting capabilities of the design environment together with
the profiler, we ran an exhaustive search of all 38 = 6561 design
alternatives. Running on a Pentium IV Linux PC at 2.0 GHz, the
complete search was finished in 3:15 h. It contains one time simula-
tion (2.23 s), one time profiling (8.41 s) and 6561 times retargeting
(0.8 s for each) and mapping (0.97 s for each) respectively.

Figure 4 shows computation time vs. cost for all design alter-
natives. For both ColdFire and DSP a fixed cost of 20 each was
assigned for the manufacturing cost. For custom hardware, a linear
cost function with a base cost of 20 and an additional cost of 1$

Figure 3: Vocoder specification characteristics GUI.

1500

2000

2500

3000

3500

4000

4500

5000

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

u

Timing constraint (2990)

T
im

e
(m

s)

Cost

A (20, 4656)

B (73, 2980)

C (144, 1643)

Figure 4: Vocoder design space.

per 10 static operations of code complexity was assumed to esti-
mate costs of control logic and design overhead. If no behavior is
mapped to a PE, it’s cost is assumed to be zero. A pure software
solution running on the ColdFire (A) is the cheapest design but has
the largest delay. A pure hardware solution (C) is the fastest design.
An optimal solution in the sense of the cheapest design that meets
the timing constraint is a mapping of Open loop, Closed loop, and
Search 10i40 (part of Codebook) behaviors to hardware while the
rest of the system is running on the ColdFire (B). The circled parts
of the design space mark candidates for further evaluation via sim-
ulation of refined implementation models. Comparing retargeting
results with a previously implemented DSP-HW solution of the
vocoder [8], implementation characteristics are accurate to within
15% of the actual delays.

6.2 JPEG Encoder
JPEG [5] is an image compression standard. It is designed for

compressing either full-color or gray-scale photographic images.
The JPEG encoder consists of four behaviors running sequentially:
HandleData (HD), DCT (D), Quantization (Q), and HuffmanEn-
code (HE). The JPEG specification contains around 2,000 lines of

Alternatives Estimates Char. Diff
HD D Q HE (ms) (ms)

SW SW SW SW 205.00 199.44 2.71%
SW SW SW HW 184.77 177.18 4.11%
SW SW HW SW 189.00 180.87 4.30%
SW SW HW HW 168.77 158.61 6.02%
SW HW SW SW 73.35 76.79 -4.69%
SW HW SW HW 53.12 54.53 -2.65%
SW HW HW SW 57.35 58.22 -1.52%
SW HW HW HW 37.12 35.96 3.12%
HW SW SW SW 183.23 176.92 3.44%
HW SW SW HW 163.00 154.66 5.12%
HW SW HW SW 167.23 158.35 5.31%
HW SW HW HW 147.00 136.09 7.42%
HW HW SW SW 51.58 54.27 -5.22%
HW HW SW HW 32.01 29.93 -2.11%
HW HW HW SW 35.70 38.84 -0.34%
HW HW HW HW 15.35 13.44 12.44%

Table 3: Comparison of implementation characteristics and
implementation estimates for JPEG encoder delays.

code. The testbench for the design encodes pictures with sizes of
116 × 96 pixels (corresponding to 180 blocks of 8 × 8 pixels).

We allocated a system architecture with two PEs: a Motorola
DSP56600 (SW) running at 60 MHz and a custom hardware (HW)
running at 80.8 MHz. By mapping four behaviors to two PEs in
different ways, we derive 16 (24) design alternatives.

We computed both implementation characteristics and imple-
mentation estimates representing the encoding delays for all design
alternatives. Implementation characteristics are computed by the
proposed profiler. For the implementation estimates, we estimated
the delays on SW by converting SpecC to C code, compiling the C
code to the assembly code, and running the assembly code on the
DSP56600’s customized instruction set simulator. We estimated
the delays on HW by simulating manually written RTL models.

Table 3 displays the computed encoding delays for 16 design al-
ternatives. The first four columns represent the designer’s behavior-
PE mapping decision for the four behaviors. The delay in column
Estimates represents implementation estimates. The delay in col-
umn Char. represents implementation characteristics. Their differ-
ence is displayed in column Diff.

Table 3 demonstrates that the implementation characteristics com-
puted by the proposed profiler are accurate to within 12.5% of im-
plementation estimates for the JPEG example.

We also computed the fidelity [11] of the proposed approach.
The fidelity is defined as the percentage of correctly predicted com-
parisons between design alternatives. If the estimated values of a
design metric for two design alternatives bear the same comparative
relationship to each other as do the measured values of the metric,
then the estimate correctly compares the two alternatives. Based on
Table 3, we compute the fidelity of the proposed approach by com-
paring the implementation characteristics with the implementation
estimates. For JPEG encoder example, the fidelity of our approach
is 100%.

7. SUMMARY AND CONCLUSIONS
In this paper, we present a system-level estimation approach based

on a novel combination of dynamic profiling and static retargeting.
In an initial profiling stage, one-time simulation of the specifica-
tion is done in order to collect specification characteristics about

the dynamic behavior of the system. In the retargeting stage, by
using specification characteristics together with a static analysis of
the code, retargeting to different implementations for accurate co-
estimation of whole system designs is done statically in linear time.

This ultra-fast approach enables initial, exhaustive exploration of
design space with the results that are accurate enough to prune out
infeasible design alternatives. Therefore, it is an ideal complemen-
tary solution for the traditional estimation approaches. Retargetable
profiling is applied to all computation and communication entities
in the description in a general manner. Therefore, the approach can
be applied to models at all levels of abstraction. Furthermore, it
computes a number of useful and relevant quality metrics for each
entity, enabling efficient design space exploration and guiding the
user in the design process.

In the future, we want to extend the retargetable profiler to pro-
vide additional metrics, including statistical information (minima,
maxima, standard deviations, etc.) for each metric, and to han-
dle dynamic micro-architecture features like caching or pipelining
more accurately. Furthermore, we are investigating possibilities for
re-profiling of refined models without re-simulation using profiling
data from earlier design steps.

8. REFERENCES
[1] SpecC website (http://www.specc.org).
[2] G. Buttazzo. Hard Real-Time Computing Systems. Kluwer,

1999.
[3] Cadence. VCC. http://www.cadence.com/products/vcc.html.
[4] L. Cai and D. Gajski. Introduction of design-oriented profiler

of SpecC language. Technical Report ICS-TR-00-47, UC
Irvine, 2001.

[5] L. Cai, J. Peng, and D. Gajski. Design of a JPEG Encoding
System. Technical Report ICS-TR-99-54, UC Irvine, Nov
1999.

[6] J. Fenlason and R. Stallman. The GNU Profiler
(http://www.gnu.org/software/binutils/manual/gprof-
2.9.1/gprof.html).

[7] P. Gerin et al. Scalable and Flexible Cosimulation of SoC
Designs with Heterogeneous Multi-Processor Target
Architectures. In ASPDAC, 2001.

[8] A. Gerstlauer et al. Design of a GSM Vocoder using SpeccC
Methodology. Technical Report ICS-TR-99-11, UC Irvine,
1999.

[9] R. Grehan. Code Profilers: Choosing a Tool for Anlyzing
Performance. A Metrowerks White Paper.

[10] T. Grötker et al. System Design with SystemC. Kluwer, 2002.
[11] F. Kurdahi et al. Linking Register-Transfer and Physical

Levels of Design. IEICE Transactions on Information and
Systems, Sept. 1993.

[12] K. Lahiri et al. Performance Analysis of Systems With
Multi-Channel Communication Architecture. In
International Conference on VLSI Design, 2000.

[13] Y. Li et al. Performance Estimation of Embedded Software
with Instruction Cache Modeling. In ICCAD, 1995.

[14] P. Lieverse et al. A Trace Transformation Techinique for
Communication Refinement. In CODES, 2001.

[15] J. Peng et al. Automatic Model Refinement for Fast
Architecture Exploration. Technical Report CECS-IR-02-14,
UC Irvine, Apr 2002.

[16] Y. Zhao and S. Malik. Exact Memory Size Estimation for
Array Computation without Loop Unrolling. In DAC, 1999.

	1 Introduction
	2 Related Work
	3 Design Flow
	4 Profiling
	4.1 Operation
	4.2 Traffic
	4.3 Storage

	5 Retargeting
	5.1 Operation
	5.2 Traffic
	5.3 Storage

	6 Experimental Result
	6.1 Vocoder
	6.2 JPEG Encoder

	7 Summary and Conclusions
	8 REFERENCES -9pt

