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ABSTRACT
This paper presents a methodology and algorithms for automatic
communication refinement. The communication refinement task
in system-level synthesis transforms abstract data-transfer between
components to its actual bus level implementation. The input model
of the communication refinement is a set of concurrently executing
components, communicating with each other through abstract com-
munication channels. The refined model reflects the actual commu-
nication architecture. Choosing a good communication architecture
in system level designs requires sufficient exploration through eval-
uation of various architectures. However, this would not be possi-
ble with manually refining the system model for each communica-
tion architecture. For one, manual refinement is tedious and error-
prone. Secondly, it wastes substantial amount of precious designer
time. We solve this problem with automatic model refinement. We
also present a set of experimental results to demonstrate how the
proposed approach works on a typical system level design.

Keywords
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1. INTRODUCTION
With the increase in complexity of system level designs, we are

continuously faced with the challenge of implementing the design
specification while meeting the strict constraints it imposes. Com-
munication synthesis requires extensive design space exploration.
With a greater number and variety of components being put to-
gether on a chip, the task of communication synthesis becomes
more complicated. In order to choose the right communication ar-
chitecture for our designs, we need to generate models that reflect
the communication architecture. These models are then evaluated
through simulation to test their “goodness”.

Typically, these models are handwritten, which poses a number
of problems. First of all, a lot of time is spent in writing these
models which is a serious handicap to the exploration process. The
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fewer architectures we test, the lower is the probability of choos-
ing the optimal one. Secondly, model rewriting is an error prone
process. It is possible to introduce several errors while manually
rewriting the model. This makes the evaluation of our communica-
tion architecture questionable.

In this paper we look at how we speed up the communication
synthesis process by enabling automatic model refinement. Fig-
ure 1 shows how communication synthesis is performed in our sys-
tem design methodology. We begin with a model of our partitioned
system design, which represents various system components ex-
ecuting concurrently. These components communicate with each
other via abstract channels as shown. Each channel comprises of
the data itself and Send/Receive methods that enable the data trans-
action. The user provides a set of synthesis decisions like bus allo-
cation, connectivity, bus access priorities etc. System buses may be
inserted in the design by instantiations from a bus protocol library.
With these inputs, the communication refinement tool produces an
output model that reflects the bus architecture of the system. In the
output model, the top level of the design consists of system compo-
nents and wires of the system bus(es). The components themselves
are refined to their bus functional models that communicate using
the system bus(es). The rest of the paper is organized as follows.
Section 2 is a brief review of the related work in this area. Section
3 talks about the characteristics of abstract communication in the
input model. Section 4 looks at the basic tasks of communication
refinement for a simplistic example with two components and one
bus. Section 5 builds up on the simple example by adding multiple
components and multiple buses. Finally, we present experimental
results in section 7 and wind up with a summary and conclusion.

2. RELATED WORK
In recent years a lot of attention has been given to modeling and

synthesis of bus architectures. Most of the work has been done
in optimizing communication architectures for specific designs. In
[7], Gogniat et al. describe mechanism for interfacing HW/SW in-
terfaces for co-design of embedded systems. Ortega et. al look at
a retargettable modeling scheme for maximum utilization of bus
bandwidth in [8]. However, they focus mostly on reactive real time
systems. Vahid and Tauro [10] propose using a parameterized com-
munication library. Rowson et. al propose the Interface based de-
sign methodology [9] that also aims at successive refinement of
communication from abstract tokens to implementation.

SystemC methodology talks about transaction level modeling in
[2] that aims at communication modeling so as to optimize sim-
ulation speed. However, it does not address automatic genera-
tion of such models. CoWare [1] supports heterogeneous proces-



Top Level
Design

DSP
Component

HW
Component

A
X

Y

CB

Z

W

System
Bus

Output Communication Model

Communication
Refinement

PCI
AMBA

DoubleHandShake
Motorola DSP56600

Protocol
Library

A d d r e s s
Data

Ready

Top Level
Design

Var 1 :  I n t Var 3 : B i tVar 2 : String

DSP Component HW Component

A
X

Y

CB

Z

W

Partitioned/Scheduled Input Model

Synthesis
Decisions

Bus Allocation
Connectivity

Component priority

Figure 1: Communication refinement engine

sors but focuses on shared memory communication. Jerraya et
al. [4] [6] present interesting schemes for putting together hetero-
geneous components on a bus using wrappers. SpecC methodol-
ogy [5] suggests four system level models and proposes refinement-
based synthesis approach.

3. INPUTS TO COMMUNICATION REFINE-
MENT

As discussed earlier and show in Figure 1, we have basically
three inputs to the communication refinement engine. The first in-
put is the input model with abstract communication. The second
input is a protocol library that supports a variety of protocols in-
cluding generic and processor specific protocols. The final input
is a set of synthesis decisions that guide the communication refine-
ment engine on the required transformations that need to be applied
to the input model.

3.1 Input model
The input model to communication refinement should follow

certain pre-specified semantics. It should reflect the intended ar-
chitecture of the system with respect to the components that are
present in the design. Each component executes a specific behavior
in parallel with other components. Communication inside a com-
ponent takes place through local memory of that component, and is
thus not a concern for communication refinement. Inter-component
communication is point-to-point and takes place through abstract
channels that support Send and Receive methods.

Communication between components can be modeled via three
schemes as shown in Figure 2. In the case of two way blocking
communication as shown in Figure 2 (a) , both the sender and re-
ceiver must be blocked until the transaction has completed. This
mechanism is modeled using events and blocking wait statements.

As we can see, the sender writes the data on a shared variable in
the channel and follows up by notifying the receiver. The receiver
cannot read the data until it gets the sender’s notification. This
guarantees the safety of the transaction. The ack event guaran-
tees that the sender cannot rewrite on the channel until the previ-
ous transaction has completed. Such a mechanism is deterministic.
Non-deterministic communication mechanisms can be seen in Fig-
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Figure 2: Communication mechanisms in abstract channels

ure 2(b) and Figure 2(c). In Figure 2(b), the one way blocking
mechanism is used that ensures that the receiver cannot read the
data until it is written by the sender. However, there is no way to
stop the sender from re-writing that data in a subsequent iteration.
The mechanism shown in figure Figure 2 (c) is completely non-
deterministic. These mechanisms are typically used in real time
systems where a time out strategy is employed. In the course of
this paper, we will look only at refinement of two way blocking
communication. The other two mechanisms can be implemented
easily once we have support for two way blocking communication.

3.2 Protocol Library
The protocol library is a set of channels that model the protocols

of system buses. These channels provide for the standard read/write
methods for the bus protocol. Additional methods may be required
for more complex designs that support arbitration, multiple inter-
rupt signals etc. Each bus transaction also requires definition of a
master and slave. Therefore, the protocol library must provide for
unique channels for both master and slave sides. The ports of the
bus protocol channel represent the actual bus wires which are later
exposed in the communication model.

3.3 Synthesis decisions
The refinement engine works on directions given to it by the

communication synthesis decisions. The synthesis process can ei-
ther be automated or interactive as per the designer’s methodology.
However, the decisions must input to the refinement engine using a
specific format. Some typical features of the communication archi-
tecture include the choice of system buses, the mapping of abstract
communication to these buses, the connectivity between compo-
nents and buses etc. Based on these decisions, the refinement en-
gine imports the required protocols from the bus protocol library
and generates interfaces and drivers for components so that they
may talk over the system buses. For the purpose of our imple-
mentation, we annotated the input model with the set of synthesis
decisions. The refinement tool then detects and parses these anno-
tations to perform the requisite model transformations.



4. REFINEMENT OF A SIMPLE DESIGN
In this section we look at communication refinement of a sim-

plistic model. We will look at the basic tasks involved in the re-
finement process before moving on to more complex architectures.
The design consists of two components (a processor and a HW unit)
communicating with two-way blocking channels. All this commu-
nication needs to be mapped to a single system bus in order to get a
simple bus architecture as shown in Figure 3. Four communication
points are shown in the master and slave component. Each commu-
nication point is labeled such that node A of master talks to node
A of slave, node B of master talks to node B of slave and on. Im-
plementation of data transactions on the system bus is done by the
Application Layer for that variable. Each component in the design
has a unique Application Layer for every variable that it sends or
receives. The Application Layer essentially substitutes the original
abstract communication channel by implementing the data trans-
fer on the system bus. Additions made to the model as a result of
communication refinement are highlighted in Figure 3.
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Figure 3: Simple architecture

4.1 Data slicing
The abstract communication channels of the input model per-

form transaction of complex variables with the help of events. These
complex variables could be structures, multi-dimension arrays or
integers. Eventually, they need to be translated to a bit-stream to be
sent over the system bus. Figure 3 shows how abstract data is pro-
cessed into data bus words and sent to the receiver. On the receiver
side, this bit stream needs to be identified and translated back to the
original variable. The entire data slicing forms part of the compo-
nent’s application layer for that variable.

4.1.1 Type analysis
As shown in the Figure 3, data type analysis is the first step on

the sender’s side. For simplicity, we consider only integral data.
The approach can be extended to floating point data or user defined
data as well. We begin by doing a depth first search on the com-
plex data structure. The key idea is to reduce the data structure
to a string of items of primitive types. The primitive integral type
data can then be directly converted to bit vectors to be sent on the
system bus. Figure 4 shows a recursive algorithm to generate code
for the sender side for doing this data processing. D

¯
, the input to

the algorithm, is a definition of the complex variable. The type of
D
¯

is checked to see if it is a complex type. For complex types,
the algorithm is called recursively with the subtype element of D

¯
.

For conversion of primitive integral types to bit streams, the mod-

eling language must have constructs or supporting libraries. This
is true for most system design languages and hence our algorithm
can be used to generate code in those system modeling languages.
Note that in the algorithm, the use of codegen refers to generating
statements in the model description.

protocol    Bus
procedure GenerateSendCode ( definition D )
     if   TypeOf (D) = STRUCT
     do

foreach elem in D
do

call  GenerateSendCode( elem )
end for

    end if
    if  TypeOf(D) = ARRAY
    do

codegen : loop i = 0 to D.length -1
call  GenerateSendCode ( D[ i ] )
codegen : end loop

    end if
    if TypeOf(D) = INTEGRAL_TYPE
    do

codegen : bit[D.size-1 : 0] temp = D
call  GenerateSendCode ( temp )

    end if
    if TypeOf(D) = BIT_VECTOR
    do

codegen :  slices =  ceil (D.size / Bus.datawidth)
codegen :  loop   j  =  0   to slices - 1
if (D.direction = DOWNTO)
do

codegen : bus.Write ( SlaveAddr,
                 D [D.LeftBound : D.LeftBound - Bus.datawidth + 1] )
codegen :  ShiftLeft (D,  Bus.datawidth)

else
codegen : bus.Write ( SlaveAddr,
                 D [D.LeftBound : D.LeftBound + Bus.datawidth - 1] )
codegen :  ShiftLeft (D,  Bus.datawidth)

end if
codegen : end loop

     end if
end  procedure

Figure 4: Algorithm for generating code for data slicing

4.1.2 Creating Bus Transactions
Once the complex variable has been converted to a series of bit

vectors, the methods of the protocol channel can be used for com-
pleting the data transfers. As shown in the second half of the Gen-
erateSendCode algorithm in Figure 4, we determine the number of
bus transactions required to send the entire variable. To perform
these transactions, we need slices of the variable of the size of data
bus width. The slices are made from left to right in the bit vec-
tor. Each of these slices are then sent using the bus protocol’s write
method. Receive procedure on the other side is an exact dual of
the Send method shown here. The incoming bit stream is read us-
ing the protocol channel’s Read method. Since we already know
the variable type, it is thus easy to regenerate it at the Receiver
end. Thereby we retain the functionality of the original Receive
and Send methods in the input model.

4.2 Refining Synchronization
Besides converting abstract data to bus words, we also need to

preserve the communication semantics of the input model. In the
case of abstract channels, each data transaction is independent and
does not interfere with other transactions. However, once all those
independent data transactions are mapped on the same bus, they
have to share the same communication medium and synchroniza-
tion events. Therefore, it is necessary to generate additional syn-
chronization code so as to avoid conflicts on the bus. This synchro-
nization is inserted around the data splitting and transfer code in
the application layer.



4.2.1 Synchronization for Statically Scheduled Com-
ponents

This is the simplest case for handling synchronization. If the
two communicating components have statically scheduled behav-
iors, there would be no possibility of temporal overlap of commu-
nication. In the two component design scenario, this amounts to
communication between two concurrent processes. The communi-
cation takes place as follows.

When the slave process reaches the communication point, it no-
tifies the master that it is ready to start the data transfer. This noti-
fication is typically done by means of an interrupt. Upon receiving
the interrupt event, the slave suspends its execution and sets the
SlaveReady flag as shown in Figure 5. The interrupt mechanism re-
quires the simulator support and also programming language con-
struct to model it. The master side process waits till the flag is set to
initiate the bus transfer. The slave component waits for the master
to initiate the bus transfer by checking the address bus. This mecha-
nism retains the two-way blocking property of the original abstract
communication. Once the data transfer is complete, the applica-
tion layer resets the SlaveReady flag to prepare for the next slave
request. In Figure 5 the actions performed in each state are shown
in bold as compared to the state transition inputs. The slave com-
ponent waits for the master to initiate the bus transfer by checking
the address bus.
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Figure 5: Master and Slave communication mechanisms for
statically scheduled behaviors

4.2.2 Synchronization for Dynamically Scheduled Com-
ponents

With dynamically scheduled components, we are faced with a
scenario where we might have temporal overlap of communication.
For instance, in Figure 3, transactions B and C might overlap in
time. In such a case, we have two issues to look into.

Firstly, we have to determine the source of the data transfer re-
quest. If the master gets an interrupt from the slave, there is no
way to tell if the slave is ready for transaction B or C. In a nor-
mal addressing scheme, a query by the master will only result in
the slave component’s address. To distinguish between the two
transaction requests, each variable should be assigned a different
address. Moreover, the behavior of the interrupt handler on the
master side would also change as shown in Figure 6. On the master
side, we will also need separate SlaveReady flags for each transac-
tion address. The interrupt handler on receiving an interrupt event
reads the variable’s address from the bus. A special address la-
beled as GLOBAL ADDRESS is used by the interrupt handler to
notify the slave application layer to write its variable’s address on
the data bus. Depending on the slave address it sets the correspond-
ing SlaveReady flag.

Secondly, with temporal overlap of communication, we need to
control access to the IO port of the component. Therefore each
data transfer has to be treated like a critical section. To ensure this
we can use semaphores or hardware flags in components. Note in
Figure 6 that each access to the IO port is protected. The code
generated in application layer for each component must ensure that
the IO port is reserved before it is used.
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5. REFINEMENT OF COMPLEX DESIGNS
For more complex designs the refinement engine needs to do

more work to ensure that synchronization is maintained. The basic
tasks of data transfer remain essentially the same. For designs with
more than one slave, we need to generate an interrupt controller.
For multiple masters on a bus, we have to generate bus arbitration
mechanism to make sure that the communication model is correct.
In the case of multiple bus designs, components might interface
to more than one bus, which requires generation of multiple bus
drivers.
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Figure 7: A complex bus architecture

5.1 Multiple Slaves
This is a typical system design where several slave components

talk to a single master. In some ways, this case is similar to multi-
threaded dynamically scheduled components that we discussed in
the previous section. However, there are several independent inter-
rupt lines and the master, which is typically a processor, has only



one incoming interrupt line in its bus functional model. Some pro-
cessors may have more than one interrupt, with an interrupt con-
troller built in. The way we handle this is by parameterizing the
processor components.

5.1.1 Interrupt Controller
If the number of slaves is more than the number of interrupt

ports on the processor’s interface, we generate an interrupt con-
troller. A generic interrupt controller for a master component con-
sists of Interrupt Request ports, Interrupt Grant ports labeled req
and gnt respectively, as shown in Figure 7. Depending on the syn-
thesis decision, we generate a priority based or round-robin inter-
rupt controller.Figure 8 shows how a round-robin interrupt con-
troller works. Upon choosing a slave request, the controller sends
an interrupt event to the master component and a grant signal to the
chosen slave.
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5.1.2 Application layers
For the master component, there is no change in the application

layer. Since each variable carries its own address, the master does
not make any distinction based on the slave component. However,
the operation of the slave component has to be changed in the pres-
ence of other competing slaves. As shown in Figure 8, the slave
sends an interrupt request to the interrupt controller and waits for
the grant. If the controller gives grant to another slave, the request
signal must be kept high to compete for the next grant cycle. On
getting a grant signal, the slave monitors the address bus for the
GLOBAL ADDRESS to put its variable address on the data bus and
continue as before.

5.2 Multiple Masters
For buses that support arbitration, the designer may designate

more than one master as shown in Figure 7. The arbitration mech-
anism could either be distributed or centralized. For distributed
arbitration, we rely on the protocol channel to provide for an ap-
propriate method to request bus arbitration. Essentially, the mas-
ter side protocol should have a special method which is annotated
to be identified as the bus arbitration method. If such a channel
method is not found, we have to generate a centralized bus arbiter
as per the requirements. Based on synthesis decisions, we gen-
erate a priority-based or round-robin arbitration unit. The arbiter
behavior is exactly like that of an interrupt controller, except that it

resolves conflicts between masters.

6. EXPERIMENTAL RESULTS
Based on the described methodology and algorithms, we devel-

oped a communication refinement tool in C++. The example was
chosen as the GSM Vocoder which is employed worldwide for
cellular phone networks. The model was based on the bit-exact
reference implementation of the ETSI standard in ANSI C. It en-
codes 5 ms of speech data consisting of 163 frames. Different ar-
chitectures using the Motorola DSP56600 processor and custom
hardware units were generated and various bus architectures were
tested. Table 1 shows the data from tests conducted on 5 differ-
ent architectures of the GSM Vocoder. The total traffic per speech
sample refers to the amount of data exchanged between compo-
nents during course of one simulation with a sample speech of 163
frames. Note that this data increases with greater partition, which
increases communication time. To compare against the manual ef-
fort of model refinement, we used the Lines of Code (LOC) metric.
Even with a very optimistic estimate of 10 LOC per person hour,
manual communication refinement takes several hundred hours for
reasonably complex designs. Automatic refinement on the other
hand completes in the order of a few seconds. The productivity
gain is enormous as a result of automatic refinement.

Figure 9: Top level of the input model

Snapshots from the GUI of the SCE design environment [3] are
shown in Figure 9 and Figure 10. The design has three compo-
nents DSP, HW1 and HW2 communicating with abstract channels
as seen in Figure 9. Two buses viz. the Motorola DSP56600 bus
and a generic 32-bit double handshake bus are used. The generated
communication model’s snapshot can be seen in Figure 10. Note
that the top level consists of the components connected with wires
of the system buses.

7. CONCLUSION AND FUTURE WORK
In this paper, we suggested a methodology and algorithms to au-

tomatically generate communication models. A tool was developed



Table 1: Experimental results for various vocoder architectures
Number of Number of Total Traffic/ Input Output Modified Automatic Manual

Components System Buses speech sample Size Size (LOC) refinement refinement
(bytes) (seconds) (estimated person-hr)

1 DSP 56600
� 1(Motorola DSP bus) 60962 7992 8448 1299 0.291 130

1 standard HW
1 DSP 56600

� 1(Motorola DSP bus) 66830 11292 12581 2392 0.480 240
2 standard HW
1 DSP 56600 1(Motorola DSP bus)

� � 70092 21248 22418 13020 0.644 1300
2 standard HW 1(HandShake bus)
1 DSP 56600 1(Motorola DSP bus)

� � 131378 25470 28950 19927 1.923 2000
4 standard HW 2(HandShake bus)
2 DSP 56600 2(Motorola DSP bus)

� � 60692 31481 37629 21375 3.761 2140
7 standard HW 2(HandShake bus)

Figure 10: Top level of the generated communication model

and experiments were performed to validate this concept. Simula-
tions were done on input models and output communication mod-
els to ensure their semantic equivalence. Our main contribution in
this paper is the automation of a time-consuming and error prone
process to achieve better designer productivity. It also enables de-
signers to evaluate several design points during exploration. Future
work in this direction would involve parameterizing of protocols
and developing libraries for interrupt controllers and arbiters. We
are also looking at automatic mapping of abstract communication
on buses to minimize communication delay.
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