
RTOS Scheduling in Transaction Level Models

Haobo Yu, Andreas Gerstlauer, Daniel Gajski
Center for Embedded Computer Systems

University of California, Irvine
Irvine, CA 92697, USA

{haoboy,gerstl,gajksi}@cecs.uci.edu

ABSTRACT
Raising the level of abstraction in system design promises to
enable faster exploration of the design space at early stages.
While scheduling decision for embedded software has great
impact on system performance, it’s much desired that the
designer can select the right scheduling algorithm at high
abstraction levels so as to save him from the error-prone
and time consuming task of tuning code delays or task pri-
ority assignments at the final stage of system design. In this
paper we tackle this problem by introducing a RTOS model
and an approach to refine any unscheduled transaction level
model (TLM) to a TLM with RTOS scheduling support.
The refinement process provides a useful tool to the system
designer to quickly evaluate different dynamic scheduling al-
gorithms and make the optimal choice at the early stage of
system design.

Categories and Subject Descriptors
D.4.m [Operating Systems]: Miscellaneous; B.7.2 [Design
Aids]: Simulation

General Terms
System Design, Specification Languages

Keywords
RTOS, SpecC, System Design, Model

1. INTRODUCTION
Real time systems differs fundamentally from other sys-

tems in that both computation result and time affect the
correctness of the whole system. These two aspects are ad-
dressed separately in system design. The computation cor-
rectness is usually determined at the early stage of system
design by a high level model,whereas the actual timing prop-
erties are checked at run time through target specific binary
code implementation. Wether a piece of computation can be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’03,October 1–3, 2003, Newport Beach, California, USA.
Copyright 2003 ACM 1-58113-742-7/03/0010 ...$5.00.

finished on time or not largely depends on both the schedul-
ing scheme and the system architecture. Since the schedul-
ing behavior is hard to capture through high level model
simulation, the timing properties of a system design usually
change from high level model to implementation. As a re-
sult, the designer has to tune code delays or task priority
assignments at final stage of system design which is both
error prone and time consuming. However, this situation
can be avoided if we provide a way to abstract the dynamic
scheduling behavior and adjust the scheduling algorithm at
higher abstraction levels.

Transaction level modeling is a high level approach to
model digital systems where communication among system
components is separated from the implementation of the
processing elements (PE) [11]. This allows to abstract the
communication between PEs independently from the imple-
mentation of the PEs. A high level of communication ab-
straction achieves high simulation speeds, hence enabling
early architecture exploration and speeding embedded soft-
ware development.

Many designers use preemptive, priority-driven and task-
based real time operating systems (RTOS) [1, 3] to support
the dynamic real-time behavior of the the system. To cap-
ture the dynamic scheduling behavior at higher level, we
need techniques to abstract the RTOS scheduling because
using a real RTOS implementation would negate the pur-
pose of a high level model. Furthermore, at higher levels,
not enough information might be available to target a spe-
cific RTOS.

In this paper, we address this design challenge by intro-
ducing a high level RTOS model and a set of refinement
steps to create a TLM with RTOS scheduling support from
any unscheduled TLM. We make a scheduling refinement
tool implementing these refinement steps. The output model
generated by our tool provides simulation result close to the
final implementation (in terms of RTOS timing) and the tool
can be easily integrated into the existing system level design
flows to accurately evaluate a potential system design (e.g.
in respect to timing constraints) for early and rapid design
space exploration.

The rest of this paper is organized as follows: Section
2 gives an insight into the related work on software mod-
eling and synthesis. Section 3 describes how the schedul-
ing refinement process is integrated with the system level
design flow. Section 4 provides information of the RTOS
model used to model dynamic scheduling, Section 5 gives
the detailed information of the RTOS scheduling refinement
process. Experimental results are shown in Section 6 and

Section 7 concludes this paper with a brief summary and an
outlook on future work.

2. RELATED WORK
A lot of work recently has been focusing on automatic

RTOS and code generation for embedded software. In [6],
a method for automatic generation of application-specific
operating systems and corresponding application software
for a target processor is given. In [4], a way of combining
static task scheduling and dynamic scheduling in software
synthesis is proposed. While both approaches mainly focus
on software synthesis issues, their papers do not provide any
information regarding high level model of dynamic schedul-
ing integrated into the whole system.

In [12], a technique for modeling fixed-priority preemptive
multi-tasking systems based on concurrency and exception
handling mechanisms provided by SpecC is shown. However,
their model is limited in its support for different scheduling
algorithms and inter-task communication, and its complex
structure makes it hard to use.

In [5], a high-level model of OS called SoCOS is introduced
as a high level RTOS model supporting software genera-
tion. The main difference between our approach and theirs
is that SoCOS requires its own proprietary simulation en-
gine while our RTOS model is build on top of existing system
level design language (SLDL) and can be directly integrated
into any system model and design flow supported by the
chosen SLDL. Besides, we generate RTOS based dynamic
scheduling TLM automatically while the SoCOS based sys-
tem model is created manually.

3. DESIGN FLOW
Figure 1 shows a typical system level design flow [9]. The

system design process starts with the specification model
written by the designer to specify the desired system func-
tionality. During system design, the specification function-
ality is partitioned onto multiple processing elements (PEs).
The result is a TLM in which each PE executes a spe-
cific behavior in parallel with other PEs and communica-
tion between PEs takes place through abstract channels.
After that, the communication synthesis step generates the
bus functional model in which a communication architec-
ture consisting of busses and bus interfaces is synthesized to
implement communication between PEs.

Due to the inherently sequential nature of PEs, processes
inside the same PE need to be serialized. Depending on the
nature of the PE and the data inter-dependencies, processes
are scheduled statically or dynamically. In case of dynamic
scheduling, a RTOS is required for the final implementa-
tion. Usually, the scheduling process takes place after the
bus functional model has been generated. In our approach,
we move the scheduling into higher level of abstraction, i.e.
perform scheduling at TLM level. Since a detailed commu-
nication architecture is not required to evaluate scheduling
results, using a TLM can improve the simulation speed and
result in faster design space exploration.

Current definition of TLM is general and ambiguous. De-
pending on the abstraction of transaction, there are different
kind of TLMs. In the higher abstraction level, transaction
between the PEs is represented by the message passing chan-
nels. On the other hand,abstracting only low level bus pro-
tocol primitives (i.e. send, receive) between the PEs results

Bus Functional Model

Implementation Model

RTOS
IP

RTL
IP

Hardware
Synthesis

Interface
Synthesis

Software
Synthesis

Transaction Level Model

Specification Model

Partition

Communication
Refinement

Scheduling

Scheduling

Figure 1: Design flow

in a different TLM where the bus drivers are used inside
each PE to drive the protocol channels. Note that interrupt
handlers are used as part of the bus drivers. Our scheduling
refinement tool can be used in both of the TLMs. However,
in order to demonstrate the effect of the interrupt schedul-
ing, we use the latter TLM in our example.

In order to validate the scheduling in TLM, a represen-
tation of the dynamic scheduling implementation, which is
usually handled by a RTOS in the real system, is required.
Therefore, a high level model of the underlying RTOS is
needed for inclusion into TLMs during system design. The
RTOS model provides an abstraction of the key features
that define a dynamic scheduling behavior independent of
any specific RTOS implementation.

The scheduling refinement tool (Figure 2) refines the un-
scheduled TLM into a scheduled TLM based on the refine-
ment decisions from the designer. In general, for each PE
in the system a RTOS model corresponding to the selected
scheduling strategy is imported from the library and instan-
tiated in the PE. Processes inside the PEs are converted into
tasks with assigned priorities. Synchronization as part of
communication between processes is refined into OS-based
task synchronization. In the scheduled output TLM, each
PE runs multiple tasks on top of its local RTOS model
instance. Therefore, the output model can be validated
through simulation or verification to evaluate different dy-
namic scheduling approaches (e.g. in terms of timing) as
part of system design space exploration.

As the last step of the design flow, each PE in the bus func-
tional model is then implemented separately. Custom hard-
ware PEs are synthesized into a RTL description. Commu-
nication interfaces are synthesized in hardware and software.
Finally, embedded software is generated from the scheduled
output TLM of the schedule refinement tool. In this process,
services of the RTOS model are mapped onto the API of a
specific standard or custom RTOS. The code is then com-
piled into the processor’s instruction set and linked against
the RTOS libraries to produce the final executable.

4. THE RTOS MODEL
As mentioned previously, the RTOS model is a very im-

port component of the scheduling refinement tool. We im-
plemented the RTOS model on top of the SpecC SLDL [8].

Refinement
Decisions

Unscheduled TLM

Scheduling Refinement

RTOS
Model

Scheduled TLM

W

Z

X

Y

W

ISR S1

PE

protocol

read
()

write
()B

u
s

d
ri

v
e

r

B
u

s
dr

iv
e

r

ISR S1

PE

protocol

read
()

write
()B

u
s

d
ri

ve
r

B
u

s
dr

iv
e

r

RTOS Model

T1

T3T2

PE

PE

Task table

T1: X

T2: W,Y

T3: Z

Figure 2: Scheduling refinement tool

It is incorporated into the RTOS model library of the refine-
ment tool. The library provides RTOS models with different
scheduling algorithms typically found in RTOS implemen-
tations, e.g. round-robin or priority-based scheduling. In
addition, the models are parameterizable in terms of task
parameters, preemption, and so on. The detailed informa-
tion about the RTOS model can be found in [10].

Figure 3 shows the interface of the RTOS model. The
RTOS model provides four categories of services: operating
system management, task management, event handling, and
time modeling.

Operating system management mainly deals with initial-
ization of the RTOS during system start where init initial-
izes the relevant kernel data structures while start starts the
multi-task scheduling.

Task management is the most important function in the
RTOS model. It includes various standard routines such as
task creation (task create), task termination (task terminate,
task kill), and task suspension and activation (task sleep,
task activate). Two special routines are introduced to model
dynamic task forking and joining: fork suspends the call-
ing task and waits for the child tasks to finish after which
join resumes the calling task’s execution. Our RTOS model
supports both periodic hard real time tasks with a critical
deadline and non-periodic real time tasks with a fixed prior-
ity. In modeling of periodic tasks, task endcycle notifies the
kernel that a periodic task has finished its execution in the
current cycle.

Event handling in the RTOS model sits on top of the
basic SLDL synchronization events. Two system calls, en-
ter wait and wakeup wait, are wrapped around each SpecC
wait primitive. This allows the RTOS model to update its
internal task states (and to reschedule) whenever a task is
about to get blocked on and later released from a SpecC
event.

During simulation of high level system models, the logical

1 interface RTOS
2 { /* OS management */
3 void init ();
4 void start(int sched_alg);
5 /* Task management */
6 Task task_create(const char *name,
7 int type,sim_time period);
8 void task_terminate ();
9 void task_sleep ();

10 void task_activate(Task t);
11 void task_endcycle ();
12 void task_kill(Task t);
13 Task fork ();
14 void join(Task t);
15 /* Event handling */
16 Task enter_wait ();
17 void wakeup_wait(Task t);
18 /* Delay modeling */
19 void time_wait(sim_time nsec);
20 };

Figure 3: Interface of the RTOS model

(a) unscheduled model (b) scheduled model

PE

RTOS Model

B
u

s
dr

iv
e

r

IP

HW

B
u

s

uP

B2 B3

B1

ISR

IP

HW

B
u

s

B2 B3C1

C2

uP

S1 S1

B
u

s
dr

iv
er

PE

B
u

s
dr

iv
e

r

B2

B1

Task
B2

Task
B3

C1

C2

Task_PE

Run Time Environment

ISR

Figure 4: Refinement example

time advances in discrete steps. SLDL primitives (such as
waitfor in SpecC) are used to model delays. For the RTOS
model, those delay primitives are replaced by time wait calls
which model task delays in the RTOS while enabling support
for modeling of task preemption.

The RTOS model interface introduced in this section will
be later implemented by using the real RTOS APIs during
software synthesis. Generally, this means that each routine
of the RTOS model interface will be mapped to 1 or N target
RTOS APIs.

5. SCHEDULING REFINEMENT
The scheduling refinement tool refines the input unsched-

uled model into a RTOS based multi-task model. In this sec-
tion, we illustrate the scheduling refinement process through
a simple yet typical example (Figure 4). The unscheduled
model (Figure 4(a)) executes behavior B1 followed by the
parallel composition of behaviors B2 and B3. Behaviors B2
and B3 communicate via two channels C1 and C2 while B3
communicates with other PEs through a bus driver. As part
of the bus interface implementation, the interrupt handler

Algorithm 1 TaskCreate(IRDesign, BPE)

1: for all Behavior B ∈ IRDesign do
2: if IsChildBehavior(B,BPE) then
3: BInst = FindInstance(B);
4: while BInst 6= NULL do
5: if IsParallel(BInst,BPE) then
6: GenTaskFromBehavior(B,BInst);
7: end if
8: BInst = FindNextInstance(B,BInst);
9: end while

10: end if
11: end for
12: for all Function F ∈ IRDesign do
13: if IsMemberFunction(F ,BPE) then
14: Stmnt = GetFirstStatement(B);
15: while Stmnt 6= NULL do
16: if IsParStatment(Stmnt) then
17: GenDynamicTasks(Stmnt);
18: end if
19: Stmnt = GetNextStatment(B,Stmnt);
20: end while
21: end if
22: end for

ISR for external events signals the main bus driver through
a semaphore channel S1.

5.1 RTOS Model Instantiation
As the first step of the scheduling refinement, a RTOS

model implementing interface RTOS is selected from the
RTOS library and a run time environment which coordi-
nates the interaction between the RTOS model and tasks
is created for each PE. The run time environment is imple-
mented as a behavior which wrappers around the top-level
PE behavior. The RTOS model gets instantiated in the run
time environment and the initial values of the internal data
structures for the RTOS model are set. At the same time, a
main task (task PE) for the PE is created which is the only
task available for the RTOS model to schedule at system
start time.

5.2 Task Creation
The task creation step converts parallel processes/behaviors

in the specification into RTOS-based tasks. This is by far
the most important and time consuming part of the schedul-
ing refinement process. The task creation process is shown
in Algorithm1. The input to Algorithm1 is the internal rep-
resentation for the whole design IRDesign and the top level
behavior for the PE BPE .

Task creation is carried out in a two-step process. In the
first step (line 1-11), each behavior instance BInst inside
BPE are checked to see if they are running in parallel with
other behavior instance inside BPE . If such a behavior in-
stance is found (line 5), a task definition for this behavior
instance is created (line 6).

In our example, since behavior B2 and B3 are running in
parallel (Figure 4(a)), function GenTaskFromBehavior cre-
ate the task definition Task B2 (Figure 5(b)) for behavior

B2 (Figure 5(a)). The task is modeled as a behavior[2]
and there’s an method os task create inserted into to the
behavior for construction of the task. Finally, the main
body of the task (method main) is enclosed in a pair of

Algorithm 2 SyncRefine(IRDesign, BPE)

1: for all Channel C ∈ IRDesign do
2: if IsUsedInBehavior(C,BPE) then
3: for all Function F ∈ C do
4: Stmnt=GetFirstStatement(B);
5: while Stmnt 6= NULL do
6: if IsWaitStatment(Stmnt) then
7: RefineWait(Stmnt);
8: end if
9: Stmnt = GetNextStatment(B,Stmnt);

10: end while
11: end for
12: end if
13: end for
14: for all Function F ∈ IRDesign do
15: if IsMemberFunction(F ,BPE) then
16: Stmnt = GetFirstStatement(B);
17: while Stmnt 6= NULL do
18: if IsWaitStatment(Stmnt) then
19: RefineWait(Stmnt);
20: end if
21: Stmnt = GetNextStatment(B,Stmnt);
22: end while
23: end if
24: end for

task activate / task terminate calls so that the RTOS model
can control the task activation and termination.

The second step (line 12-22) involves dynamic creation of
child tasks in a parent task. The tool goes through each
statement of the member functions of behavior BPE or any
of it’s child behaviors. If a parallel statement (par statement
in SpecC) is found (line 16), a dynamic task instances are
created for this statement (line 17).

This step is illustrated by our example in Figure 6. The
par statement in the input model (line 9-12 in Figure 6(a))
is converted to dynamically fork and join child tasks as part
of the parent’s execution (line 6-13 in Figure 6(b)). Dur-
ing this refinement process, the init methods of the children
are called to create the child tasks (line 6,7 in Figure 6(b)).
Then, fork is inserted before the par statement to suspend
the calling parent task by the RTOS model before the chil-
dren are actually executed in the par statement. After the
two child tasks finish execution and the par exits, join is
inserted to resume the execution of the parent task by the
RTOS model.

5.3 Synchronization Refinement
Replacing SLDL synchronization primitives with RTOS

calls is necessary to keep the internal task state of the RTOS
model updated. This is achieved by synchronization re-
finement which wraps event wait primitives in the input
model with the RTOS model interface routines enter wait
and wakeup wait. The two routines make sure that the
RTOS model can intercept event wait primitives thus takes
care of task switching.

Algorithm 2 shows how the synchronization refinement
works. It is also a two step process: the first step (line 1-13)
refines all the wait statements inside the channels used in
the selected PE while the second step (line 14-23) refines the
wait statements inside all the member functions of behavior
BPE and its child behaviors.

1 behavior B2()
2 {void main(void)
3 { ...
4 waitfor(BLOCK1_DELAY);/* model delay*/
5 ...
6 waitfor(BLOCK2_DELAY);/* model delay*/
7 ...
8 }
9 };

(a) unscheduled model

1 behavior task_B2(RTOS os) implements Init
2 {Task h;
3 void init(void) {
4 h = os.task_create("B2", APERIODIC , 0);
5 }
6 void main(void) {
7 os.task_activate(h);
8 ...
9 os.time_wait(BLOCK1_DELAY);/* model delay*/

10 ...
11 os.time_wait(BLOCK2_DELAY);/* model delay*/
12 ...
13 os.task_terminate(h);
14 }
15 };

(b) scheduled model

Figure 5: Task modeling

Figure 7 shows the synchronization refinement for our ex-
ample: the wait statement inside channel C1 in the input
model (line 10 in Figure 7(a)) is refined into three lines of
code in the output model (line 9-11 in Figure 7(b)).

5.4 Preemption Point Creation
In high level system models, simulation time advances in

discrete steps based on the granularity of waitfor state-
ments used to model delays (e.g. at behavior or basic block
level) (line 4,6 in Figure 5(a)). The time-sharing implemen-
tation in the RTOS model makes sure that delays of con-
current task are accumulative as required by any model of
serialized task execution.

Usually the task switch happens when a task calls the
RTOS routine (e.g. wait event), however, additionally re-
placing waitfor statements with corresponding RTOS time
modeling calls is necessary to accurately model preemption.
The time wait method (line 9,11 in Figure 5(b)) allows the
RTOS kernel to reschedule and switch tasks whenever time
increases, i.e. in between regular RTOS system calls. Nor-
mally, this would not be an issue since task state changes
can not happen outside of RTOS system calls. However,
external interrupts can asynchronously trigger task changes
in between system calls of the current task in which case
proper modeling of preemption is important for the accuracy
of the model (e.g. response time results). For example, an
interrupt handler can release a semaphore on which a high
priority task for processing of the external event is blocked.

5.5 Scheduling Refinement Example
Figure 8 illustrates the simulation result of the output

model generated from our refinement tool for the example
from Figure 4. Figure 8(a) shows the simulation trace of

1 behavior B2B3()
2 {B2 b2();
3 B3 b3();
4 void main(void)
5 {
6

7

8

9 par
10 { b2.main ();
11 b3.main ();
12 }
13

14 }

(a) before

1 behavior B2B3(RTOS os)
2 {Task_B2 task_b2(os);
3 Task_B3 task_b3(os);
4 void main(void)
5 {Task t;
6 task_b2.init ();
7 task_b3.init ();
8 t = os.fork ();
9 par {

10 b2.main ();
11 b3.main ();
12 }
13 os.join(t);
14 }

(b) after

Figure 6: Task creation

1 channel C1()
2 {event eRdy;
3 event eAck;
4 void send (...)
5 {
6 ...
7 notify eRdy;
8 ...
9

10 wait(eAck);
11

12 ...
13 }
14 };

(a) before

1 channel C1(RTOS os)
2 {event eRdy;
3 event eAck;
4 void send (...)
5 { Task t;
6 ...
7 notify eRdy;
8 ...
9 t = os.enter_wait ();

10 wait(eAck);
11 os.wakeup_wait(t);
12 ...
13 }
14 };

(b) after

Figure 7: Synchronization refinement

the unscheduled model. Behaviors B2 and B3 are executing
truly in parallel, i.e. their simulated delays overlap.

After executing for time d1, B3 waits until it receives a
message from B2 through the channel c1. Then it continues
executing for time d2 and waits for data from another PE.
B2 continues for time (d6 +d7) and then waits for data from
B3. At time t4, an interrupt happens and B3 receives its
data through the bus driver. B3 executes until it finishes.
At time t5, B3 sends a message to B2 through the channel
c2 which wakes up B2 and both behaviors continue until
they finish execution.

Figure 8(b) shows the simulation result of the scheduled
model for a priority based scheduling. It demonstrates that
in the refined model task B2 and task B3 execute in an in-
terleaved way. Since task B3 has the higher priority, it exe-
cutes unless it is blocked on receiving or sending a message
from/to task B2 (t1 through t2 and t5 through t6), waiting
for an interrupt (t3 through t4), or it finishes (t7) at which
points execution switches to task B2. Note that at time t4,
the interrupt wakes up task B3 and task B2 is preempted
by task B3. However, the actual task switch is delayed until
the end of the discrete time step d6 in task B2 based on
the granularity of the task’s delay model. In summary, as
required by priority based dynamic scheduling, at any time
only one task, the ready task with the highest priority, is
executing.

Lines Sim. Context Transcoding
of code time switches delay

Unsched. 11,313 27.3s 0 9.7ms
Roundrobin 13,343 28.6s 3262 10.29ms
Encod>decod 13,356 28.9s 980 11.34ms
Decod>encod 13,356 28.5s 327 10.30ms
Impl. 79,096 5h 327 11.7ms

Table 1: Vocoder experimental results.

6. EXPERIMENTAL RESULTS
We used the scheduling refinement tool in the design of

a voice codec for mobile phone applications.The vocoder
contains two tasks for encoding and decoding in software,
assisted by a custom hardware co-processor. For the im-
plementation, the Vocoder was compiled into assembly code
for the Motorola DSP56600 processor and linked against a
small custom RTOS kernel that uses a scheduling algorithm
where the decoder has higher priority than the encoder[7].

Table 1 shows the results for the vocoder model. The
vocoder models were exercised by a testbench that feeds
a stream of 163 speech frames corresponding to 3.26 s of
speech into encoder and decoder. The transcoding delay
is the latency when running encoder and decoder in back-
to-back mode and is related to response time in switching
between encoding and decoding tasks.

Experimental results show that the simulation overhead
introduced by the scheduling refinement tool is negligible
while providing accurate results. As explained by the fact
that both tasks alternate with every time slice, round-robin
scheduling causes by far the largest number of context switches
while providing the lowest response times. Note that context
switch delays in the RTOS were not modeled in this exam-
ple, i.e. the large number of context switches would intro-
duce additional delays that would offset the slight response
time advantage of round-robin scheduling in a final imple-
mentation. The simulation result shows that in priority-
based scheduling, it is of advantage to give the decoder the
higher relative priority. Since the encoder execution time
dominates the decoder execution time this is equivalent to
a shortest-job-first scheduling which minimizes wait times
and hence overall response time. Furthermore, the num-
ber of context switches is lower since the RTOS does not
have to switch back and forth between encoder and decoder
whenever the encoder waits for results from the hardware
co-processor. Therefore, priority-based scheduling with a
high-priority decoder was chosen for the final implementa-
tion. Note that the final delay in the implementation is
higher due to inaccuracies of execution time estimates in the
high-level model. In summary, compared to the huge com-
plexity required for the implementation model, the schedul-
ing refinement tool enables early and efficient evaluation of
dynamic scheduling implementations.

7. SUMMARY AND CONCLUSIONS
In this paper,we presented a RTOS model and the re-

finement steps for transforming an unscheduled TLM into
TLM with RTOS scheduling support. In the design flow,
our contribution is primarily the automation of the schedul-
ing refinement process that facilitates rapid evaluation of
scheduling algorithms in the early stage of system design us-

0

logical time
B1

C1

interrupt

C2
d1 d2 d3 d4

d5 d6 d8

B3

B2

t4

d7

t1t2 t3 t7t5(t6)

(a) unscheduled model

logical time

0

task_PE

task_B2

task_B3
C1

interrupt

C2
d1

t4 t5

d2 d3 d4

d5 d6 d8d7

t1 t2 t3 t6 t7t4'

(b) scheduled model

Figure 8: Simulation trace for model example.

ing TLM. We developed a tool to automate the refinement
process. Experiments are performed to show the usefulness
of the tool in system design. Currently the tool is written
for SpecC SLDL because of its simplicity. However, the con-
cepts can be applied to any SLDL (SystemC, Superlog) with
support for event handling and modeling of time.

Future work includes the development of tools for software
synthesis from the scheduled TLM down to target-specific
application code linked against the target RTOS libraries.

8. REFERENCES
[1] QNX. Available: http://www.qnx.com/.

[2] SpecC. Available: http://www.specc.org/.

[3] VxWorks. Available: http://www.vxworks.com/.

[4] J. Cortadella. Task generation and compile time
scheduling for mixed data-control embedded software.
In IEEE Design Automation Conference, Jun. 2000.

[5] D. Desmet, D. Verkest, and H. D. Man. Operating
system based software generation for system-on-chip.
In IEEE Design Automation Conference, Jun. 2000.

[6] L. Gauthier, S. Yoo, and A. A. Jerraya. Automatic
generation and targeting of application-specific
operating systems and embedded systems software.
IEEE Trans. on CAD, Nov. 2001.

[7] A. Gerstlauer et al. Design of a GSM Vocoder using
SpecC Methodology. Technical Report ICS-TR-99-11,
UCI, Feb. 1999.

[8] A. Gerstlauer and D. Gajski. Specc language reference
manual. In SpecC Technology Open Consortium, Dec.
2002.

[9] A. Gerstlauer and D. Gajski. System-level abstraction
semantics. In ISSS, Oct. 2002.

[10] A. Gerstlauer, H. Yu, and D. Gajski. RTOS modeling
for system level design. In DATE, Mar. 2003.

[11] T. Grötker, S. Liao, G. Martin, and S. Swan. System
Design with SystemC. Kluwer Academic Pub, 2002.

[12] H. Tomiyama, Y. Cao, and K. Murakami. Modeling
fixed-priority preemptive multi-task systems in SpecC.
In SASIMI, October 2001.

