
Automatic Generation of Bus Functional Models from Transaction level Models

Dongwan Shin, Samar Abdi, Daniel D. Gajski
Center for Embedded Computer Systems

University of California, Irvine, CA 92697 USA
e-mail: {dongwans, sabdi, gajski}@cecs.uci.edu

Abstract– This paper presents methodology and algorithms for
generating bus functional models from transaction level models
in system level design. Transaction level models are often used by
designers for prototyping the bus functional architecture of the
system. Being at a higher level of abstraction gives transaction
level models the unique advantage of high simulation speed. This
means that the designer can explore several bus functional archi-
tectures before choosing the optimal one. However, the process of
converting a transaction level model to a bus functional model is
not trivial. A manual conversion would not only be time consum-
ing but also error prone. A bus functional model should also ac-
curately represent the corresponding transaction level model. We
present algorithms for automating this refinement process. Expe-
rimantal results presented using a tool based on these algorithms
show their usefulness and feasibility.

I. INTRODUCTION

The transaction level modeling (TLM) [7] is high-level ap-
proach to modeling the systems where details of communca-
tions among system components are separated from the detail
of the implementation of system components and communica-
tion architecture. TLM aims at communication modeling so
as to optimize simulation speed. TLM has been considered to
address needs for early architecture exploration and embedded
software development. However, much work still needs to be
done to formalize the system level design methodology and to
adopt TLM in system level design flow.

In system level design, communication synthesis requires
extensive design space exploration for communication archi-
tecture. With a greater number and variety of components be-
ing put together on a chip, the task of communication synthe-
sis becomes more complicated. In order to choose the right
communication architecture for our designs, we need to gener-
ate models that reflect the communication architecture. These
models are then evaluated through simulation to test “good-
ness”of the design decisions.

Typically, these models are handwritten, which poses a num-
ber of problems. First of all, a lot of time is spent in writing
these models which is a serious handicap to the exploration
process. The fewer architectures we test, the lower is the prob-
ability of choosing the optimal one. Secondly, model rewriting
is an error prone process. It is possible to introduce several
errors while manually rewriting the model. This makes the
evaluation of our communication architecture questionable.

In this paper we look at how we speed up the communi-
cation synthesis process by enabling automatic model refine-

ment. The rest of the paper is organized as follows. Section
II is a brief review of the related work in this area. Section
III talks about our communication refinement flow. Section IV
looks at tasks of communication refinement for the system with
dynamically scheduled tasks. Finally, we present experimental
results in section V and concludes this paper.

II. RELATED WORK

In recent years, a lot of attention has been given to mod-
eling and synthesis of bus architectures [10] [9]. CoWare [5]
can support shared memory among heterogeneous processors
but focuses on rendezvous communication protocol based on
message passing. Jerraya et al. [8] [4] presented interesting
schemes for putting together heterogeneous components on a
bus using wrappers for design of application-specific multi-
processor SoCs. Grötker et al. talked about transaction level
modeling in [7] that aims at communication modeling so as to
optimize simulation speed. However, they do not address au-
tomatic refinement of a transaction level model to produce a
timing-accurate and pin-accurate bus functional model.

III. COMMUNICATION REFINEMENT FLOW

Fig. 1 shows how communication synthesis is performed in
our system level design methodology. We begin with a trans-
action level model of a system. It reflects the intended archi-
tecture of the system with respect to the components that are
present in the design. Each component executes a specific be-
havior in parallel with other components. Communication in-
side a component takes place through local memory of that
component, and is thus not a concern for communication re-
finement. Inter-component communication is point-to-point
and takes place through abstract channels that support send and
recv methods [6]. The second input is a protocol library that
a set of channels that model the protocols of system busses.
These channels provide for the standard read/write methods
for the bus protocol.

The final input is a set of synthesis decisions by user. The
decisions must input to the refinement engine using a specific
format. Some typical features of the communication architec-
ture include the choice of system busses, the mapping of ab-
stract communication to these busses, the connectivity between
components and busses etc.

With these inputs, the communication refinement tool pro-
duces a bus functional model that reflects the bus architecture
of the system. In the bus functional model, the top level of the

Transactionlevel model

Bus functionalmodel

Communication Refinement Protocol
Library

GUI

Decision making
tools

Bus Allocation/
Channel partitioning/

Arbitration

Estimation

Fig. 1. Communication refinement engine

design consists of system components and wires of the system
bus(es). The components themselves are refined to their bus
functional models that communicate using the system bus(es).

IV. REFINEMENT TO COMMUNICATION ARCHITECTURE

In this section, we look at communication refinement of a
simple model. We will look at the basic tasks involved in the
refinement process. The design consists of two components (a
processor and a HW unit) communicating with two-way block-
ing channels. All this communication needs to be mapped to a
single system bus in order to get a simple bus architecture as
shown in Fig. 2. Four communication points are shown in the
master and slave component. Each communication point is la-
beled such that node A of master talks to node A of slave, node
B of master talks to node B of slave and on. Implementation
of data transactions on the system bus is done by the applica-
tion Layer for that variable. Each component in the design has
a unique application Layer for every variable that it sends to
or receives from. The application Layer essentially substitutes
the original abstract communication channel by implementing
the data transfer on the system bus.

System Bus

Synchronization

Write words

Addressing &Data slicing

bus driver

Sender

A

B

D

C

Synchronization

Read words

Addressing & Data Slicing

bus driver

Receiver

A

B

D

C

Fig. 2. Application layer for simple architecture

A. Synchronization

Besides converting abstract data to bus words, we also need
to preserve the communication semantics of the transaction

Master Application Layer Interrupt Handler

A0SlaveReady
== false

A1

msg#_ih ==
msg#_waiting

A3
Reserve I/O ports;
MasterRead/
 Write(Slave#, msg)

A4

I0

IRQ == true

I3 msg#_ih = msg#;
Release I/O ports

SlaveReady = false
Release I/O ports;

SlaveReady
== false IRQ ==

false

A2

I/O ports
== free

I/O ports
!= free

I1

I/O ports == free

I/O ports
!= free

I2

Reserve I/O ports;
SlaveReady = true;
MasterRead(
 Slave#, msg#)

Master Component

S0

I/O ports == free

S2
SlaveWrite(
 slave#, msg#);
IntrReq = false

S3

S4

SlaveRead/
 Write(slave#, msg)

Release I/O ports

S1 Reserve I/O ports;
IntrReq = true

I/O ports
!= free

Slave Component

Slave Application Layer

msg#_ih !=
msg#_waiting

Fig. 3. Master and slave communication mechanism for simple architecture

level model. In the case of abstract channels, each data trans-
action is independent and does not interfere with other trans-
actions. However, once all those independent data transactions
are mapped on the same bus, they have to share the same com-
munication medium and synchronization events. Therefore, it
is necessary to generate additional synchronization code so as
to avoid conflicts on the buse [3].

If there are a set of concurrent tasks inside components, the
tasks can be scheduled statically or dynamically. If the two
communicating components have statically scheduled tasks,
there would be no possibility of temporal overlap of commu-
nication which is well explained in [3]. In this paper, we will
focus on communication between components with dynami-
cally scheduled tasks.

With dynamically scheduled components, we are faced with
a scenario where we might have temporal overlap of commu-
nication. For instance, in Fig. 2, transactions B and C might
overlap in time. In such a case, we have two issues to look
into.

First, we have to determine the source of the data transfer
request. If the master gets an interrupt from the slave, there
is no way to tell if the slave is ready for transaction B or C.
To distinguish between the two transaction requests, each vari-
able (message) should be assigned a different address. More-
over, the behavior of the interrupt handler on the master side
would be shown in Fig. 3. On the master side, we also need to
separate message id (msg# ih) register for each message. The
master is waiting for message id (msg# waiting). The inter-
rupt handler on receiving an interrupt event reads the message
id (msg# ih) from the registers inside the slave with slave ad-
dress. After getting an acknowledge from master, the slave will
put the variable address on the bus.

Second, with temporal overlap of communication, we need
to control access to IO ports of the component. Therefore each
data transfer has to be treated like a critical section. To en-
sure this, we can use the semaphore for the IO protection of
the software components, and for haredware component, hard-
ware protection mechanism like test-and-set. Note in Fig. 3
that each access to the IO ports is protected. The code gener-
ated in application layer for each component must ensure that
the IO ports are reserved before they are used.

If the number of slaves is more than the number of inter-
rupt ports on the processor’s interface, we generate an interrupt
controller. In case of multiple masters on a bus, arbitor needs

TABLE I
EXPERIMENTAL RESULTS FOR VARIOUS VOCODER ARCHITECTURES

Number of
Components

1 DSP56660
1 HW

Number of
busses

1 DSPBUS

Traffic/sample
(bytes)

Schedule
method

TLM
(lines)

BFM
(lines)

Modified
lines

(LOC)

Automatic
refinement
(seconds)

manual
refinement
(person-hr)

static

priority-based

10270

10307

12554

13004

2284

2997

0.701

0.714

230

300

2 DSP56660
3 HW

2 DSPBUS
static

round-robin

35309

35496

44771

45557

9462

10661

3.047

3.156

950

1070

1 DSP56660
2 HW

1 DSPBUS
static

round-robin

10968

11010

14279

14611

3311

3601

0.739

0.764

330

360

2 DSP56660
2 HW

1 DSPBUS
static

priority-based

11049

11103

15373

16739

4324

5636

1.597

1.687

430

560

36512

46944

57276

121924

to be generated. The application layer to handle interrupt and
arbitration are explained in [2].

V. EXPERIMENTAL RESULTS

Based on the described methodology, we developed a CAD
tool for communication refinement in C++ and integrated it
into our system level design environment [1]. We tested it with
the GSM Vocoder which is employed worldwide for cellular
phone networks.

Different architectures using the Motorola DSP processor
and custom hardware units were generated and various bus
architectures were tested. Table I shows the data from tests
conducted on 4 different architectures of the GSM Vocoder.
The total traffic per speech sample refers to the amount of data
exchanged between components during course of one simula-
tion with a sample speech of 163 frames. Note that this data
increases with greater partition, which increases communica-
tion time. We applied static and dynamic scheduling algorithm
to schedule tasks in the PEs. Static scheduling removes the
concurrency of tasks and serializes them in order. Dynamic
scheduling is based on priority and round-robin method.

To compare against the manual effort of model refinement,
we used the lines of code (LOC) metric. Even with a very
optimistic estimate of 10 LOC per person hour, manual com-
munication refinement takes several hundred hours for reason-
ably complex designs. Automatic refinement on the other hand
completes in the order of a few seconds. The productivity
gain is more than 1000 times as a result of automatic refine-
ment even if the time for design space exploration which takes
around 30 minutes to 1 hour is included for comparision.

VI. CONCLUSIONS

In this paper, we suggested a methodology algorithms to au-
tomatically generate bus functional models from transaction
level model with abstract message passing semantics. A tool
has been developed and experiments were performed to vali-
date this concept. Simulations were done on input transaction
level models and output bus functional models to ensure their
semantic equivalence. Our main contribution in this paper is
the automation of a time-consuming and error prone process

to achieve better designer productivity. It also enables design-
ers to evaluate several design points during exploration.

REFERENCES

[1] S. Abdi, J. Peng, H. Yu, et. al. System-on-chip Environ-
ment (SCE Version 2.2.0 beta): Tutorial. Technical Report
CECS-TR-03-18, UC, Irvine, July 2003.

[2] D. Shin, S. Abdi, D. D. Gajski. Automatic Generation
of Bus function models from Transaction level models.
Technical Report CECS-TR-03-33, UC, Irvine, November
2003.

[3] S. Abdi, D. Shin, and D. D. Gajski. Automatic communi-
cation refinement in system-level design. In Proceedings
of DAC, pages 300–305, June 2003.

[4] W. O. Cesario, A. Baghdadi, L. Gauthier, et. al.
Component-baed design approach for multicore SoCs. In
Proceedings of DAC, pages 789–794, June 2002.

[5] CoWare N2C. Available at http://www.coware.
com/cowareN2C.html.

[6] D. D. Gajski, J. Zhu, R. Dömer, et. al. SpecC: Specification
Language and Methodology. Kluwer Academic Publish-
ers, January 2000.

[7] T. Grötker, S. Liao, G. Martin, et. al. System Design with
SystemC. Kluwer Academic Publishers, March 2002.

[8] D. Lyonnard, S. Yoo, A. Baghdadi, et. al. Automatic gen-
eration of application-specific architectures for heteroge-
neous multiprocessor system-on-chip. In Proceedings of
DAC, pages 518–523, June 2001.

[9] R. B. Ortega and G. Borriello. Communication synthesis
for distributed embedded systems. In Proceedings of IC-
CAD, pages 437–444, November 1998.

[10] T.-Y. Yen and W. Wolf. Communication synthesis for
distributed embedded systems. In Proceedings of ICCAD,
pages 288–294, November 1995.

