
Embedded Software Generation from System Level Design Languages

Haobo Yu, Rainer D̈omer, Daniel Gajski
Center for Embedded Computer Systems

University of California, Irvine, USA

{haoboy,doemer,gajski}@cecs.uci.edu

Abstract— To meet the challenge of increasing design com-
plexity, designers are turning to system level design languages
(SLDLs) to model systems at a higher level of abstraction. This
paper presents a method of automatically generating embedded
software from system specification written in SLDL. Several re-
finement steps and intermediate models are introduced in our
software generation flow. We demonstrate the effectiveness of the
proposed method by a tool which can generate efficient ANSI C
code from system models written in SLDL.

I. I NTRODUCTION

In order to handle the ever increasing complexity and time-
to-market pressures in the design of embedded systems, raising
the level of abstraction to the system level is generally seen as
one solution to increase productivity. Many system level de-
sign languages (SLDLs) and methodologies [3, 4] have been
proposed in the past to address the issues involved in system
level design. The typical system level design process usually
starts from an abstract system specification model, partitions
the specification to HW/SW components and ends with the de-
tailed implementation model [10]. Much work has been done
in synthesizing the HW part of the system. However, most in-
dustrial embedded software is still created manually from the
system specification [16]. It is desired that the embedded soft-
ware can be generated from the system specification automat-
ically.

In the system specification, the functionality of an embedded
system is described as a hierarchical network of modules (or
processes) interconnected by hierarchical channels. Syntacti-
cally, these can be described in SLDLs as a set of behavior,
channel and interface declarations. During system synthesis,
the specification functionality is partitioned onto multiple pro-
cessing elements (PEs), such as DSP, custom hardware. Those
behaviors mapped onto general or application specific micro-
processors will later be implemented as embedded software.

Deriving embedded software from system specification de-
scribed in SLDL means implementing all SLDL language ele-
ments (e.g. modules, processes, channels and port mappings).
Since the predominant SLDLs are C/C++ extensions [10, 14],
directly compiling SLDL to produce the binary code for the
target microprocessors is possible but highly inefficient. The
main reason is that the large simulation kernel for the SLDL is
included in the compiled code. Besides, some cross compilers
for embedded processors may only support C. While SLDL is
used mainly for modeling and simulation of designs at system

level, much overhead is introduced to support the system level
features (e.ghierarchy, concurrency, communication). How-
ever, these features are not necessarily needed for the target
software code. Considering the limited memory space and ex-
ecution power of embedded processors, we need to generate
compact and efficient software code for implementation. In
this paper, we address this problem by proposing a method
consisting of several software refinement steps and intermedi-
ate models to generate efficient ANSI C code from the system
specification written in SLDL.

The rest of this paper is organized as follows: Section II
gives an insight into the related work. Section III describes
the flow for software generation. Details of the software gen-
eration process are covered in Section IV, Section V and Sec-
tion VI. Experimental results are shown in Section VII and
Section VIII concludes this paper with a brief summary .

II. RELATED WORK

Various design methodologies exit for designing embedded
software. There are approaches to code generation from an
abstract model (UML[2]), from graphical finite state machine
design environments (e.g StateCharts [15], from DSP graph-
ical programming environments(e.g. Ptolemy [18]), or from
synchronous programming languages (e.g Esterel [7]).

In [17], a software synthesis approach using quasi-static
scheduling in Petri-Nets to produce a set of corresponding state
machines is presented. In [8], a way of combining static
task scheduling and dynamic scheduling in software synthe-
sis is proposed. In [11], a method for automatic generation of
application-specific operating systems and corresponding ap-
plication software is given. While these approaches mainly fo-
cus on software synthesis issues, no efficient code generation
method is described.

In POLIS [6] system, code generation is performed by
first transforming theCo-design Finite State Machine(CFSM)
specification into as-Graphand then translating thes-Graph
into portable C code. However, POLIS is mainly for reactive
real time systems and can’t be easily extended to other more
general frameworks.

The work in [9, 14, 16] are close to the topic of this pa-
per. In [9], software generation from a high-level model of
operating system called SoCOS is proposed. Compared with
[9], our approach uses SLDL based RTOS model and enables
automatic refinement while [9] requires its own proprietary
simulation engine and needs manual refinement to get the soft-

Implementation Model

RTOS

IP

RTL

IP

H/W

Synthesis

Interface

Synthesis

C Code

Generation

Transaction Level Model

Specification Model

Architecture Partition &

Communication

Synthesis

Task

Creation

Fig. 1. System design flow

ware code. In [16], software generation from SystemC SLDL
based on the redefinition and overloading of SystemC class li-
brary elements is presented. However, this approach requires
the use of C++ cross-compilers and introduces SLDL language
elements overhead. In [14], a software-software communica-
tion synthesis approach by substituting each SystemC module
with an equivalent C struct is proposed. Our method differs
from [14] in that [14] requires special SystemC modeling
styles (i.e. using macro definitions and preprocessing switches
in addition to the original specification code) while ours don’t
have any restrictions on how the system model is described.

III. D ESIGN FLOW

System level design is a process with multiple stages where
the system specification is gradually refined from an abstract
idea down to an actual implementation. Figure 1 shows a typ-
ical system level design flow [10]. The system design process
starts with the specification model. During system synthesis,
the specification functionality is then partitioned onto multiple
processing elements (PEs) and the communication synthesis
generates the transaction level model in which a communica-
tion architecture consisting of busses and bus interfaces is syn-
thesized to implement communication between PEs.

Our proposed software generation flow is shown in Fig-
ure 2, where we generate a set of software tasks scheduled by a
preemptive, priority-driven real time kernel (usually a RTOS)
from the partitioned design specification written in SLDL. It
is carried out in three separate steps. Task creation is the first
step, where the modules/processes are converted into software
tasks with assigned priorities. Synchronization as part of com-
munication between processes is refined into OS-based task
synchronization. In order to evaluate the output multi-task sys-
tem model (e.g. in terms of the scheduling algorithm) at this
moment (i.e. before the actual binary implementation), we use
a high level model of the underlying RTOS [12]. The RTOS
model provides an abstraction of the key features that define
a dynamic scheduling behavior independent of any specific
RTOS implementation. The output model generated from the
task creation step consists of multiple PEs communicating via
a set of busses. Each PE runs multiple tasks on top of its local
RTOS model instance. Therefore, the output multi-task model

Task

Parameters

Unscheduled TLM

Task Creation

Multi-Task Model

W

Z

X

Y

W

ISR
 S1

PE

protocol

read

()

write

()
B

u

s

d
r

i
v

e

r

B

u

s

d
r

i
v

e

r

PE

 C Code Generation

ISR
 S1

PE

protocol

read

()

write

()
B

u
s

d

r
i
v

e

r

B

u

s

d
r

i
v

e

r

RTOS Model

T1

T3
T2

PE

Task table

T1: X priority: 1

T2: W, Y priority: 0

T3: Z priority: 2

C Code

ISR
 S1

PE

B

u
s

d

r
i
v

e

r

B

u
s

d

r
i
v

e

r

RTOS Model

PE

C Code

Binary Image

OS Targeting

Compile and Link

protocol

C Code Simulation Model

RTOS

Model

RTOS

Lib

SLDL

SLDL

Fig. 2. Software generation flow

can be validated through simulation or verification to evalu-
ate different dynamic scheduling approaches (i.e. round-robin,
priority-based) as part of system design space exploration.

In the next system design step, each PE in the transaction
level model is then implemented separately. ANSI C code
is generated for tasks created in the previous step from their
SLDL specification. By importing the C code into the system
model and replacing the SLDL task specification, we get the C
code simulation model. The designer can simulate and validate
the generated C code using the C code simulation model. Note
that the RTOS model is still used as an environment to provide
the task-scheduling and inter-task communication support for
the generated C code.

As the last step, services of the RTOS model are mapped
onto the APIs of a commercial or custom RTOS and the C
code is compiled into the processor’s instruction set. The fi-
nal binary executable for the chosen processor is generated by
linking the compiled code against the RTOS libraries.

1 behavior B2B3()
2 {B2 b2();
3 B3 b3();
4 void main(void)
5 {
6

7

8

9 par { b2.main();
10 b3.main();}
11

12 }

(a) before

1 behavior B2B3(RTOS os)
2 {Task_B2 task_b2(os);
3 Task_B3 task_b3(os);
4 void main(void)
5 {Task t;
6 task_b2.os_task_create();
7 task_b3.os_task_create();
8 t = os.fork();
9 par {task_b2.main();

10 task_b3.main();}
11 os.join(t);
12 }

(b) after

Fig. 3. Task creation

IV. TASK CREATION

In system design, the specification is written in SLDL as
a network of hierarchical behaviors. However, in the imple-
mentation, many designers use a task-based approach, where
a set of tasks are scheduled by a preemptive, priority-driven
real time kernel. The software task generation process converts
the design specification into a RTOS based multi-task model.
Essentially, the task creation step synthesizes theconcurrency
andcommunicationelements contained in the SLDL descrip-
tion.

A. Concurrency

Concurrency is supported by SLDL to express the parallel
executing behaviors in system specification (e.g.par state-
ment). The task creation step converts concurrent processes in
the specification into RTOS-based tasks. Generally speaking,
it involves dynamic creation of child tasks in a parent task. In
this process, each SLDL concurrency statement (par) in the
specification description is refined to dynamically fork child
tasks as part of the parent’s execution. After the child tasks
finish execution and thepar exits, the system joins with the
children and resumes the execution of the parent task by the
underlining RTOS [12].

This step is illustrated in Figure 3. Thepar statement in the
input model (line 9-10 in Figure 3a) is converted to dynami-
cally fork and join child tasks as part of the parent’s execution
(line 6-11 in Figure 3b). During this refinement process, the
os taskcreatemethods of the children are called to create the
child tasks (line 6,7 in Figure 3b). Then,fork is inserted be-
fore thepar statement to suspend the calling parent task by the
RTOS model before the children are actually executed in the
par statement. After the two child tasks finish execution and
the par exits, join is inserted to resume the execution of the
parent task by the RTOS model.

B. Communication

In system specification, communications among processes
are done through channels and control mechanisms for com-
munication are described explicitly in the description of chan-

1
 behavior
 B1(
int
v)

 {

int
 a;

5

 void
 main(
void
)

 {

 a = 1;

 v = a *2;

10
 }

 };

 behavior
 Task1

{

int x;

15
 int y;

 B1 b11(x);

 B1 b12(y);

 void
main(
void
)

20
 {

 b11.main();

 b12.main();

 }

 };

1
struct
B1

{

 int
(*v) /*port*/;

 int
a;

5
};

 void
B1_main(
 struct
B1 *this)

{

(this->a) = 1;

(*(this->v)) = (this->a) * 2;

10
}

 struct
Task1

 {

 int
 x;

 int
 y;

15
 struct
 B1 b11
 ;

struct
B1 b12
 ;

 };

void
 Task1_main(
 struct
Task1*this)

{

20
 B1_main(&(this->b11));

 B1_main(&(this->b12));

}

 struct
Task1 task1 =

 { 0, /* x init value*/

25
 0, /* y init value*/

 { &(task1.x), /*port v of b11 */

 0 /* a init value */

 }, /*b11*/

 { &(task1.y), /*port v of b12*/

30
 0 /* a init value*/

 }, /*b12*/

 };

 void
 Task1()

 {

35
 Task1_main(&task1);

 }

(a) SpecC Code
 (b) C Code

R3

R4

R1

R5

R2

R6

Fig. 4. An illustrative example

nels. We developed a standard channel library to be used
in system specification, it includes common communication
primitives, such asc semaphore , c mutex , c queue and
c double handshake . For our software generation pro-
cess, only those channels inside the standard channel library
are allowed in system specification. During the task creation
process, these SLDL channels are replaced by the channels
from the RTOS model library [12]. And the task synchroniza-
tion as well as inter-task communication are handled by the
RTOS model.

Now that the software part of the system model is refined
to a multi-task system scheduled by the RTOS model. The
designer can simulate the model and get feedback as regards
to the timing properties of the system implementation. Some
import parameters (e.g scheduling algorithm and task priority)
are determined and checked in this step.

V. TASK CODE GENERATION

After the task creation step, those behaviors and channels
mapped to the same processor are refined into multiple soft-
ware tasks scheduled by a RTOS model. Each task is still
written in SLDL as hierarchical behaviors (computation part of
the task) and channels (communication part of the task). The
task code generation step creates C code for each task from its
SLDL task description. Essentially, this step synthesizes the
hierarchyandport mappingelements contained in the SLDL
description.

A. Code Generation Rules

The code generation process converts the SLDL description
of tasks into ANSI C code. The main idea is that we convert
the behaviors and channels into Cstruct and convert the
behavioral hierarchy into the C languagestruct hierarchy.
Rules for C code generation are as follows:

• R1: Behaviors and channels are converted into C
struct and their structural hierarchy is represented by
the Cstruct hierarchy,

• R2: Child behaviors and channels are instantiated
struct members inside the parentstruct ,

• R3: Variables defined inside a behavior or channel are
converted into data members of the corresponding C
struct ,

• R4: Ports of behavior or channel are converted into data
members of the corresponding Cstruct ,

• R5: Functions inside a behavior or channel are converted
into global functions with an additional parameter added
representing the behavior to which the function belongs,

• R6: A staticstruct instantiation for each PE is added
at the end of the output C code to allocate the data used by
software. Port mappings for the behaviors and channels
inside the task are reflected in thisstruct initialization.

B. An Illustrative Example

Figure 4 is a simple example illustrating the code genera-
tion process. Figure 4a shows a software taskTask1in SpecC
SLDL. It consists of two instances of behaviorB1executing se-
quentially. Figure 4(b) is the automatically generated C code
from our tool. In figure 4, we can find the examples of the six
rules for code generation process:

• R1: behaviorB1 is converted intostruct B1,

• R2: In the input code, behaviorTask1contains two in-
stances of behaviorB1(line 16,17 in Figure 4a). in the
output C code,struct Task1contains two instances of
struct B1 (line 15,16 in Figure 4b),

• R3: int a defined in behaviorB1 is converted toint a
insidestruct B1,

• R4: port int v of behaviorB1 (line 1 in Figure 4a) are
represented byint *v insidestruct B1 (line 3 in Fig-
ure 4b). Note that all the ports are represented by pointer
type,

• R5: functionmain inside behaviorB1 is converted to a
global functionB1 main in the output C code. One ad-
ditional parameter,struct B1 * this is added reflecting
that this function belongs to behaviorB1 in the specifica-
tion. We need this parameter because there might be mul-
tiple instances ofB1 and each has its own data members.
In case only one instances exists. This parameter can be
optimized away. Note that, inside functionB1 main, ref-
erences to data members of behaviorB1 are replaced by

Algorithm 1 GenerateCCode(Design, BTask)
1: for all BehaviorB ∈ Design do
2: if IsChildBehavior(B,BTask) then
3: GenerateC4Behavior(B);
4: end if
5: end for
6: for all ChannelC ∈ Design do
7: if IsChildChannel(C,BTask) then
8: GenerateC4Channel(C);
9: end if

10: end for
11: for all FunctionF ∈ Design do
12: if IsCalledInBehavior(F ,BTask) then
13: if IsMemberFunc(F ,BTask) then
14: B = GetParentBehavior(F);
15: GenerateC4MemberFunction(F ,B);
16: else
17: GenerateC4GlobalFunction(F);
18: end if
19: end if
20: end for
21: TopInst = FindInstance(BTask)
22: GenerateStructInstance(TopInst);
23: GenerateTaskCall(BTask);

references to the data members ofstruct B1. For ex-
ample, inside functionB1 main, the variablea in the in-
put code (line 8 in Figure 4a) is replaced bythis→a in the
output code (line 8 in Figure 4b),

• R6: the data used by taskTask1 is statically allocated
through the instantiation ofstruct Task1(line 23 to
line 36 in Figure 4b). Note that the initial values for data
members in sidestruct Task1are all set at this time.
This includes the port mapping information for behavior
instancesb11,b12. For example, the port mapping of be-
havior instanceb11 (line 16 in Figure 4a) is reflected in
struct B1 instantiation (line 26 of Figure 4b). The ad-
vantage of this approach is that the C compiler does the
port mapping at compile time rather than the program cal-
culates at run time. The goal here is to optimize the code
at compile time as much as possible, such that the run-
time is reduced to a minimum.

Note that the generated C code has a clear structure. There
are three separate code parts, namely, thestruct definition
part, the function definition part and thestruct instantia-
tion part. After the system compilation, the function definition
part becomes the code segment while thestruct instantia-
tion part becomes the data segment for the final object file.

C. The Algorithm

We have implemented a code generation tool that can con-
vert the software part of an embedded system described in
SpecC into efficient ANSI C code.Algorithm1 reflects the six
rules for software code generation in the previous section and
it is used to generate C code for a task described in SpecC. The
detailed explanation forAlgorithm1 can be found in [19].

D. CoSimulation with System Model

As shown in Figure 2, to validate the software, the C code is
co-simulated with the other part of the system using the SLDL
simulator as a simulation backplane. In this process, the C
code is imported to the design and wrapped by SLDL mod-
ules. The software part of the system specification code is then
replaced by the C code with SLDL wrappers using SLDL’s
plug’n’play capabilities while task scheduling and inter-task
communication are still provided by the RTOS model routines.

VI. OPERATING SYSTEM TARGETING

After the C code is validated through the co-simulation.
The operating system targeting step generates the final read-
to-compile C code. Generally, this means that each routine
of the RTOS model interface will be mapped to 1 orN target
RTOS APIs [12].

A. Task Management

In the target processor, task management is handled by the
real RTOS calls. Without loss of generality, we use the POSIX
pthread interface, which is supported by many RTOS[1, 5].
Some of the task management routines (e.g.task create) of
the RTOS model can be directly mapped to the correspond-
ing pthread interface routines. For those routines which can’t
be mapped to pthread interfaces, we implemented them using
combinations of target RTOS APIs.

Figure 5 shows the generated C code for the example in Fig-
ure 3. In the output C code, two behaviorsTask B2 and
Task B3 (which represents two tasks in RTOS model) are
turned into two POSIX threads (line 5 and line 10). They are
created dynamically inside the threadB2B3 main (line 21
and line 24). The RTOS model routines (code commented out)
are replaced by the corresponding phtread interface routines.

B. Task Communication

In our RTOS model, tasks communicate using channels
from RTOS model library. In the final target software im-
plementation, IPC (inter process communication) mechanisms
(mutex, semaphore, mailbox, FIFO etc) are normally provided
by RTOS to support task communication. Implementing com-
munication means replacing functions of RTOS model chan-
nels with equivalent services of the target RTOS library rou-
tines. Currently, our software generation tool can only support
channels from the RTOS model standard channel library.

C. Binary Code Creation

Depending on the number of tasks and the selected RTOS, a
makefile is created for the chosen target platform. The gener-
ated C code can be cross compiled and linked against the target
RTOS libraries to create the final binary executable file.

VII. E XPERIMENTAL RESULTS

We developed a tool of creating ANSI C code from SpecC
SLDL, it has been integrated into our system level design tool:

1 struct B2B3
2 { struct Task_B2 task_b2;
3 struct Task_B3 task_b3;
4 };
5 void *B2_main(void *arg)
6 { struct Task_B2 *this=(struct Task_B2*)arg;
7 ...
8 pthread_exit(NULL);
9 }

10 void *B3_main(void *arg)
11 { struct Task_B3 *this=(struct Task_B3*)arg;
12 ...
13 pthread_exit(NULL);
14 }
15 void *B2B3_main(void *arg)
16 { struct B2B3 *this= (struct B2B3*)arg;
17 int status;
18 pthread_t *task_b2;
19 pthread_t *task_b3;
20 /*task_b2.os_task_create()*/
21 pthread_create(task_b2, NULL,
22 B2_main, &this->task_b2);
23 /*task_b3.os_task_create()*/
24 pthread_create(task_b3, NULL,
25 B3_main, &this->task_b3);
26 /*t = os.fork()
27 par { task_b2.main();
28 task_b3.main(); }*/
29 /*os.join(t)*/
30 pthread_join(*task_b2, (void **)&status);
31 pthread_join(*task_b3, (void **)&status);
32 pthread_exit(NULL);
33 }

Fig. 5. Task management implementation

SPEC TLM SW(TLM) C

Behaviors 102 127 96 0
Operations 16,614 19,526 14,573 23,868
Lines. 11,557 12,606 10,920 7,882

TABLE I
VOCODER EXPERIMENTAL RESULTS.

the SoC Environment. We applied the software generation
tool to the design of a voice codec for mobile phone appli-
cations [13]. The result is shown in Table I. The original
specification contains 102 behaviors (16614 C level operations
(plus,minus,multiply...), 11557 lines of SpecC code). After
SW/HW partitioning and scheduling, we added 2 component
behaviors representing two PEs and 23 behaviors for compo-
nent communication and synchronization. The output trans-
action level model contains 127 behaviors (19526 operations,
12606 lines of SpecC code) in which the software part has 96
behaviors (14573 operations, 10920 lines of SpecC code). We
applied the automatic software generation tool to the transac-
tion level model and it generated 7,882 lines of C code (23868
operations) for the software part of Vocoder. The reason for
more operations in the generated C code than in SLDL is that
many pointer operations are introduced inside C functions to
access Cstruct members.

To create the final executable, the model was compiled into
binary code for the ARM processor and the RTOS model was

replaced by theµC/OS-II real time operating system. The fi-
nal executable image size is 75KB (47KB code/28KB data) in
which the vocoder software is 52KB (33KB code/19KB data).

VIII. C ONCLUSIONS

In this paper, we presented the steps for generating em-
bedded software from system specification written in SLDL.
The automation of embedded software creation process frees
the designer from the tedious and error-prone work of creat-
ing software manually after SW/HW partition. Since the fi-
nal software is derived from the specification, validation of the
software code become easier than the manually written code.
Also, the designer doesn’t need to maintain two different ver-
sions of system code (for software specification and software
implementation).

We developed a tool of creating ANSI C code from SLDL.
Experiments are performed to show the usefulness of the tool
in system design. Currently the tool is written for SpecC SLDL
because of its simplicity. However, the concepts in this paper
can also be applied to SystemC.

Future work includes automatically generating co-
simulation model from the generated binary code to test the
performance as well as validating the generated software with
other parts of the system.

REFERENCES

[1] QNX. Available: http://www.qnx.com/.

[2] Rational. http://www.rational.com/uml/index.html.

[3] SpecC. http://www.specc.org/.

[4] SystemC. http://www.systemc.org/.

[5] VxWorks.http://www.vxworks.com/.

[6] F. Balarin et al.Hardware-Software Co-design of Embedded Systems –
The POLIS approach. Kluwer Academic Publishers, January 1997.

[7] F. Boussinot and R. de Simone. The ESTEREL Language. InProceed-
ings of the IEEE, September 1991.

[8] J. Cortadella, A. Kondratyev, L. Lavagno, M. Massot, S. Moral,
C. Passerone, Y. Watanabe, and A. L. Sangiovanni-Vincentelli. Task
generation and compile time scheduling for mixed data-control embed-
ded software. InProceedings of the Design Automation Conference, June
2000.

[9] D. Desmet, D. Verkest, and H. D. Man. Operating system based software
generation for system-on-chip. InProceedings of the Design Automation
Conference, June 2000.

[10] D. Gajski, J. Zhu, R. D̈omer, A. Gerstlauer, and S. Zhao.SpecC: Speci-
fication Language and Methodology. Kluwer Academic Publishers, Jan-
uary 2000.

[11] L. Gauthier et al. Automatic generation and targeting of application-
specific operating systems and embedded systems software.IEEE Trans.
on CAD, November 2001.

[12] A. Gerstlauer, H. Yu, and D. Gajski. RTOS modeling in system level
design. InProceedings of Design, Automation and Test in Europe, Mar.
2003.

[13] A. Gerstlauer, S. Zhao, D. Gajski, and A. M. Horak. Design of a GSM
Vocoder using SpecC Methodology. Technical Report ICS-TR-99-11,
UCI, Feburary 1999.

[14] T. Grötker, S. Liao, G. Martin, and S. Swan.System Design with Sys-
temC. Kluwer Academic Publishers, 2002.

[15] D. Harel et al. Statemate: a working environment for the development of
complex reactive systems.IEEE Trans. on Software Engineering, April
1990.

[16] F. Herrera, H. Posadas, P. Sanchez, and E. Villar. Systematic embedded
software generation from systemc. InProceedings of Design, Automa-
tion and Test in Europe, March 2003.

[17] B. Lin. Software synthesis of process-based concurrent programs. In
Proceedings of the Design Automation Conference, 1998.

[18] J. L. Pino, S. Ha, E. A. Lee, and J. T. Buck. Software synthesis for dsp
using ptolemy.Journal of VLSI Signal Processing, 1995.

[19] H. Yu, R. Dömer, and D. Gajski. Automatic Software Generation for
System Level Design. Technical Report CECS-03-18, UCI, May 2003.

