
Reuse and Protection of Intellectual Property
in the SpecC System

Rainer Dömer, Daniel D. Gajski
fdoemer,gajskig@ics.uci.edu

Department of Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425, USA

Abstract—
In system-level design, the key to cope with the complexities

involved with System-on-Chip (SOC) designs, is the reuse of In-
tellectual Property (IP). With the increasing demand for IP, the
mechanism to protect an IP component from being copied, mod-
ified, or reverse-engineered, becomes very important. This pa-
per describes how reuse and protection of IP is supported by the
SpecC language and the SpecC design environment.

I. I NTRODUCTION

The semiconductor roadmap estimates the design complex-
ity for digital systems to continue to increase according to
Moore’s law. In the next years, systems with 10ths of millions
of transistors on one chip will be standard technology. System-
on-Chip (SOC) designs will integrate processor cores, memo-
ries and special-purpose custom logic into a complete system
fitting on a single die. However, the increased complexity also
requires more effort, more efficient tools and new methodolo-
gies for building such designs. Increasing the design time is
not an option due to the market pressures.

A
bs

tr
ac

tio
n

A
cc

ur
ac

y

Transistor

Gate

RTL

Algorithm

System
1E0

1E6

1E5

1E4

1E3

1E7

1E2

1E1

Level Number of Components

Fig. 1. Abstraction vs. Complexity

In computer science, a well-known solution for dealing with
complex systems is to use a hierarchical approach and to move
to higher levels of abstraction. This effectively reduces the
number of components to be handled in each task.

Figure 1 illustrates this. A system, which at the tran-
sistor level is composed of 10ths of millions of transistors,
typically reduces to only thousands of components at the
register-transfer level (RTL). Furthermore, RTL components
are grouped together at the algorithm (or behavioral) level. Fi-
nally, at the system level, the one system is composed of only
few components, including processing elements (PEs), memo-
ries and busses.

A top-down design methodology starts with a specification
at the highest level of abstraction, the so-called system level,
and step-wise moves down to lower levels refining the model.
With each step, the design becomes a more and more accu-
rate model of the final implementation. On the other hand, a
bottom-up methodology starts by using components from the
lowest level, composing them together. These composed com-
ponents then can be used in the next step to build even more
complex components.

Both methodologies can be combined in order to achieve the
best productivity. Usually, the top-down approach is applied
first until the system is decomposed into components which
can be selected from a component library. The component li-
brary is built using the bottom-up strategy.

Since thetime-to-marketis crucial for a product, it must be
emphasized that only the top-down design time applies, be-
cause the component library can be built beforehand (possibly
by somebody else). Thus, the key to a short design time en-
abling ”product on demand”is the use of predesigned, com-
plex components which can be easily integrated in order to
build the product. Such components are calledIntellectual
Property (IP) and the system design methodology, which is
based on the integration of IP components, is calledIP-centric
[2].

Typical IP components include memories, processors (gen-
eral purpose as well as application specific ones like DSPs),
and special purpose circuits for standard applications like
encoding/decoding algorithms and communication protocols
(e. g. a PCI-bus interface). It should be noted that IP includes
both software and hardware components.

Since the process of developing the system is decoupled
from the development of its components, these tasks can be
performed by different companies. While system houses fo-
cus on the problem of system specification, integration and

implementation, IP vendors develop and provide the required
IP components. With this approach, the system house ben-
efits from a large library of optimized, well-tested and well-
documented components, while the IP providers can take ad-
vantage of their expertise in specialized areas.

While the IP-centric methodology promises great benefits,
there are also problems to be solved. This paper addresses the
problems of IP modeling for reuse and IP protection. Both
problems are solved with the help of the SpecC language [7]
and are implemented in the SpecC design environment [8].

The rest of the paper is organized as follows: After a brief
discussion of related work, Section II describes how IP com-
ponents must be modeled in order to be reusable and how this
is done with the SpecC language. Then, Section III introduces
the protection mechanism which allows the use of IP without
revealing its internal implementation. Experiments and results
are shown in Section IV. Finally, Section V concludes the pa-
per with a brief summary and description of future work.

A. Related work

Modeling and protection of IPs is different for hard IPs and
soft IPs [5]. Hard IP components are developed by use of a
standard design process and the final implementation is not
given to the system integrator. Instead, simulation and synthe-
sis models of the IP are used by the system integrator together
with documentation. With this method, the IP is protected be-
cause its implementation stays with the IP provider. For soft
IPs, whose final implementation will be synthesized, the com-
plete model is needed by the system integrator. For protection
of the implementation and algorithm details, the IP can be pro-
vided in precompiled format without source code.

In addition, Watermarking [4] can be used to protect an IP
by insertion of a hidden watermark which ensures that the IP
can always be identified.

A different approach is to leverage the recent advancements
in Internet technology. For example, when using Java as simu-
lation language [1], IP components can stay at the providers
site and simulation can be performed via the Internet. Al-
though such an approach is interesting and very safe, it suffers
from the dependency on the network in terms of availability
and transfer speed.

II. IP-CENTRIC MODELING

For the system integrator, IP components need to be mod-
eled in a way so that reuse, selection and integration becomes
easy. In order to allow such”plug-and-play” with IPs, the IP
model must be simple, versatile, and well-defined in terms of
its functionality and its interfaces.

The essential requirements areseparationandencapsulation
of communication and computation, as illustrated in Figure 2.
A typical model of two communicating processes described in
VHDL or Verilog, for example, is shown in Figure 2(a). The
code of the processes contains both communication and com-
putation freely intermixed. In such a model, there is no way

B1 B2

P2P1
v1
v2
v3

v1
v2
v3

C1

(a)

(b)

Fig. 2. Separation and encapsulation of communication and computation

to automatically change the communication protocol when the
connecting bus is replaced, because the code for communica-
tion cannot be identified.

In the SpecC model [7], as shown in Figure 2(b), this prob-
lem does not exist because the computation is encapsulated in
behaviors(B1, B2), and the communication is contained in
channels(C1). Hence, the communication part can be clearly
identified and the channel can be easily replaced by a different
channel which provides the same interfaces.

B1 T1
W1

IP1

C1 C2

IP
replacable

at any time

replacable

at any time

synthesizable behavior wrapped IP with transducer

channel with IP protocolvirtual channel

v1
v2
v3

Fig. 3. Plug-and-Play with IPs

Naturally, the SpecC model also allows the hierarchical
composition of behaviors and channels in terms of both struc-
ture and behavior. Figure 3 summarizes the ”plug-and-play”
feature supported by this model. At any time in the design
cycle, behaviors and channels can be replaced with IP compo-
nents which, if necessary, are wrapped in channels providing
interface adaption and protocol conversion.

In order to demonstrate how behaviors, channels and inter-
faces are specified with the SpecC language, a more detailed
example is described next. Figure 4 shows a graphical repre-
sentation of the following SpecC source code.

1 i n t e r f a c e I1
2 f
3 b i t [63 : 0] Read (void) ;
4 void Wri te (b i t [63 : 0]) ;
5 g ;
6

7 channel C1 implements I1 ;
8
9 behavior B1(in in t , I1 , out in t) ;

10
11 behavior B(in in t p1 , out in t p2)
12 f
13 i n t l1 ;
14 C1 c1 ;
15 B1 b1 (p1 , c1 , l1) ,
16 b2 (l1 , c1 , p2) ;
17
18 void main (void)
19 f par f b1 . main () ;
20 b2 . main () ;
21 g
22 g
23 g ;

The example specifies a behaviorB which is composed of
two concurrent executing subbehaviorsb1 andb2 . These are
interconnected by a local variablel1 and a communication
channelc1 . The communication protocol implemented in the
channelC1 is specified in interfaceI1 .

b1 b2

c1
p1 p2

v1
B

Fig. 4. Example model in SpecC

Note that channelC1 in line 7 and behaviorB1 in line 9 are
declared with their interfaces but have no implementation (no
body is defined). The actual implementation of the commu-
nication protocol inC1 and the functionality ofB1 is hidden.
For simulation purposes, it can be supplied by a library to be
linked with the simulation executable.

Also, please note how ”plug-and-play” works with both be-
haviors and channels. Given a behaviorB2 (or channelC2)
with a different implementation but with compatible ports (in-
terfaces), it is just a matter of replacingB1 with B2 in line 15
(C1with C2 in line 14) in order to switch to a new component.

III. IP PROTECTION

The approach taken for IP protection in the SpecC system
is based on the idea of providing the secret implementation in
form of a precompiled library. The public interfaces of the
IP component are specified by use of behavior, channel, and
interface declarations.

This is basically the same approach as used for software.
Reuse of software components means usually a set of function
and variable declarations, whose implementation is supplied
by a linker library. All the necessary information to use such

a software package is contained in the API declaration and the
accompanying documentation. The actual implementation is
hidden in object code and therefore protected.

However, for IP components modeled in SpecC, special care
has to be taken to make sure a component cannot be reverse-
engineered from the data made available. The following sec-
tions describe how this is achieved.

A. Public IP interface

In the SpecC system, components are of two types, behav-
iors containing computation, and channels encapsulating com-
munication, as described earlier.

In analogy to functions in C, behaviors and channels con-
sist of adeclarationand adefinition. The declaration specifies
ports and interfaces, whereas the definition contains the actual
implementation. For an IP component, the declaration is sup-
plied in form of source code and the definition is provided as a
precompiled library.

For behaviors, a typical declaration specifies the name of the
behavior and the number and type of its ports. For example,

behavior IP1 (in in t P1 , out b i t [7 : 0] P2) ;

specifies a behaviorIP1 with one input and one output port.
In addition, annotations can be attached to the behavior if nec-
essary. For example:

note IP1 . Vers ion = 1 . 2 ;
note IP1 . Area = 42000 ;

In order to declare a channel, its interfaces have to be defined
first. For example, two interfaces describing send and receive
methods for bytes and words of data can be defined as follows.

1 t ypedef b i t [7 : 0] byte ;
2 t ypedef b i t [63 : 0] word ;
3
4 i n t e r f a c e I1
5 f
6 void SendByte (byte B) ;
7 byte Rece iveByte (void) ;
8 g
9

10 i n t e r f a c e I2
11 f
12 void SendWord (word W) ;
13 word ReceiveWord (void) ;
14 g

With these definitions, a channelIP2 implementing both
interfaces can be declared as

channel IP2 implements I1 , I2 ;

Of course, the channelIP2 and its interfaces can be annotated
in the same way as the behaviorIP1 .

It should be mentioned, that in the SpecC language actually
both, behaviors and channels, can have ports and interfaces as
well. The separation above is made simply for ease of un-
derstanding. Please note that this makes no difference to the
applicability of the issues discussed in this paper.

B. Secret IP library

As mentioned above, the implementation of an IP behavior
or IP channel is supplied as a precompiled library. This ensures

that the secret implementation is hidden from the IP user. Fur-
thermore, for hard IPs, this library only contains a simulation
model and therefore it is not possible to synthesize the IP from
the library.

In order to build such a library, the IP provider implements
a class body for the behavior or channel and compiles it into
a library. For example, for the behaviorIP1 in Section II, a
shared librarylibIP1.so can be created.

However, the generation of such a library is not trivial be-
cause of the way behaviors and channels are implemented in
the SpecC system. From SpecC source code, the SpecC com-
piler generates C++ code which will then be compiled by a
standard C++ compiler in order to produce an executable file
for simulation. Behaviors and channels are implemented as
C++ classes and their instances are naturally represented by
objects. Among other reasons, which are beyond the scope of
this paper, this implementation was chosen because it keeps
the generated code very similar to the original SpecC code and
thus simplifies source-level debugging.

For example, a fragment of generated C++ code is shown
next to the original SpecC code:
behavior B(c l a s s B: pub l i c Bhvr

in in t p1 , f
out in t p2) i n t &p1 ;

f i n t &p2 ;
i n t l1 ; i n t l1 ;
C c1 ; C c1 ;
B1 b1 (p1 , l1 , c1) ; B1 b1 ;
B2 b2 (p2 , l1 , c1) ; B2 b2 ;
void main (void) void main (void) ;
f B(i n t &p1 , i n t & p2) ;

par fb1 . main () ; ˜ B(void) ;
b2 . main () ;g g ;

g
g ;

In C++, in order to instantiate a class, the size of the class
must be known so that sufficient memory can be allocated for
the new object before the constructor of the class is called to
initialize the memory. While the constructor is provided in
the class itself, the memory must be allocated by the instan-
tiator. C++ semantics enforce that a class is defined (not just
declared) before it can be instantiated, thus the size of the re-
quired memory is known when an object is created.

In the case of an IP component, which is supplied in a li-
brary, the size of the class still must be known by the user code.
Therefore, in the C++ user code a class declaration as in SpecC
is not sufficient. Instead a class definition is required. This is a
problem for the IP user because he does not know the internals
of the IP class and thus cannot create a proper class definition.

The problem can be solved if the size of the class is known.
With this information, the IP user can create a pseudo class
which only contains known contents and leaves enough space
for the secret internals. In particular, this pseudo IP class con-
sists of the known ports, the public interfaces and sufficient
space reserved for the secret parts of the IP.

For example, a pseudo class for the behaviorB listed above
can be defined as

c l a s s B: pub l i c Bhvr

f
i n t &p1 ;
i n t &p2 ;
char Reserved [X] ;

void main (void) ;
B(i n t &p1 , i n t &p2) ;
˜ B(void) ;
g ;

where the arrayReserved[X] replaces the secret IP compo-
nentsl1 , c1 , b1 , andb2 . The array sizeX must be equal to
(or greater than) the size of all the replaced components.

Please note that such a class replacement is highly compiler
dependent since the C++ language [6] leaves some freedom for
the implementation of classes. Therefore, when this approach
is implemented, it must be integrated with the compiler being
used.

With this solution, the IP component can be used as any
other component, given the reserved sizeX is provided with the
component declaration and the IP library. The value ofX can
be computed by the IP provider from the IP implementation.

In particular, the size of an IP classC is computed as
sizeof(C) = Xpublic+Xsecret, where

Xpublic = ∑
p2Ports(C)

sizeof(p)+ ∑
i2Itr f cs(C)

sizeof(i)

Xsecret = ∑
l2Locals(C)

sizeof(l)+ ∑
c2Chnls(C)

sizeof(c)

+ ∑
b2Bhvrs(C)

sizeof(b)+ ∆

Here,∆ is some implementation dependent overhead needed
for data alignment, etc. These values can be easily computed
by the SpecC compiler since the sizeof() operator can always
be evaluated at compile time.

IV. EXPERIMENT

The approach for protection of IP, as described in Sec-
tion III, has been implemented and integrated with the SpecC
compiler.

A. Implementation

The program flow of the SpecC compilerscc is illustrated
in Figure 5. The default flow starts on the top with the SpecC
source code of a design which is first processed by the Pre-
processor and then fed into the SpecC Parser which builds a
complex data structure, called SpecC Internal Representation
(SIR).

By default, the compiler generates C++ code from the SIR
data structure which then is compiled and linked with the stan-
dard SpecC libraries to create an executable file for simulation.
The SpecC compiler is also able to import and export binary
SIR files and can even re-generate SpecC source code from the
internal representation.

In order to support IP, the SpecC compiler has been extended
with an IP mode(enabled by option-ip) which changes the

Deparser

Design.sc

Preprocessor

Design.si

Design.cc

Design.o

Design

Design.h

Parser

Translator

Linker

Executable

Design.sirSIR File

Design.sir C++ Code

Exporter

Importer

SIR

Design.scSpecC Code

C++ Compiler

SIR File

Library.so

Library.so

SpecC Source

Preproc. Code

Object Code Library

Library

Data Structure

Fig. 5. Program flow of the SpecC compiler.

behavior of the Exporter, the Deparser, the Translator and the
underlying C++ Compiler and Linker (see Figure 5).

In IP mode, the compiler recognizes special annotations
(scc Public) which the user attaches to behaviors and chan-
nels to mark them as IPs with public ports and interfaces. All
objects not marked public will be treated as secret implemen-
tation by the compiler and will be hidden.

For example, the Exporter and the Deparser will only gen-
erate code for the public objects, all other objects will be
omitted. From the implementation of an IP, the IP provider
can use this to automatically generate the files describing
the public interfaces of his IP. Furthermore, when these pub-
lic files are generated, the behavior and channel IP declara-
tions will be automatically annotated with the reserved size
(scc ReservedSize), as discussed in Section B. This an-
notation will later be used as the valueX in the IP pseudo
classes generated by the compiler when the IP component is
instantiated.

The compilation flow is also affected by the IP mode. When
generating C++ code, the SpecC compiler ensures that only ob-
jects marked public will have external linkage. In other words,
all non-public objects will have internal linkage and are there-
fore not visible outside the file scope. Also, the C++ com-
piler and the linker are instructed to create, instead of an exe-
cutable file, a shared library for which all internal IP symbols
are stripped off.

In summary, using the IP mode, the IP provider can auto-

matically create the public IP interface and the IP library while
being sure that no information about the implementation of the
IP will be available to the IP user. On the other hand, the IP
user can simply include the annotated interface declarations in
his design and use the IP components just as his own behaviors
and channels by linking his executable file against the provided
IP libraries.

B. Design examples

Several example designs have been successfully tested with
the implemented IP support. First, as a simple example, a
generic adder has been specified at the gate level and has been
modeled as an IP component in three different bitwidths. Then,
the proposed IP protection scheme has been applied to four
system-level designs of industrial size. These examples consist
of two controller components, namely an elevator controller
and a traffic light controller, and two data compression IPs,
namely a JPEG encoder and a GSM vocoder. The vocoder
alone consists of about 13000 lines of SpecC source code [3].

The following table shows the characteristics of the IP mod-
els. In particular, the table lists the number of internal compo-
nents and the reserved size for each IP.

IP example Components Reserved size
Adder, 8 bit 65 2428
Adder, 16 bit 131 5020
Adder, 32 bit 261 10052
Elevator controller 91 4248
Traffic light ctrlr. 24 892
JPEG encoder 4 2728
GSM vocoder 84 12020

It should be mentioned that, in contrast to the internal struc-
ture, the reserved size is visible for the IP user. In order not
to reveal the complexity of the IP implementation through this
number, an IP provider is free to choose any number greater
than the minimum computed by the compiler. For example,
the reserved size 12000 works well for all the adders.

Using the IP-enabled SpecC compiler, a public interface and
a shared library have been created automatically for all IPs. For
example, the public interface generated for the GSM vocoder
is shown next:

1 /
2 / / SpecC code genera ted by scc V2 . 0 . 4
3 / / Design : GSMVocoder publ ic . sc
4 /
5 behavior Coder (
6 in b i t [12 : 0] Sample ,
7 out unsigned b i t [243 : 0] Frame ,
8 in bool DTX Mode ,
9 out unsigned b i t [5 : 0] DTXctr l ,

10 in event NewSample ,
11 out event FrameReady) ;
12 note Coder . Vers ion = ”GSM06 . 60 ” ;
13 note Coder . sccReservedS ize = 12020u ;
14 /

V. CONCLUSION AND FUTURE WORK

System-on-Chip design must be based on the reuse of IP.
In order to support IP, the models used in system design must
naturally integrate IP components and allow ”plug-and-play”.
This requires the clear separation of computation and commu-
nication which is directly supported by the SpecC model with
behaviors and channels.

IP reuse and IP protection, as described in this paper, have
been implemented in the SpecC design environment which has
been made freely availabe on the Internet [8]. In particular for
this paper, the SpecC compilerscc has been extended in order
to support the recognition and use of IP components. Further-
more, the compiler supports the automatic generation of public
IP interface files and secret IP libraries for any design specified
with the SpecC language.

An IP library, generated automatically by this approach, will
not reveal any information about the implementation of the IP.
This ensures that these IP libraries are safe and fully protected
against reverse-engineering but can be used just as any other
component in the system.

The approach has been successfully tested with several ex-
amples, including industrial-sized systems such as a JPEG en-
coder and a GSM vocoder.

In conclusion, the SpecC design environment has been ex-
tended to support an IP-centric methodology with easy IP reuse
and automatic IP protection.

Future work will focus on IP-based architecture exploration
and communication synthesis.

REFERENCES

[1] M. Dalpasso, A. Bogliolo, L. Benini. “Specification and
validation of distributed IP-based designs with JavaCAD”.
In Conference Proceedings of Design, Automation and
Test in Europe, Munich, Germany, Mar. 1999.

[2] D. Gajski, R. Dömer, J. Zhu. “IP-centric Methodology and
Design with the SpecC Language”. InSystem Level Syn-
thesis. Edited by A. Jerraya, J. Mermet. Kluwer Academic
Publishers, 1999.

[3] A. Gerstlauer, S. Zhao, D. Gajski, A. Horak.Design
of a GSM Vocoder using SpecC Methodology. Technical
Report ICS-TR-99-11, University of California, Irvine,
Feb. 1999.

[4] A. Kahng, J. Lach, W. Mangione-Smith, S. Mantik,
I. Markov, M. Potkonjak, P. Tucker, H. Wang, G. Wolfe.
“Watermarking Techniques for Intellectual Property Pro-
tection”. In Proceedings of the Design Automation Con-
ference, San Francisco, 1998.

[5] M. Keating, P. Bricaud.Reuse Methodology Manual for
System-on-a-Chip Designs. Kluwer Academic Publishers,
1998.

[6] B. Stroustrup.The C++ Programming Language, 3rd edi-
tion. Addison-Wesley, 1997.

[7] J. Zhu, R. Dömer, D. Gajski. “Syntax and Semantics of
the SpecC Language”. InProceedings of the Workshop on
Synthesis and System Integration of Mixed Technologies,
Osaka, Japan, Dec. 1997.

[8] http://www.ics.uci.edu/ �specc/

