
Syntax and Semantics of the SpecC+ Language

Abstract

In this paper, we describe the goals for the develop-

ment of an executable modeling language in the con-

text of a homogeneous codesign methodology featuring

the synthesis, reuse and validation
ow. A C based

language called SpecC+ is proposed as an attempt to

achieve these goals. The syntax and semantics of

the language is presented and compared with existing

HDLs and we conclude it is conceptually more ab-

stract, syntactically simpler, and semantically richer.

1 Introduction
To tackle the complexities involved in systems-on-

a-chip design, designers often follow two strategies. In

favor of synthesis, the top-down strategy starts from

an abstract speci�cation of the systems functionality,

and then performs stepwise re�nement into implemen-

tations with the help of various synthesis tools. In

favor of reuse, the bottom-up approach tries to im-

plement the systems functionality by integrating ex-

isting components. In reality, these two approaches

have to be combined, because for the top-down ap-

proach, it is often una�ordable for new designs to start

from scratch, whereas for the bottom-up approach, it

is rarely possible to build systems completely from ex-

isting components without adding new ones.

New codesign methodologies have to be developed

to support the seamless mixture of both strategies.

One such methodology is illustrated in Figure 1(a),

where boxes represent design tasks, and ellipses rep-

resent design descriptions, or their abstract form, the

design models, which are shown in detail in Fig-

ure 1(b).

For the synthesis
ow, designers may start from

the speci�cation stage, where the intended function-

ality of the system is speci�ed in terms of a set of

behaviors communicating via a set of channels. Note

that at this stage, the designers may already decide to

use some components from the reuse library, so these

components should also be able to be instantiated in

the speci�cation.

At the second stage, designers may partition the

behaviors onto ASICs and programmable processors.

The design model generated at this stage should carry

these design decisions.

At the communication and synchronization re�ne-

ment stage, the abstract channels among behaviors

have to be resolved into something implementable,

such as behaviors transferring data over a bus accord-

ing to a prede�ned protocol. The design model gen-

erated at this stage is simply the replacement of the

abstract channels into detailed ones.

The �nal stage might be the compilation of software

into binary code and high level synthesis of ASIC be-

havior into register transfer level designs. The model

generated at this stage might be a software behavior

(in the form of an instruction stream) communicat-

ing with a hardware behavior (in the form of a RTL

netlist) via a bus functional model, which translates

each instruction into a series of activities on the bus

wires.

For the validation
ow, the design model generated

at each stage should be simulated before proceeding

to the next synthesis step. For the reuse
ow, there

exists a library of reusable components, which as a

repository of design models, can be \downloaded" or

\uploaded" by synthesis tools or designers.

For this methodology, it is desirable that we

Objective 1: capture the design model at each de-

sign stage in a single language;

Objective 2: make the language executable.

The meeting of Objective 1 will greatly simplify the

codesign methodology since synthesis tasks are now

merely transformations from one program into an-

other using the same language, and validation tasks

are just the program executions. This homoge-

neous approach is in contrast with traditional ap-

proaches where systems functionality is speci�ed using

one speci�cation language, or a mixture of several, and

is then opaquely synthesized into design descriptions

represented by di�erent languages, for example, C for

software, HDLs for hardware.

The executable requirement (Objective 2) of the

language is also of crucial importance for validation.

For example, the speci�cation needs to be validated to

make sure that the functionality captured is what the

designer wants. Validation is even necessary for the

intermediate design models, for example those after

1

Synthesis Flow

 Specification

 Partitioning
 Scheduling

Comm.&Synch.
 Refinement

Compilation
 HLS

 Reusable
 Library

 Validation

Validation FlowReuse Flow

 Model 1

 Model 2

 Model 3

 Model 4

...
load...
store...
...

 Model 1

 Model 2

 Model 3

 Model 4

(a) (b)

Figure 1: A homogeneous codesign methodology

the communication re�nement stage, where the inter-

action between hardware and software becomes very

tricky and error-prone.

It is also desirable for the language to

Objective 3: encourage reuse;

Objective 4: facilitate synthesis.

The design models stored in the library can be

checked in and out easily if they are captured in the

same language as the design. Furthermore, the lan-

guage should be designed in such a way that a design

model of one component is encouraged to be decou-

pled from those of other components. Components

captured in this way tend to be more reusable.

Since we use the same language to model the design

generated by each synthesis task, a design task can be

considered as a re�nement of one program into another

program. It is desirable for the change made by the

transformation to be incremental, meaning that it will

only work on a local part of the program without af-

fecting other parts. For example, the communication

re�nement task should only replace abstract channels

into more detailed ones without changing the model

of the behaviors which use this channel. The locality

of changes makes the synthesizer easier to write and

the results generated more understandable.

In this paper, we attempt to achieve the objec-

tives above by proposing a new C based language

called SpecC+. For SpecC+ to be able to model de-

signs of mixed abstraction levels, it has to be able to

capture concepts commonly found in embedded sys-

tems, such as concurrency, state transitions, structural

and behavioral hierarchy, exception handling, timing,

communication and synchronization, as discussed in

[GVNG94]. These concepts have to be organized in an

orthogonal way so that the language can be minimal.

Section 2 presents the set of constructs in SpecC+

that support these concepts. While Section 2 gives an

idea that SpecC+ is conceptually more abstract and

syntactically simpler than VHDL, Section 3 describes

why it is semantically richer. Section 4 shows how the

objectives de�ned above are achieved by presenting

an example system. Finally Section 5 concludes this

paper with comparisons to traditional HDLs.

2 Syntax

In this section, we give an introduction of the con-

structs provided by SpecC+.

2.1 Basic structure

The SpecC+ view of the world is a hierarchical net-

work of actors interconnected by channels.

Each actor possesses

2

X Yp1p2p3 p1 p2 p3

p1 p2

c1

interface ILeft(void) {
 void write(int val);
 };

interface IRight(void) {
 int read(void);
 };

channel CSharedl(void)
 implements ILeft, IRight {
 int storage;
 bool valid;

 void write(int val) {
 storage = val;
 valid = 1;
 }
 int read(void) {
 while(!valid);
 return storage;
 }
 };

actor Z(in int p1, out int p2) {
 int c1;
 CShared c2;

 X x(c1, c2, p1);
 Y y(c1, c2, p2);

 csp main(void) {
 par { x.main(); y.main(); }
 }
 };

actor Y(out int p1, IRight p2, out int p3) {
 int local;

 void write(void) {
 ...
 local = p2.read();
 ...
 }
 };

actor X(in int p1, ILeft p2, in int p3) {
 int local;

 void main(void) {

 p2.write(local);
 ...
 }
 };

(a) (b)

Z c2

Figure 2: Basic structure of a SpecC+ program

� a set of ports, such as p1 and p2 of actor Z in

Figure 2;

� a set of state variables;

� a set of channels, such as c1 and c2 in actor Z in

Figure 2;

� and a behavior, which contains computations up-

dating the state variables and communications

via its ports connected to the channels.

The actor may be a composite actor which contains a

set of child actors, in which case the behavior of the

composite actor is speci�ed by composing the behavior

of its child actors, for example, the behavior of actor Z

is composed of the behaviors of X and Y in Figure 2.

SpecC+ provides the actor construct to capture all

the information for an actor. This actor construct

looks like a C++ class which exports a main method,

for example, the actor X in Figure 2(b). Ports are de-

clared in the parameter list. State variable, channels

and child actor instances are declared as typed vari-

ables, and the behavior is speci�ed by the methods,

or functions starting from main. The actor construct

can be used as a type to instantiate actor instances.

A channel is an entity responsible for communica-

tion. It can be a primitive channel in the form of

built-in data types such as int, char and
oat, or it

can be a complex channel whose speci�cation is split

into two constructs: the interface construct declares

what kind of communications a channel can perform;

the channel construct provides the implementation of

how the communication is performed. The interface

is usually used as a type to declare ports, whereas the

channel is used as a type to instantiate channels. Sec-

tion 2.3 explains in detail how complex channels are

speci�ed and why they are useful.

In summary, the SpecC+ program consists of a list

of speci�cations of actors and channels.

2.2 Hierarchy

The actor construct can orthogonally capture both

structural hierarchy and behavioral hierarchy.

Structural hierarchy means that composite actors

can be decomposed into child actors interconnected

by channels. Channels de�ne the set of paths through

which the child actors communicate, and when they

communicate, how the communication is performed.

However, when the communication is performed is de-

termined by the behavior of the child actors. Struc-

tural information can be captured by actor instanti-

ation where its ports are mapped to channels or the

ports of the parent actor.

Behavioral hierarchy means that the behavior of a

composite actor is composed of behaviors of the child

actors. There are constructs to specify how behaviors

of child actors are composed in time into more complex

behavior of the composite actor. For example, we can

specify a behavior being the sequential composition of

the behaviors of its child actors using sequential state-

ments, as shown in Figure 3(a), where X �nishes when

the last actor C �nishes. Second, we can use the par-

allel composition using the par construct, as shown in

3

A

B

C

X

A

B

C

X

A

B

C

X

Sequential Concurrent Pipelined

(b) (c)

void main(void) {
 A.main();
 B.main();
 C.main();
 }

void main(void) {
 par {
 A.main();
 B.main();
 C.main();
 }
 }

void main(void) {
 pipe {
 A.main();
 B.main();
 C.main();
 }
 }

(a)

Figure 3: Behavioral hierarchy

Figure 3(b), where X �nishes when all its child actors

A, B and C are �nished. Also, the pipelined compo-

sition is possible using the pipe construct, as shown

in Figure 3(c), where X starts again when the slowest

actor �nishes.

In summary, the structural hierarchy is captured by

the tree of actor instantiations, whereas the behavioral

hierarchy is captured by the tree of function calls to

the actor main methods.

2.3 Communication

We have mentioned in Section 2.1 that the channel

concept is used to model communication and the spec-

i�cation of a complex channel is split into the inter-

face and channel constructs. The interface construct

encapsulates a set of method prototype declarations,

which specify what kind of communications a chan-

nel can perform. The channel encapsulates a set of

media in the form of variables, for example a set of

storages or a set of wires, and the set of method im-

plementations which specify how the communications

are performed.

Figure 4 shows a shared variable channel which can

be accessed by concurrent actors. The communica-

tions that can be performed are read and write, as

declared in the ILeft interface and IRight interface re-

spectively.

The channel CShared encapsulates the variable

storage being shared, a valid bit, which the write oper-

ation has to set and the read operation has to spinwait

for, as well as de�nitions of the read and write meth-

ods.

The channel is related to the interfaces by the im-

interface ILeft(void) {
 void write(int val);
 };
interface IRight(void) {
 int read(void);
 };
channel CShared(void)
 implements ILeft, IRight {
 int storage;
 bool valid;
 void write(int val) {
 storage = val;
 valid = 1;
 }
 int read(void) {
 while(!valid);
 return storage;
 }
 };

(a) (b)

IL
ef

t

IR
ight

valid

storage

Figure 4: Shared memory channel

plements keyword followed by the list of interfaces,

which implies that it is mandatory for the channel to

implement the methods declared in the interfaces.

A more complex example is shown in Figure 5,

which describes a bus channel with a synchronous pro-

tocol, which is illustrated in Figure 5(a). Two inter-

faces are declared: ILeft speci�es what a master of the

channel can perform, in this case the read word and

write word methods; IRight, speci�es what a slave of

the channel can perform, in this case the method mon-

itor.

The channel CBus in Figure 5(c) encapsulates the

set of wires consisting of clk, start, rw and AD, as well

as the method bodies. For example, the read word

method called by master actors will initiate a bus cycle

by asserting the start signal, and then raise the rw sig-

nal, sample the data and �nally deassert the start sig-

nal. As another example, the monitor method called

by slave actors will watch the activities on the wires

and detect if a read cycle or write cycle is ongoing,

and then in turn perform the appropriate operations.

The users of this channel, in Figure 5(c) actors

AMaster and ASlave, will use the ILeft and IRight

interfaces as their ports, which will later be mapped

to the CBus channel when they are instantiated. Note

that it is prohibited by the language for a port to be

mapped to a channel which does not implement the

interface type of the port.

The di�erence between methods in a channel and

methods in an actor has to be emphasized. While

methods of an actor specify the behavior of itself,

methods of a channel specify behavior of the caller,

in other words, they will get inlined into connected

actors when the system is �nally implemented. When

a channel is inlined, the encapsulated media are ex-

posed, the methods are moved to the caller and the

interface port is
attened into ports connected to the

4

actor AMaster(ILeft bus) {
 word d;

 void main(void) {
 ...
 bus.read(0x10, &d);
 d ++; bus.write(0x10, d);
 ...
 }
 };

actor ASlave(IRight bus) {
 word storage[0x100];

 void my_grab_data(word addr, word *d) {
 *d = storage[addr]; }
 void my_deliver_data(word addr, word d) {
 storage[addr] = d; }

 void main(void) {
 for(; ;) {
 bus.monitor(my_grap_data, my_deliver_data);
 }
 }
 };

actor ASystem(void) {
 CBus bus;
 AMaster master(bus);
 ASlave slave(bus);

 csp main(void) {
 par { master.main(); slave.main(); }
 }
 };

interface ILeft(void) {
 void read_word(word addr, word *d);
 void write_word(word addr, word d);
 };

interface IRight(void) {
 void monitor(
 void (*grab_data)(word addr, word *d),
 void (*deliver_data)(word addr, word d)
);
 };

channel CBus(void) implements ILeft, IRight {
 clock clk;
 signal<bit> start;
 signal<bit> rw;
 signal<word> AD;

 void read_word(word addr, word *d) {
 start = 1, rw = 1, clk.tick();
 AD = addr, clk.tick();
 *d = AD, start = 0, rw = 0, clk.tick();
 }
 void write_word(word addr, word d) {
 start = 1, rw = 0, clk.tick();
 AD = addr, clk.tick();
 AD = d, start = 0, clk.tick();
 }

 void monitor(
 void (*grab_data)(word addr, word *d),
 void (*deliver_data)(word addr, word d)
) {
 word a, d;

 while(start == 0) clk.tick();
 if(rw == 1) { // read cycle
 clk.tick();
 a = AD, clk.tick();
 (*grab_data)(a, &d), AD = d, clk.tick();
 }
 else {
 clk.tick();
 a = AD, clk.tick();
 d = AD, (*deliver_data)(a, d), clk.tick();
 }
 }
 };

ILeft IRight

clk

start

rw

AD

A
M

aster

A
S

lave

ASystem

(a)

(b)

clk

start

rw

AD Addr Data

clk

start

rw

AD Addr Data

(c)

Figure 5: Synchronous bus channel

exposed media.

The fact that a port of an interface type can be

resolved to a real channel at the time of its instan-

tiation is called late binding. Such a late binding

mechanism makes it possible for an actor to perform

function calls via the interface port without knowing

what kind of channel it will be eventually mapped to.

In this way, any channel can be plugged in as long as

it conforms to this interface.

Such a \plug-and-play" feature is essential to both

reuse and incremental re�nement. For reuse, for ex-

ample, it is possible to replace the channel CBus in

Figure 5(c) with another bus channel that uses an

asynchronous bus protocol without a�ecting the de-

scription of AMaster and ASlave at all, as long as that

channel implements both interfaces ILeft and IRight.

It is obvious that the models AMaster and ASlave are

highly reusable, since they can be adapted to di�erent

buses with di�erent wires and protocols. For incre-

mental re�nement, for example, the channel CBus can

be replaced without a�ecting the connected actors by

another more detailed channel with the same interface,

which might contain a memory actor, the wires which

access this memory, as well as the protocols used.

2.4 Synchronization

Concurrent actors often need to be synchronized to

be cooperative. In SpecC+, there is a built-in type

event which can serve as the basic unit of synchro-

nization.

(b)

IL
ef

t

IR
ight

valid

storage

(a)

wakeup

interface ILeft(void) {
 void write(int val);
 };
interface IRight(void) {
 int read(void);
 };
channel CShared(void)
 implements ILeft, IRight {
 int storage;
 bool valid;
 event wakeup;
 void write(int val) {
 storage = val;
 valid = 1;
 notify(wakeup);
 }
 int read(void) {
 if (!valid)
 wait(wakeup);
 return storage;
 }
 };

Figure 6: Event and shared memory channel

An event can be considered as a channel with a set

of methods including wait and notify. A wait call on

an event will suspend the caller. A notify call on an

5

event will resume all actors that are suspended due to

a wait on this event .

The shared memory example introduced in Figure 4

can be rewritten using the event mechanism as shown

in Figure 6. In Figure 4(b), the read method has to

poll the valid bit constantly, which is une�cient. A

better way, as shown in Figure 6(b), is to use an event

called wakeup, so that a call to the read method can

suspend itself when valid is false, and will be resumed

later when a write operation noti�es the wakeup event.

2.5 Exceptions

In order to model exceptions in an embedded sys-

tem SpecC+ supports two concepts, namely abortion

and interrupt, as shown in Figure 7.

void main(void) {
 try { x.main(); }
 interrupt(e1) { y.main(); }
 interrupt(e2) { z.main(); }
 }

X

Y Z

e1 e2

e1 e2

X

Y Z

e1 e2

e1 e2

(a) (b)

void main(void) {
 try { x.main(); }
 trap(e1) { y.main(); }
 trap(e2) { z.main(); }
 }

Figure 7: Exception handling: (a) abortion, (b) inter-

rupt.

The try-trap construct shown in Figure 7(a) aborts

actor x immediately when one of the events e1, e2 oc-
curs. The execution of actor x (and all its child actors)
is terminated without completing its computation and

control is transferred to actor y in case of e1, to actor
z in case of e2. This type of exception usually is used

to model the reset of a system.

On the other hand the try-interrupt construct, as

shown in Figure 7(b), can be used to model interrupts.

Here again execution of actor x is stopped immediately

for events e1 and e2, and actor y or z, respectively, is
started to service the interrupt. After completion of

interrupt handlers y and z control is transferred back

to actor x and execution is resumed right at the point

where it was stopped.

For both types of exceptions, in case two or more

events happen at the same time, priority is given to

the �rst listed event.

2.6 Timing

In the design of embedded systems the notion of

real time is an important issue. However, in tradi-

tional imperative languages such as C, only the order-

ing among statements is speci�ed, the exact informa-

tion on when these statements are executed, is irrele-

vant. While these languages are suitable for specifying

functionality, they are unsu�cient in modeling embed-

ded systems because of the lack of timing information.

Hardware description languages such as VHDL over-

come this problem by introducing the notion of time:

statements are executed at discrete points in time and

their execution delay is zero. While VHDL gives an

exact de�nition of timing for each statement, such a

treatment often leads to over-speci�cation.

One obvious over-speci�cation is the case when

VHDL is used to specify functional behavior. The tim-

ing of functional behaviors is unknown until they are

synthesized. The assumption of zero execution time

is too optimistic and there are chances to miss design

errors during speci�cation validation.

SpecC+ overcomes this problem by di�erentiating

between timed behavior, which executes in zero

time, and untimed behavior, on which no assump-

tion of timing can be made. Syntactically an untimed

modi�er type will make the behavior contained in a

function untimed behavior. The execution semantics

of SpecC+ as described in Section 3 will allow the syn-

chronized execution of timed and untimed behavior.

Other cases of over-speci�cation are timing con-

straints and timing delays, where events have to hap-

pen, or, are guaranteed to happen in a time range,

instead of at a �xed point in time, as restricted by

VHDL.

SpecC+ supports the speci�cation of timing explic-

itly and distinguishes two types of timing speci�ca-

tions, namely constraints and delays. At the speci�-

cation level timing constraints are used to specify time

limits that have to be satis�ed. At the implementation

level computational delays have to be noted.

Consider, for example, the timing diagram of the

read protocol for a static RAM, as shown in Fig-

ure 8(a). In order to read a word from the SRAM,

the address of the data is supplied at the address port

and the read operation is selected by assigning 1 to the

read and 0 to the write port. The selected word then

can be accessed at the data port. The diagram in Fig-

ure 8(a) explicitly speci�es all timing constraints that

have to be satis�ed during this read access. These con-

straints are speci�ed as arcs between pairs of events

annotated with x=y, where x speci�es the minimum

and y the maximum time between the value changes

of the signals. The times are measured in real time

units such as nanoseconds.

Figure 8(b) shows the SpecC+ source code of a

SRAM channel C SRAM, which instantiates the ac-

tor A SRAM, and the signals, which are mapped to

6

(a) (b) (c) (d)

a

t1 t2 t4 t5 t6

d

t7

10/200/

10/20 10/20

5/100/0/

t3

in Read

in Write

inout Data

in Address

channel C_SRAM(void)
 implements I_SRAM {

interface I_SRAM(void) {
 void read_word(word a,
 word *d);
 };

actor A_SRAM(
 in signal<word> addr,
 inout signal<word> data,
 in signal<bit> rd,
 in signal<bit> wr) {
 void main(void) { ... }
 };

 void read_word(word a,
 word *d) { ... }
 };

signal<word> Address, Data;
signal<bit> Read, Write;
A_SRAM sram(
 Address, Data,
 Read, Write);

void read_word(
 word a, word *d) {
 do {
 t1 : { Address = a; }
 t2 : { Read = 1; }
 t3 : { }
 t4 : { *d = Data; }
 t5 : { Address.disconnect(); }
 t6 : { Read = 0; }
 t7 : { break; }
 }
 timing {
 range(t1; t2; 0;);
 range(t1; t3; 10; 20);
 range(t2; t3; 10; 20);
 range(t3; t4; 0;);
 range(t4; t5; 0;);
 range(t5; t7; 10; 20);
 range(t6; t7; 5; 10);
 }
 }

void read_word(
 word a, word *d) {
 Address = a;
 Read = 1;
 waitfor(10);
 *d = Data;
 Address.disconnect();
 Read = 0;
 waitfor(10);
 }

Figure 8: Read protocol of a static RAM: (a) timing diagram, (b) SRAM channel, (c) timing at speci�cation

level, (d) timing at implementation level.

the ports of the SRAM. Access to the memory is pro-

vided by the read word method, which encapsulates

the read protocol explained above (due to space con-

straints write access is ignored).

Figure 8(c) shows the source code of the read word
method at the speci�cation level. The do-timing con-

struct used here e�ectively describes all information

contained in the timing diagram. The �rst part of the

construct lists all the events of the diagram, which are

speci�ed as a label and its associated piece of code,

which describes the changes of signal values. The sec-

ond part is a list of range statements, which specify

the timing constraints or timing delays using 4-tuples

T = (e1; e2;min;max), where e1 and e2 are event

labels and min and max specify the minimum and

maximum time, respectively, between these events.

This style of timing description is used at the spec-

i�cation level. In order to get an executable model

of the protocol scheduling has to be performed for

each do-timing statement. Figure 8(d) shows the im-

plementation of the read word method after an ASAP

scheduling is performed. All timing constraints are re-

placed by delays, which are speci�ed using the waitfor

construct.

3 Execution semantics

In this section, we give a formal de�nition of the

execution semantics of a SpecC+ program. We use a

graph-based notation similar to [Fr95].

3.1 Graph-based representation

In its most primitive form with all the high level

constructs
attened and syntactical sugar stripped,

the SpecC+ program can be represented by a directed

graph. Figure 9 shows an example of such a graph.

The
attened SpecC+ program can be broken into

blocks of statement sequences, which become vertices

of the graph. Four types of constructs, which become

edges of the graph, break the program into blocks:

Type 1: branches, including if-else, while, for loops

etc,

Type 2: delay (waitfor) statements,

Type 3: wait statements,

Type 4: notify statements.

Note that while Type 1 constructs break the program

into basic blocks as in traditional control
ow analysis,

Type 2-4 constructs break the basic blocks further.

A vertex is called a timed vertex, if the execution

of the vertex takes zero time, as determined by the

syntax of the language. It is referred to as an un-

timed vertex otherwise. Another way of classifying

the vertices is to call a vertex a reactive vertex if it is

preceded by a wait statement. Otherwise, it is called

a non-reactive vertex.

Furthermore, there are special vertices used to rep-

resent high level language constructs such as par, cpar

and pipe, namely, fork and join vertices. For the sim-

plicity of the presentation, we ignore the constructs

try-trap and try-interrupt in this discussion.

There are two types of edges. The sensitizing

edges, represented by dotted arrows in Figure 9(b),

are derived from the sequencing information of the

program where the control
ows to reactive vertices.

The execution of the source vertex of a sensitizing edge

will make the sink vertex sensitive to the events that

7

it waits for. Each sensitizing edge is associated with a

condition.

The triggering edges are represented by solid ar-

rows in Figure 9(b) and are annotated by condi-

tion/delay pairs. The execution of the source ver-

tex of a triggering edge will cause the sink vertex to

execute at delay time steps later if the condition is

true. If the sink vertex is a reactive vertex, it also

has to be sensitive in order to be executed. There are

three sources of program information for the trigger-

ing edges: (1) sequencing information where control

ows to non-reactive vertices; (2) delay information

associated with waitfor statements; (3) synchroniza-

tion information associated with wait-notify pairs.

(a)

timed { c = a + b; }
if(c > 0) {
 par {
 timed { d = 0; waitfor(10); d = 10; wait(e1); d = 100; }
 timed { e = a * b; if(e > 0) { wait(e2); e −−; notify(e1); } }
 }
 }
else {
 par {
 untimed { d = 0; waitfor(10); d = 100; notify(e2); d = 200; }
 untimed { e = a * b; e −−;}
 }
 }
timed { f = a − b; }

c = a + bt1:

d = 10

d = 100

d = 0 e = a * b

e −−

d = 0

d = 100

d = 200

e = a * b
e −−

u1:

u2:

u3:

u4:

(c>0, #0) (!c>0, #0)

(true, #0) (true, #0)

e > 0

true

(true, #10)

(true, #0)

(true, #0)

(true, #0)

(true, #10)

(true, #0)

(true, #0) (true, #0)

(true, #0)

f = a − b timed
subsystem

 untimed
subsystem

(b)

fork fork

join join

(true, #0)

(true, #0)

(true, #0)

true

(true, #0)

(true, #0)

(e<=0, #0)

t2: t3:

t4: t5:

t6: t7:

t8:

Figure 9: Execution semantics: (a) pseudo SpecC+

code, (b) graph-based representation.

The subgraph spanned by the set of timed ver-

tices is called the timed subsystem. The sub-

graph spanned by the untimed vertex set is called the

untimed subsystem. The timed subsystem is in-

tended to model the synthesized hardware using dis-

crete event semantics equivalent to VHDL. The un-

timed subsystem is intended to model unsynthesized

behavior or software, whose timing is unknown.

More formally, a SpecC+ program can be repre-

sented as a graph G = hV; v0; Es; Eti , where

� V = T [U [Fork [Join , where T is the set of

timed vertices, U is the set of untimed vertices,

Fork is the set of fork vertices, Join is the set of

join vertices;

� v0 2 V is the start vertex;

� Es � V � V � B represents the conditional sen-

sitizing edges, where B is the set of boolean

expressions;

� Et � V � V � B � Z+ represents the conditional

triggering edges with delays, where Z+ is the set

of positive integers.

For convenience of notation, we de�ne the set of
reactive vertices to be

W = fvj9v0 2 V; b 2 B; hv0

; v; bi 2 Esg:

3.2 Semantics

The state of the computation can be represented by

s = hN;R;D;M;Ci , where

� N � V is the set of sensitive vertices,

� R � V is the set of vertices ready to be executed,

� D � V � Z+ is the set of all pairs hv; di , such

that vertex v has d time steps left before it can

execute,

� M is the memory store that maps each variable

to its current value,

� C is the memory store which holds the execution

context of all the vertices.

We assume the existence of the following opera-

tions:

� v = SelectOneOf(R) deterministically chooses one

vertex v from the set of ready vertices R .

� M 0
= ExecTimed(v;M) applies the code associ-

ated with timed vertex v to the memory store

and returns a new memory store M 0 .

� ht;M 0; C0i = ExecUntimed(v;M;C) applies the

code associated with untimed vertex v under

a context C to the memory store for some host

time. It will return a triple ht;M 0; C0i , where

t 2 Z+ represents the time steps elapsed during

the execution, M 0 represents the updated mem-

ory store and C0 represents the new context.

Note that the granularity for each execution of

the untimed vertex, that is, how much code it ex-

ecutes and how many time steps it will take, can

be speci�ed by the user.

8

� Finished(v; C) returns whether vertex v has �n-

ished its execution, where C is the context.

� Eval(b;M) evaluates the boolean expression b

using the memory store M and returns TRUE

or FALSE.

We de�ne s0
= Next(hN;R;D;M;Ci) as

hN 0; R0; D0;M 0; C0i , where

� Type I Transition represents the execution of

a vertex at the current time step:

if R 6= ; , then Let v = SelectOneOf(R)

if v 2 T , then

M 0=ExecTimed(v;M)

C 0=C

N 0=N � fvg [fv0jhv; v0; bi 2 Es

^ Eval(b;M 0)g

R0=R � fvg [fv0jhv; v0; b; di 2 Et

^ Eval(b;M 0) ^ d = 0

^ (v 2W ^ v 2 N 0 _ v =2 W)g

D0=D [fhv0; dijhv; v0; b; di 2 Et

^ Eval(b;M 0) ^ d > 0g

else if v 2 Fork , or if v 2 Join ^

8v0 2 fv0jhv0

; v; bi 2 Etg; Finished(v0

; C)

then

M 0=M

C 0=C

N 0=N � fvg [fv0jhv; v0; bi 2 Es

^ Eval(b;M 0)g

R0=R� fvg [fv0jhv; v0; b; di 2 Et

^ Eval(b;M 0) ^ d = 0

^ (v 2 W ^ v 2 N 0 _ v =2W)g

D0=D [fhv0; dijhv; v0; b; di 2 Et

^ Eval(b;M 0) ^ d > 0g

else if v 2 Join ^

9v0 2 fv0jhv0

; v; bi 2 Etg; :Finished(v0

; C)

then

M 0=M;

C 0=C

N 0=N

R0=R� fvg

D0=D

else if v 2 U , then

ht;M 0

; C
0i = ExecUntimed(v;M;C)

if Finished(v; C0
) then

N 0=N � fvg [fv0jhv; v0; bi 2 Es

^ Eval(b;M 0)g

R0=R� fvg [fv0jhv; v0; b; di 2 Et

^ Eval(b;M 0) ^ d = 0

^ (v 2 W ^ v 2 N 0 _ v =2 W)g

D0=D [fhv0; d+ tijhv; v0; b; di 2 Et

^ Eval(b;M 0) ^ d > 0g

else

N 0=N

R0=R� fvg

D0=D [fhv; tig

� Type II Transition represents the advance of

time to the next step when a vertex can execute.

if R = ; and D 6= ; , then let

d0=minhv;di2Dd

A=fhv; dijhv; di 2 D ^ d = d0g

then

M 0 = M

N 0 = N

R0 = fvjhv; di 2 A

^ (v 2 W ^ v 2 N 0 _ v =2 W)g

D0 = fhv; dijhv; d+ d0i 2 D �Ag

C 0= C

� Type III Transition represents the end of ex-

ecution: if R = ; and D = ; , then s = ? ,

denoting no next state.

The execution of graph G is a sequence of states

[s0; s1; : : : ;?] , where

� s0 = h;; fv0g; ;;M0; C0i , where M0 represents the

initial memory store that maps every variable to

its initial value, and C0 represents the initial

context which sets all the untimed vertices to its

�rst statement.

9

� si+1 = Next(si; G)

In summary, we present the semantics of the

SpecC+ language in a formal graph-based notation.

The semantics is rich in the sense that it covers the

semantics of many other languages. For example, if

we constrain all the triggering edges to a delay of

zero (disallow waitfor statements), then the trigger-

ing edges induce a partial ordering on the vertices,

and there is no notion of the passage of time. Such a

system is equivalent to the systems captured by con-

current languages. If we further constrain that no fork

and join vertices are allowed, such a system is equiv-

alent to those captured by sequential imperative lan-

guages such as C. On the other hand, if we exclude

the untimed subsystem, the language is semantically

equivalent to VHDL.

4 Meeting the objectives

In this section, we brie
y review how the SpecC+

language addresses the design objectives discussed in

Section 1.

Objective 1 requires SpecC+ to be capable of mod-

eling designs at di�erent abstraction levels, or mixed

levels of abstractions. In the codesign domain, a com-

putation at a high abstraction level may be a behav-

ior with only partial ordering of operations speci�ed,

but exact timing missing. On the other hand, a com-

putation with lower abstraction level may be a behav-

ior with the exact information on when each operation

is performed. Similarly, a communication at a high

abstraction level may be a shared variable accessable

by concurrent processes. On the other hand, at a lower

abstraction level, these shared variables may be dis-

tributed over di�erent processing elements, while ac-

cesses to them may involve consistency protocols and

complex transactions over system buses.

For computation, SpecC+ allows the simultaneous

speci�cation of an untimed system, which is primarily

used to model unsynthesized behavior whose timing is

not resolved yet, and a timed system, which is primar-

ily used to model synthesized behavior whose timing is

known. This
exibility makes it possible to describe a

variety of system modeling con�gurations. For exam-

ple, Figure 10 shows a typical microprocessor system

with two IO devices. Software behavior, which is not

yet compiled and bound to any processor, can be mod-

eled as untimed behavior, such as actor AProgram in

Figure 10. So does a hardware behavior that is to be

synthesized, such as actor ADevice2. Compiled soft-

ware behavior can be modeled as timed behavior, such

as channels CDriver1 and CDriver2 representing the

device drivers for actors ADevice1 and ADevice2. A

processor model CProcModel is modeled as a chan-

nel which exports its instruction set in the form of

methods. Each instruction is modeled as timed be-

havior, which operates on the processor bus signals.

Hardware components from the library, that is, syn-

thesized hardware behaviors, can be modeled as timed

behavior, for example, actor ADevice2 in Figure 10.

For communication, SpecC+ allows the simulta-

neous speci�cation of communication using primitive

channels, which is used to model abstract communica-

tion via implicit read and write operations over typed

variables, and complex channels, which is primarily

used to model communication at the implementation

level, for example, the transfer of a block of data over

a standard bus.

The execution semantics of SpecC+ laid the basis

to realize Objective 2. The bene�t of being able to ex-

ecute models at mixed abstraction levels is two fold:

�rst, intermediate design models can be validated be-

fore the next synthesis step; second, designs can be

validated with appropriate speed-accuracy trade-o�.

For example, in Figure 10, actor AProgram is mod-

eled as untimed behavior, while channels CDriver1

and CDriver2 are modeled as timed behavior. The ra-

tionale behind this con�guration is that behaviors in

CDriver1 and CDriver2 contain IO instructions which

interact intensively with the hardware such as ADe-

vice and ATransducer, and it is this type of behavior

that is error-prone and should receive our attention.

On the other hand, the behavior contained in actor

AProgram contains just normal operations of the pro-

cessor and need not to be veri�ed at such a detailed

level.

The ability of SpecC+ to model designs at di�er-

ent abstraction levels makes a large category of de-

sign artifacts eligible to be modeled and entered in

a reuse library. For example, a hardware component

can be modeled as an actor, such as ADevice1 in Fig-

ure 10, and can be stored in a library. The protocol

on how to communicate with a hardware component,

which before is documented by a data sheet, can now

be modeled as a wrapper, such as ADevice1Wrapper

in Figure 10, and stored in a library. The bus pro-

tocols, including standard system buses such as PCI

bus, PIBus, or VMEBus, and processor bus models,

such as Pentium bus and PowerPC bus, can also be

stored in the library in the form of channels.

The abstraction of communication into a set of

functions in the channel construct and the abstraction

of the channel implementation into a set of function

prototypes in the interface construct makes it possi-

ble to decouple the computational aspect of an actor

10

AProgram

CDevice1Wrapper

ADevice1

ATransducer

ADevice2

CDriver1

CDriver2

ASoftware

CProcModel

IP
ro

cS
of

t

IP
rocH

ard

Figure 10: Model of a microprocessor system with IO devices.

from the communication. This feature is helpful for re-

alizing both Objective 3 and Objective 4. For reuse,

the actors described in this way can be used without

modi�cation in di�erent situations. For synthesis and

re�nement, abstract channels can be replaced by de-

tailed channels without a�ecting the connected actors.

5 Conclusion

In conclusion, we proposed SpecC+ as a modeling

language for codesign, which supports a homogeneous

codesign methodology.

SpecC+ can be considered as an improvement over

traditional HDLs such as VHDL.

Semantically, SpecC+ allows the speci�cation of

behavior with exact timing as well as unknown timing,

whereas VHDL only allows speci�cation of behavior

with exact timing, which often leads to overspeci�ca-

tion.

Conceptually, SpecC+ raises the abstraction

level, while reorganizing important concepts. For ex-

ample, concurrency is decoupled from structure, syn-

chronization and timing are decoupled from intercon-

nections (for example, in VHDL signals are used both

for synchronization, interconnection, and even tim-

ing), function interfaces are decoupled from function

implementations, ports are generalized into interfaces,

wires are generalized into channels.

Syntactically, SpecC+ is based on C, which al-

lows the inheritance of a large archive of existing code,

and makes it easy for an implementation of the lan-

guage to leverage traditional C compilers.

Philosophically, SpecC+ is intended to be a code-

sign modeling language (CML) with single seman-

tics, while VHDL is a hardware description language

(HDL) with di�erent semantics in simulation and syn-

thesis.

6 References
[Ag90] G. Agha; \The Structure and Semantics of Ac-

tor Languages"; Lecture Notes in Computer Sci-

ence, Foundation of Object-Oriented Languages;

Springer-Verlag, 1990.

[AG96] K. Arnold, J. Gosling; The Java Programming

Language; Addison-Wesley, 1996.

[DH89] D. Drusinsky and D. Harel. \Using State-

charts for hardware description and synthesis". In

IEEE Transactions on Computer Aided Design,

1989.

[Fr95] R. French, M. Lam, J. Levitt, K. Olukotun \A

General Method for Compiling Event-Driven Sim-

ulation"; Proceedings of 32th Design Automation

Conference, 6, 1995.

[GVN93] D.D. Gajski, F. Vahid, and S. Narayan.

\SpecCharts: a VHDL front-end for embedded

systems". UC Irvine, Dept. of ICS, Technical Re-

port 93-31, 1993.

[GVNG94] D. Gajski, F. Vahid, S. Narayan, J. Gong.

Speci�cation and Design of Embedded Systems.

New Jersey, Prentice Hall, 1994.

[Har87] D. Harel; \StateCharts: a Visual Formalism

for Complex Systems"; Science of Programming,

8, 1987.

[LS96] E.A. Lee, A. Sangiovanni-Vincentelli; \Com-

paring Models of Computation"; Proc. of ICCAD;

San Jose, CA, Nov. 10-14, 1996.

[OMG95]

Common Object Request Broker: Architecture and

Speci�cation; http:// www.omg.org/corbask.htm.

[St87] B. Stroustrup; The C++ Programming Lan-

guage; Addison-Wesley, Reading, 1987.

11

