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Abstract

In this paper, we present new techniques which further improve
the static compiled instruction set architecture (ISA) simulation by
the aggressive utilization of the host machine resources. Such uti-
lization is achieved by defining a low level code generation inter-
face specialized for ISA simulation, rather than the traditional ap-
proaches which use C as a code generation interface. We are able
to perform the simulation at a speed up to102 millions of simu-
lated instructions per second (MIPS). This result is only1:1� 2:5

times slower than the native execution on the host machine, the
fastest to the best of our knowledge. Furthermore, the code gen-
eration interface is organized to implement a RISC like virtual
machine, which makes our tool easily retargetable to many host
platforms.

1 Introduction

An instruction set simulatoris a tool that runs on ahostma-
chine, typically a workstation, to mimic the behavior of, orsim-
ulate a program running on atarget machine, which either does
not yet exist, or not available. Typically, instruction set simulation
allows the user to examine the internal state of the target machine,
such as the value of processor registers, during the execution of
each instruction.

Instruction set simulators are indispensable tools in the devel-
opment of conventional computer systems. They help tovalidate
the processor design, the compiler design, as well asevaluatear-
chitectural design decisions such as cache sizes. Instruction set
simulators play an even more important role in the development of
modernembedded systems, which typically integrate one or more
processors, acceleration hardwares, and sometimes analog fron-
tends, on one chip to implement one specific application, such
as cellular phone and personal communication systems.Hard-
ware/software cosimulation[5], of which instruction set simula-
tion is one of the most important parts, must be performed in order
to validate and evaluate not only architectural decisions, but also
implementation decisions such as how the functionality of the ap-
plication is partitioned into hardware and software before any such
systems are built. Such capability ofvirtual prototypingis essen-
tial to the success of a product.

It is obvious that the most important quality metric of an ISA
simulator is itssimulation speed, which is especially relevant for
the development of high performance systems, where being able
to perform simulation inreal timeis desired. Hardwareemulation,
despite its cost, has to be used when real time simulation is impos-
sible. Other quality metrics includecompilation speed, which has
to do with how fast simulator can bring an application into a sim-
ulatable state;tracability, which has to do with how flexible the
simulator can collect useful statistics, such as instruction profil-
ing; retargetability, which has to do with how easy the tool can be
extended to handle new target machines and new host platforms;
interoperatability, which has to do with its capability to integrate
with other tools, such as debugger, hardware simulator, etc.

Due to its importance, numerous ISA simulators have been de-
veloped, which can be categorized into three types (Section 2),
namely, interpretation based, static compilation basedand dy-
namic compilation based.

The tool presented in this paper is a static compilation based
simulator. In addition to the advantages inherited, our tool makes
several contributions, which lead to its superior performance.
First, we propose to use a RISC likevirtual machine, which has a
predefined instruction set and an unlimited number of virtual reg-
isters, to serve as the intermediate to which the target instructions
get translated, and from which the host instructions are generated.
This is in contrast to the dynamic approaches which usually di-
rectly emit host instructions, where retargetability has to be sac-
rificed; and the traditional static approaches which emit C, where
the direct manipulation of host machine resources is impossible.

Second, we use an aggressive, yet extremely simpleregister al-
locator, which is tailored for the purpose of ISA simulation. Effec-
tively, this allows the direct mapping of target machine registers to
host machine registers, while retaining retargetability. Such effect
is hard, if not impossible to achieve in the traditional C emitting
approach, even when sophisticated optimizations are used.

In addition, the low level interface proposed allows us to by-
pass the host machine calling conventions, which effectively ex-
pose more registers for the register allocator to manipulate on host
machine architectures with register windows, such as SPARC. In
combination, we have been able to simulate the benchmarks only
1.1-2.5 times slower than the execution of their counterparts di-
rectly compiled on the host machine, when tracing is off. This
result is on average 2 times faster than the state of the art [4] [3]



[6].
The remainder of this paper is organized as follows. Section 2

gives more detailed description on the various approaches and
compare their trade-offs. Section 3 presents the detail of our simu-
lator. Section 4 discusses the extensions and limitations. Section 5
gives the results on the benchmarks chosen.

2 Techniques for ISA Simulation

2.1 Interpretation Based Simulation

Interpretation based simulation builds in memory a data struc-
ture representing the state of the target processor. It then enters a
loop, the body of which executes the sequence of actions :fetch,
which reads an instruction word from memory;decode, which an-
alyzes the instruction and extracts the opcode field of the instruc-
tion; dispatch, which use a switch statement to jump to the ap-
propriate code to handle a particular instruction;execute, which
update the processor state according to the semantics of the in-
struction.

A representative, widely used interpretative simulator for MIPS
processor is described in [2]. All most all commercially available
simulators are interpretative. Despite ease of implementation and
flexibility, interpretive simulators suffer performance problems,
mainly due to the tremendous overhead spent on instruction fetch-
ing, decoding and dispatching, which, from simulation point of
few, is unproductive. The simulator [2] reports a 25 times slow
down of the native execution. [6] reported that it takes DSP sim-
ulators provided by vendors 6.4 hours to simulate G.726 speech
transcoder for 13 seconds of speech signals, in contrasts to the 7
seconds of native execution time.

2.2 Compilation Based Simulation

Compilation based approaches reduce the runtime overhead by
translating each target machine instruction directly to a series of
host machine instructions which manipulate the simulated ma-
chine state. For example, the MIPS code in Figure 1 get translated
to the SPARC code in Figure 2 for simulation. Here,sp sim is
the memory location which hosts the value of the simulatedsp
register.

addu $sp,$sp,-80

Figure 1. Target code

sethi %hi(sp__sim), %l0
ld [%lo(sp__sim)+%l0], %l1
add %l1, -80, %l2
sethi %hi(sp__sim), %l3
st [%lo(sp__sim)+%l3], %l2

Figure 2. Simulation code

Such translation can be done either at compile time, as in the
case of static compiled simulation, where the overhead is com-
pletely eliminated; or at load time, as in the case of dynamic com-
piled simulation, where the overhead is amortized over the loops
which repeatedly execute the same code.

2.3 Related Works

Static compiled simulation usually translates the target pro-
gram into C code, and then use an optimizing C compiler (e.g.,
gcc with option -O3) to translate the C code into host machine
instruction. In [6], Such simulators are developed for DSP pro-
cessors. The authors reported 200-640 times speed up than the
corresponding interpretative simulator. However, the simulation
speed still ranges from 0.8 MIPS to 2.5 MIPS, partly due to the
fact that bit true simulation of DSP instructions is more complex
than RISC instructions.

Dynamic compiled simulation translates the target program
into host machine code on the fly. This approach is pineered by
the shade simulator [3], where the SPARC V8, V9 and MIPS in-
struction set can be simulated at 3-10 times native time. Inspired
by [3], the Embra simulator [4] performs complete machine simu-
lation with similar performance.

The techniques discussed in this paper are not limited to em-
bedded system design. It is also closely related to binary trans-
lation, which promises to emulate software of one platform, for
example, a windows application, on another platform, for exam-
ple, a SUN workstation.

3 A New Approach for Static Compiled Sim-
ulation

As shown in Figure 3, our simulator looks like, and in fact is
integrated into, a retargetable compiler. The backend (e.g.,MIPS
target in Figure 3) which emits simulation code for a particular
architecture, however, is slightly different from the corresponding
cross compilation backend in that for every target instruction to
be emitted, it emits a series of virtual machine instructions (Sec-
tion 3.2) through the simulation code generation interface (Sec-
tion 3.1) instead. The code generation interface is in turn imple-
mented by ahost, which translates each virtual machine instruc-
tion into a form which can be compiled into host machine instruc-
tions. The hosts might manage the host machine registers by the
help of aregister allocator(Section 3.4), which is designed to be
machine independent.
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Figure 3. Simulator organization



pub l ic enum SegKind f
SEGCODE = 1 , SEGBSS , SEGDATA, SEG LIT
g

pub l ic i n t e r f a c e Host f
void begin ( ) ;
void end ( ) ;
void exportSymbol ( S t r i n g symbol ) ;
void importSymbol ( S t r i n g name ,in t s ize ) ;
void segment ( SegKind seg ) ;
void beg inFunc t ion ( S t r i n g name ) ;
void endFunct ion ( S t r i n g name ) ;
void emi tCons tan tVa lue ( Type type ,

Object va lue ) ;
void emi tAddressValue ( S t r i n g name ) ;
void emi tS t r i ngVa l ue ( in t n , S t r i n g name ) ;
void emitSpace ( in t s ize ) ;
void emitSymbol (

S t r i n g name , in t s ize ,
in t a l ign , in t i s s t a t i c
) ;

void e m i t I n s t r n (
Opcode opcode , Type type ,
TargetExpr des t ,
TargetExpr op1 , TargetExpr op2
) ;

in t dec lG loba l ( S t r i n g name ) ;
in t dec lL oca l ( ) ;
void undec lA l l L oc a l s ( ) ;
g

Figure 4. Simulation code generation inter-
face

3.1 Simulation Code Generation Interface

Figure 4 defines the interface that every host has to im-
plement. begin and end gives the host an opportu-
nity to initialize and finalize its internal data structure. As
their name implies,exportSymbol and importSymbol
exports and imports symbols. segment switches the cur-
rent segment to either text segment (SEGCODE), or uninitial-
ized data segment (SEGBSS), or data segment (SEGDATA),
or constant data segment (SEGLIT ). beginFunction and
endFunction signals the beginning and the end of a func-
tion. emitConstantValue , emitAddressValue , and
emitString emits compile time values.emitSpace emits
uninitialized data.emitSymbol emits either a data symbol or
a label.

The interface also abstracts the host machine resources by
a virtual machine, as defined in Section 3.2. The interface
functions emitInstrn and declGlobal, declLocal,
undeclAllLocals manage the virtual instructions and the vir-
tual registers of the virtual machine respectively.

The retargetability of our simulator attributes to the fact that
the hosts are completely decoupled from the targets thanks to the
code generation interface. The host can emit C code (e.g.,C Host
in Figure 3), an approach equivalent to [6]; or directly emit host
machine assembly (e.g.,Sparc Hostin Figure 3).

3.2 Virtual Machine

The virtual machine that we define has an instruction set that
resembles [8], which in turn is derived from the intermediate rep-
resentation of [9]. Each instruction is represented as a value tu-
ple of opcode, type, destination and operands. The opcodes in-
clude arithmetic/logical operations, load/store operations and con-
trol transfer operations. The types further constrains the operations
to work on a byte (signed or unsigned), halfword, word, long, sin-
gle and double precision floating point, pointer value. They are
defined in Figure 5.

pub l ic enum Opcode f
OP ADD, OP SUB , OPMUL, OP DIV , OP MOD,
OP AND, OP OR , OPXOR, OPSHL , OPSHR,
OPCOMP, OPNOT , OPNEG , OPMOV, OP SET,
OP CNVI , OP CNVU , . . . ,
OP LD , OP ST ,
OP RET , OP J , OPJAL ,
OP BLT , OP BLE , OP BGT , OPBGE,
OP BEQ , OPBNE,
OP NOP
g

pub l ic enum Type f
TYPE C , TYPEUC , TYPE S , TYPE US,
TYPE I , TYPE U , TYPE L , TYPE UL,
TYPE F , TYPE D , TYPE P , TYPEV,
g

Figure 5. Virtual machine definition

The operands can be either a constant, a symbol, an expression
which manipulate constants and symbols, or a virtual register. The
destination is always a virtual register.

Our virtual machine has an unlimited number of virtual reg-
isters. The virtual registers are categorized intoglobal registers,
which is alive during the entire program execution; andlocal reg-
isters, whose value only last a short time, typically one simulated
instruction.

3.3 Target Implementation

A target uses the code generation interface to emit simulation
code. It first allocates a set of global virtual registers, which usu-
ally correspond to the target machine registers. It then emits a set
of virtual instructions for every target instruction, while making
sure that they have the same semantics. Note that usually one vir-
tual instruction is enough for a target instruction. In case not, local
virtual registers have to be allocated for temporary storage. For
example, the MIPS instruction in Figure 1 is mapped to the vir-
tual instructionadd i vsp, -80, vsp , wherevsp is a vir-
tual register.

The target calls other interface functions to emit data and other
assembly directives.



3.4 Machine Independent Register Allocator

Most virtual instructions apply certain operations on some
source virtual registers and write the result to the destination vir-
tual registers. Each virtual register has a memory location in the
simulation code to hold its value. For efficiency, the virtual regis-
ters should be cached in the host machine registers, called thehard
registers. The policy towards how the virtual registers are cached
comprises the job of the register allocator.

3.4.1 Greedy Allocation

The straightforward solution is to fetch the source virtual register
values from the memory to some scratch registers, compute it, and
then stores the result immediately to the memory. An example of
such strategy is shown in Figure 2.

3.4.2 Lazy Allocation

A better policy is to perform lazy fetching, that is, virtual regis-
ter values need not to be loaded from the memory if it is not re-
cently written after it is last read from the same basic block; and
lazy flushing, that is, virtual registers need not to be written to the
memory until the end of a basic block. Here, the basic block refers
to a piece of code which contains a single entry and does not con-
tain control transfer instructions except the last one. On the other
hand, in case no hard register is available,spilling has to be per-
formed. Essentially, spilling select a virtual register to give up its
occupancy of the corresponding hard register, by first flushing its
value if it is “dirty”, or, its value is inconsistent with that stored in
the memory.

3.4.3 Fixed Allocation

Lazy allocation inserts fetching code for the first use of virtual
registers in the basic block, the spilling code which flushes vir-
tual register, and an epilogue for every basic block which flushes
all the “dirty” virtual registers, for every basic block. These over-
heads are needed because the mapping between virtual registers
and hard registers are different across different basic blocks. An
observation is that if the mapping is consistent across the entire
program, then these overhead can be eliminated. This is of course
not always feasible since there might not be enough hard registers
to hold all the virtual registers. But still, some virtual registers, are
so frequently used, such as those which correspond to the stack
pointer, program counter, and target scratch registers, that they de-
serve to have one fixed hard register allocated whenever possible.

3.4.4 Hybrid Approach

This leads to a hybrid approach in which the hard registers are par-
titioned into two sets: one is thefixedregister set, the member of
which is assigned to a global virtual register throughout the entire
program execution; the other is thetemporaryregister set.

This strategy is adopted by our simulator, where a global vir-
tual register is assigned a fixed hard register on a first-come-first-
get basis. Those globals that fail to obtain a fixed hard register are
mapped to the temporary registers together with the locals accord-
ing the the lazy allocation mechanism.

Note that our algorithm is of linear complexity. This is in
contrast to standard approaches based on liveness analysis and
graph coloring, which is (1) an overkill for allocation of locals
since their lifetime only last one simulated instruction; (2) un-
able to handle globals like ours without expensive interproce-
dural analysis and execution profiling. Also worthy of men-
tion is that although compilers such as gcc provide ways to al-
low user to map global variables to a machine register (e.g.
by declaringregister int sp sim asm( ‘‘%g4’’ ) ,
these methods are unflexible and unportable.

3.5 Host Implementation

A host implements the interface defined by Section 3.1. The
majority of the work is usually devoted to the implementation of
every virtual instruction using host machine instructions, while the
management of virtual registers can be delegated to the machine
independent register allocator discussed in Section 3.4. To use
the register allocator, the hard registers as well as how they are
partitioned has to be provided.

Worthy of mention is that how the virtual instruction is imple-
mented sometimes has an influence on the number of hard registers
that can be made fixed. For example, on the SPARC architecture,
if the standard calling convention is followed, the register window
will be shifted, which make most registers renamed to physically
different registers upon every function call, and hence make them
illegible to be partitioned into the fixed set. In our implementation
of the SPARC host, the shifting of register window is suppressed
thanks to the low level interface defined. Otherwise if a C emitting
approach is followed, only g4 through g7 is available on SPARC.

4 Limitations

There are limitations for the static compiled approach in gen-
eral. Simulators that fall into this category cannot handle self-
modifying code, code which load dynamic libraries. Our tool is
not immune to these problems. Fortunately, these cases are rare in
embedded systems.

There are also limitations specific to our tool. First, our tool
works best on high performance host machines with large regis-
ter sets. When the host has a limited number of registers, the
performance will degrade, however, not to the level worse than
those without register allocation. Second, the difference on endi-
aness between the target machine and the host machine is ignored.
Third, currently the code generation from target machine to virtual
machine is directly built on a retargetable compiler, rather than a
separate one which accepts assembly or binary as input. While the
replacement of additional parsing with direct function call can cer-
tainly speed up the compilation, it also ties our tool with a specific
compiler. Fortunately, one can build a “binary translation” version
of our tool fairly easily.

5 Experiment

We have selected a set of benchmarks to evaluate our simu-
lator. COUNTERconsists of a loop which simply increments a



Benchmark hybrid lazy greedy c w/o opt. c w/t opt. hybrid traced c traced
COUNTER 1.0 272 9.1 30 9.1 30 6.0 45 3.6 75 1.27 214 4.7 58

IDCT 1.3 209 5.7 49 11.5 24 8.83 32 3.7 76 1.5 186 5.3 52
VITERBI 1.1 185 3.1 53 6.4 25 4.9 33 1.8 87 1.2 166 4.9 55

FIR 2.4 122 6.2 49 9.4 32 9.4 32 4.0 76 2.9 105 6.6 46
LEVISON DURBIN 2.5 105 6.3 42 9.2 29 8.0 33 4.1 64 2.9 93 4.86 55

Figure 6. Comparison of simulation performance of various approaches

counter. IDCT is the inverse discrete cosine transform algorithm
extracted from JPEG/MPEG.VITERBIis a popular channel cod-
ing algorithms.FIR andLEVISONDURBINare signal processing
algorithms extracted from ITU speech coding standard g.723.

We studied the effects of different design decisions during the
code generation and summarize the result in Figure 6, where each
row corresponds to a benchmark, and each column corresponds
one implementation of the code generation interface:

1. the first column corresponds to the hybrid approach dis-
cussed in Section 3.4.4;

2. the second column corresponds to the lazy allocation ap-
proach discussed in Section 3.4.2;

3. the third column corresponds to the greedy allocation ap-
proach discussed in Section 3.4.1;

4. the fourth column corresponds to the C emitting approach,
where the executable is generated by gcc without optimiza-
tion;

5. the fifth column corresponds to the C emitting approach,
where the executable is generated by gcc with optimization
(with option -O3 turned on);

6. the sixth column corresponds an implementation the same as
the first one, except that the total instruction count is traced;

7. the seventh column corresponds an implementation the same
as the fifth one, except that the total instruction count is
traced.

The result is characterized by two numbers: one is the simulation
time, normalized to the native execution time on the host machine;
the other is the simulation speed in the unit of MIPS. Note that
we choose to measure the simulation performance against native
execution on the host machine, rather than the target machine. We
believe it offers a better measurement on the performance of the
simulator since the performance difference between the host ma-
chine and target machine is factored out.

We also measured the compilation speed, and observed an av-
erage of 10 times slow down for the approach that generates C than
the other approaches. The additional time is mainly spent on gcc
compilation and optimization.

6 Conclusion

In conclusion, we have described a technique which uses a vir-
tual machine code generation interface for the static compiled ISA
simulation. We argue that such a low level interface is more effi-
cient, in terms of both the compilation speed and simulation per-
formance, than the high level C interface. This interface is also

retargetable, as our experience show that porting an ISA simulator
to a new host takes only two days.

Our future work will extend this methodology to perform cycle
accurate instruction set simulation, and hardware/software cosim-
ulation, which present more challenges.
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