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Abstract

There is an increasing research interest in system level design
languages which can carry designers from specification to imple-
mentation of system-on-a-chip. Unfortunately, two of the most
important goals in designing such a language, are at odds with
each other: Heterogeneity requires components of the system to
be captured precisely by domain specific models to simplify analy-
sis and synthesis; simplicity requires a consistent notation to avoid
confusion. In this paper, we focus on our effort in resolving this
dilemma in an extensible language called OpenJ. In contrast to the
conventional monolithic languages, OpenJ has a layered structure
consisting of the kernel layer, which is essentially an object ori-
ented language designed to be simple, modular and polymorphic;
and the open layer, which exports parameterizable language con-
structs; and the domain layer which precisely captures the com-
putational models essential for embedded systems. The domain
layer can be provided by vendors via a common protocol defined
by open layer which enables the supersetting or/and subsetting of
the kernel. A compiler has been built for this language and ex-
periments are conducted for popular models such as synchronous,
discrete event and dataflow.

1 Introduction

Advances in VLSI technology have made it possible for system
on a chip. The design of such systems imposes new challenges
to design automation systems. Most of the challenges stem from
the complex nature of the system functionality, implementation
technology and design process. At any design stage, the system
can be best abstracted as a set of interacting components, each of
which behaves according to certaincomputational models. Many
useful models, whose semantics are often captured by dedicated
languages, have been developed [1].

It is not surprising that the current practice of codesign
methodology uses different languages for system specification,
calledco-specification, and uses even more languages when the
design process proceeds. However, users of this methodology tend
to spend more time on discovering the differences of these lan-
guages and making the corresponding tools work together, rather
than the problems themselves. It is thus desirable to have one com-

mon language for the specification, synthesis and validation of the
entire system to cover the entire design process, or cover as much
as possible. Recent IEEE effort on System Level Design Language
(SLDL) standardization [2], represents this trend. While an attrac-
tive idea since no existing languages are designed for this purpose,
this task is non-trivial. One fundamental barrier lies between the
simplicity requirement for any language to be successful, and the
heterogeneityrequirement which insists all useful models to be
captured.

In this paper, we demonstrate our effort in resolving this
dilemma by a language called OpenJ . This paper makes sev-
eral contributions. First, analogous to the microkernel architec-
ture in operating systems, we propose a layered language archi-
tecture, in contrasts to the monolithic architecture in conventional
languages. This architecture allows sublanguages which precisely
capture the computational models, called the domain layer, to be
easily built by vendors on a common language substrate, called the
kernel layer, via the open layer, where parameterized constructs
are exported. Second, although the kernel layer has been heavily
influenced, and is in fact derived from Java [3], we have made sig-
nificant changes which lead to a more powerful type system and
simpler runtime system. Third, we have defined a protocol be-
tween the kernel compiler and the domain compiler, in order to
efficiently define domain languages by supersetting and/or subset-
ting the kernel language.

The rest of the paper is organized as follows. Section 2 catego-
rizes related works. Section 3 discusses in more detail about the
architecture. Section 4 describes the kernel, where its differences
with Java are emphasized. Section 5 described the open layer and
the protocol. Section 6 described the implementation and our ex-
periment with various popular computational models.

2 Related Works

Related works fall into the following categories.
The library extensionapproach leverages the expressive power

of general purpose object oriented languages. in [5] [6] [7], C++
class libraries are developed to capture the hardware semantics. In
[8], extensive analysis is performed on Java specification to dis-
cover the task/loop level concurrency. In [9], a Java class library
is developed to capture the synchronous reactive semantics, and
a “policy of use” is imposed upon the Java specification. While



hardware and software can be specified in the same language, this
methodology suffers two drawbacks. First, in contrasts to the vari-
ety of constructs that can be introduced in our language to capture
new semantics, the only mechanism available in this approach is
via class library. Even with the disguise of operator overloading,
expressiveness of library calls is limited. In addition, it is not clear
whether the library code is for simulation purpose or for synthe-
sis purpose. Second, without the semantic checkers available in
our domain languages, a policy of use, suggested in [9], has to be
imposed in the form of design styles, which is well known to be
unreliable.

The language extensionapproach extends existing languages.
For example, SpecC [10] extends ANSI C with features that help
to describe embedded systems.

The new language with homogeneous modelapproach makes
no attempt to be compatible with any existing languages, instead,
a new language is crafted based on certain computational model.
V++ [13], a new synthesizable hardware description language, is
based on the synchronous model, but with better system level sup-
port by solving the composition problem inherent in traditional
synchronous languages such as Esterel [11] and LUSTRE [12].

OpenJ is a new language with heterogeneity support. Its kernel
language can be used as behavioral description that can be com-
piled into either assembly or RTL hardware. Its domain layer con-
tains domain languages that can describe popular models such as
discrete event, dataflow and synchronous models. It also serves as
a foundation to experiment with new models.

Programming language pioneers have suggested that new lan-
guages should not incorporate “unexperimented” features. For-
tunately, our basic approach towards resolving the heterogene-
ity/simplicity conflict finds cousins targeting different problems
in different contexts, which helps to illustrate the value of our ap-
proach: The need for domain specific languages is well known and
a USENIX conference has devoted to the subject. The layered lan-
guage architecture can also be found in the Rapide language [14],
although Rapide is not extensible. The language extensibility is
also allowed in the hardware description language CONLAN [15],
although it involves a more complex mechanism and its kernel is
not a full fledged object oriented language.

3 Language Architecture

Unlike traditional programming languages, OpenJ has a lay-
ered architecture . At the bottom of the architecture lies the kernel
layer, which is essentially a pure object oriented language. The
constructs defined in the kernel layer are classes, fields, meth-
ods, types, variables, statements and expressions. In the middle
is the open layer, which contains the set of constructs whose key-
words are defined by the top layer, called the domain layer. Do-
main layer contains a set of well defined languages which exactly
capture certain computational models, which are either specifica-
tion models, for example, the dataflow model to represent signal
processing systems; or implementation models, for example, the
discrete event model to represent gate level netlist. Correspond-
ingly, the OpenJ compiler contains the kernel compiler as well as
a set of domain compilers, which interact via a common protocol
called the domain protocol.

This architecture meets well with the heterogeneity require-
ment. The existence of the domain layer allows the definition of
domain specific languages which can precisely capture the system
component behaviors governed by particular computational mod-
els. Such preciseness translates to the efficiency of synthesis and
simulation tools that can take advantage of the domain knowledge,
which is often difficult, if not impossible, to infer from more gen-
eral models. For example, given the partial order explicitly cap-
tured by the data flow model, the domain compiler can compute an
optimal schedule which minimizes memory overhead, while meet-
ing the performance constraints. Under the assumption that all be-
havior execution under the synchronous model is aligned with a
common clock, the simulation can bypass the event management
that are unavoidable in the more general discrete event model, and
hence can be significantly faster.

This architecture meets the simplicity requirement better than
monolithic languages and the multi-lingual approach. Releaved
from the burden of capturing domain specific models, the kernel
layer can be kept very simple. In addition, domain specific lan-
guages can share constructs in the kernel that are universal, such
as those contribute to the modularity, parameterizability, and type
safety of the program. For example, instead of extending hard-
ware description languages with the abstract data type mechanisms
that prevail software languages (for example, the IEEE OO-VHDL
standardization), hardware domains in OpenJ can immediately use
the one provided by the kernel “for free”. Furthermore, domain
languages areclosedin the sense that constructs defined in one
domain never interact with constructs defined in another domain,
whereas in the monolithic languages, for example, the meaning of
the combination of any statements has to be defined. The language
architecture chosen, as well as the language definition itself, leads
to the simplicity of OpenJ , which directly translates to the ease
of learning from the user’s part, and ease of compiler construction
from the vendor’s part.

4 Kernel Layer

As its name suggests, OpenJ kernel is derived from Java. Our
favor of Java’s design philosophy over C++’s is not accidental.
Among the most important are: First, OpenJ kernel is intended to
be anewlanguage, and hence do not have to be compatible at the
language level to any other languages such as C. Many redundant
constructs, for example, functions and static member functions,
struct and class in C++, can thus be avoided. Second, OpenJ kernel
is intended to be apureobject oriented language, in other words,
every variable in the program is an object, and an object is ac-
cessed either by value or by reference consistently, but not both.
This leads to conceptually simpler programs. Third, OpenJ kernel
is intended to be astrongly typedlanguage, in other words, arbi-
trary type cast in C++ is not allowed. This leads to safer program-
ming and much simpler alias analysis in the synthesis tools. Forth,
OpenJ kernel is intended to bemodular, in other words, the com-
piler maintains a set of packages composed of separately compiled
modules, instead of the cumbersome preprocessing mechanism of
C++. More discussions can be found in [16].

However, OpenJ kernel is neither superset nor subset of Java.
Instead, to be more elegant, powerful and convenient, it has been



redesigned based on (a) results in modern functional and object
oriented language research [4]; (b) lessons learned in software pro-
gramming and compilation for embedded processors [17]; (c) the
need for system (including hardware) modeling.

4.1 Syntax

The program written in OpenJ kernel is organized into a set of
typespecifications, orclasses. Each class is contained in apack-
age, which defines aname space. A class contains a set offields,
which helps to model the runtime state of the program; a set of
methods, which represent the functions that modifies the program
state; and a set of nested classes. In addition, a class in OpenJ also
serves as the basic unit ofencapsulation. Every unique type, for
example, a nested type specified by a nested class, introduces a
new name space.

The behavior of a normal method is specified by a set ofstate-
ments, representing control flows over sets ofexpressions, which
in turn are trees composed of constants, local accesses, field ac-
cesses, object allocations/deallocations,method dispatches, and
syntactic sugars that can finally be reduced to method dispatches.
A method dispatch can be static, where the behavior of the method
is determined at compile time; or dynamic, where the behavior of
the method is determined at runtime.The behavior of a method
can be left unspecified, if the method is eitherprimitive, or native,
or abstract. The behavior of a primitive method is determined at
compile time, for example, directly mapped to machine instruc-
tions. The behavior of a native method is resolved at link time and
hence can be specified by other languages such as C. An abstract
method implies an entry in the dispatch table of the associated
type, which helps to resolve the behavior at runtime.

An allocation expression or a method dispatch expression is
associated with itsbase, which is either a type or an object.
For example, int in int.add( a, b ) is a type. On
the other hand,adder in adder.add( a, b ) is an object.
The conventional operators are defined as syntactical sugars for
method dispatches. For example, the expressiona +[int] b
is equivalent to int.add( a, b ) ; and the expression
a +[adder] b is equivalent toadder.add( a, b ) . If the
base is omitted, the default base is the type of the first argument.
For example, ifa is of int type, then the expressiona + b is
equivalent toint.add(a,b) . Note that here the same effect of
C++ operator overloading, a desired feature not present in Java,
is achieved. However, unlike C++, the overloaded operator in
OpenJ is not tied to the type of its arguments, instead, it is tied
to its base, which can be specified.

The fields and methods of a type can beinheritedvia imple-
mentation inheritance. The dispatch table of a type can be inher-
ited by interface inheritance.

4.2 Type System

Three categories of types are distinguished in OpenJ , each of
which ensures a different discipline on the access of the objects
with this type. An object ofreference typeis always accessed by
reference, and associated methods are always staticly dispatched.
An object of interface typeis also accessed by reference, but the

associated methods are always dynamically dispatched. An ob-
ject of value typeis always accessed by value, and statically dis-
patched. For convenience, theenumerationtype and thetupletype
are provided as special cases of value type. Note that tuple types
can be used to return multiple values for a method, which is im-
possible in Java without dynamic allocation of objects. The as-
signment expression of tuple type is interpretated as parallel as-
signment, which is also convenient to model RTL operations. For
example, the expression(R1, R2) = (R2, R1) effectively
swap the content ofR1 andR2.

A transitivesubtyperelation is established via implementation
inheritance (indicated by aextends clause) and interface inher-
itance (indicated by aimplements clause). An expression of
certain type can appear any place where expression of its super
type is expected.

A type specification in OpenJ can be parameterized by other
types. Constraints on the type parameter can be specified by the
extends and implements clauses. Suchbounded paramet-
ric polymorphismensures that type checking can be performed at
compile time. This is in contrasts to the template mechanism of
C++, where full type checking has to be delayed until a concrete
type is instantiated.

The type system has been made morepowerful than that of
Java thanks to the adoption of parametrized types and value types.
It is also made more convenient thanks to the two special cases
of the value type: the enumeration type, which is important to
model checking applications which require the program state to
be finite; and the tuple type, which can be considered as value
type “on demand”. OpenJ ’s type system is also moreelegantthan
that of Java, since there are no “exceptions to the rules” in the type
system. For example, the primitive types and array types of Java
have different behavior than a normal type. In OpenJ , such “first
class citizens” simply does not exist. An example helps to clarify
the importance of such elegance. Suppose a program has to be
developed for an application specific processor which contains a
datapath operating on 24 bit integer values, and other than normal
arithmetic operations, it also contains the “irregular” operations
such as saturation add. If Java or C/C++ is used, since there is
no primitive types of 24-bit integer, a larger data type has to be
used. While code can be developed for the bit-true simulation, it
is difficult for the compiler to recognize the simulation code to be
the normal arithmetic instructions or the idioms such as saturation
add provided by the processor. Alternatively, the ad hoc “DSP
extension” of the language or assembly level programming has
to be performed [17]. In sharp contrasts, the value class and the
primitive method of OpenJ can help to directly exploit machine
resources without changing the language.

4.3 Runtime System

In favor of a slim runtime, OpenJ elects to drop the garbage
collection memory model adopted by Java. Instead, user can ex-
plicitly select the memory model via the base of the allocation ex-
pression. In the form of types or objects, the memory models, or
the memory managers, can be either predefined by the runtime sys-
tem, or customized by implementing a standard memory manager
interface. For example, the memory manager of the expression
new Test() is defaulted to the typeheap . The compiler aware



managerauto in the expressionnew [auto] Test() allo-
cates an object from the stack and deallocates it when the scope of
the expression is exited. In the form of an object, the memory man-
ager arena in the expressionnew [arena] Test1() and
new [arena] Test2() allocates two objects from the stack
of memory it maintains respectively and deallocate them in batch.
Note that the behavior of the memory managers can be easily syn-
thesized into reasonable sized embedded software or ASIC, with-
out worrying about the 10k-line garbage collector.

We dropped Java’s “built-in” support from concurrency and
synchronization, since it is unfortunately neither general nor ef-
ficient enough for our purposes. Instead, in the runtime library,
a set of low level primitives are exported which only allows the
management of context switch. It is up to the domain languages to
define the concurrency models of their own. And the correspond-
ing domain compiler might generate code which safely access the
primitives provided. Driven by the same requirement for simplic-
ity, The exception handling mechanism is also left to the domain
layer.

The runtime system of OpenJ , appeared as the package
j.lang , hence becomes extremely small. In fact, the majority
of the types defined in this package are those value types with
primitive methods, such asint, long, float, doubleetc. The run-
time overhead associated with object oriented programming, such
as runtime type information and method dispatch table, can also
be selectively suppressed by the compiler, if they are not used at
all.

5 Open Layer and Domain Protocol

The open layer of OpenJ defines a set of constructs, called the
open constructs, whose parameterized keywords are defined by the
domain languages. The following constructs are provided:

� Every type, field and method declaration can have a list
of clauses, each of which can be a list of types or ex-
pressions. An example of type clause can bethrows
Exceptions1, Exception2 used for Java style excep-
tion handling. An example of expression clause can be the
Eiffel style assertion facility such as theinvariant clause
associated with a class to specify invariant properties; and the
requires andensures clause associated with a method
to specify preconditions and postconditions. Note that these
properties can be not only the specification for model check-
ing, but also the “don’t care” conditions to avoidoverspeci-
fication, and hence a great help to the analysis and synthesis
tools.

� Every field and method declaration can have a list of modi-
fiers. For example, a modifierinline can be attached to a
method to indicate the designer’s hint to the compiler.

� There are a set of parameterized statements with predefined
grammar. An example is thewaitfor statement in Fig-
ure 2.

� There are a set of parameterized expression with prede-
fined grammar. For example, the expressionprintf(
‘‘%d%f’’, i, f ) can be used in OpenJ to conve-
niently replace its type-unsafe counterpart in C.

Note that here we insist the form of the open constructs to be
predefined, and only their keywords vary. This ensures the syntax
of the domain languages maintain the same look and feel and is
always “familiar” to the user.

The domain languages are defined by the corresponding do-
main compilers. When the domain name followed the type dec-
laration is encountered by the parser of the kernel compiler, the
corresponding domain compiler is activated to perform the full
compilation. The kernel compiler and domain compiler interact
via a set of abstract interfaces called the domain protocol. The
protocol contains several subprotocols, each of which consists of
a kernel part, which the kernel compiler has to implement, and a
domain part, which the domain compiler has to implement.

The syntax protocoldefines the grammar of the domain lan-
guage by registration of the parameterized constructs. This es-
sentially define the domain language by supersetting the kernel.
The semantic protocoldefines the type checking rules of the do-
main language. This essentially restricts the previously defined
language to be the desired one. Thetransform protocoldefines
how the new constructs are transformed into the kernel constructs.

pub l ic i n t e r f a c e MetaChecker f
void s t a r t C h e c k C l a s s ( MetaSymb c ) ;
void endCheckClass ( MetaSymb c ) ;
void s tar tCheckMethod ( MetaSymb mtd ) ;
void endCheckMethod ( MetaSymb mtd ) ;
void s ta r tCheckS tm t ( MetaStmt stmt ) ;
void endCheckStmt ( MetaStmt stmt ) ;
void checkType ( MetaSymb ty ) ;
void checkF ie ld ( MetaSymb f ld ) ;
void checkVar iab le ( MetaSymb v ) ;
MetaExpr checkExpr ( MetaExpr expr ) ;
g

Figure 1. Domain part of the semantic proto-
col.

The semantic and transform protocols are designed to be effi-
cient so that they do not require a separate pass in the compilation
process. For example, the domain part of the semantic protocol
shown in Figure 1 defines a set of abstract methods. The type
checkers of both the kernel compiler and the domain compiler im-
plement this same interface. The kernel compiler can then pipe
the calls to these functions while walking over the abstract syntax
tree.

6 Implementation and Experiment

We followed a very traditional way for the development of
OpenJ compiler. A simple compiler is first developed in an exist-
ing language, in our case Java, to translate OpenJ program to C++.
Using this compiler as the development environment, we then de-
veloped the OpenJ runtime as well as a discrete event simulation
backplane using the OpenJ language. A full-fledged, retargetable
compiler infrastructure is then developed, still in OpenJ itself. Fi-
nally, we are able to bootstrap the compiler using its C backend.
While a much more expensive approach than developing in a ma-
ture language, this procedure does give us first hand experience



with the language. In fact, it helped us to change the language
specification several times during the course of the development.

To exercise OpenJ ’s capability, we built domain compilers for
the discrete event domain; the synchronous domain [11], [12]; the
synchronous dataflow [1]; and the C domain, which helps to im-
port or export C functions. Figure 2 shows an example written in
the discrete event domain. Here,always is a method modifier
indicating that the method is a process.waitfor is the delay
statement.await is the synchronization statement. Given syn-
tactical extensions such as these, complex type checking is per-
formed by the domain compiler. For example, a method with
always modifier should take no argument, returns nothing and
be timed. A timed method contains only timed statements. A
timed statement is either a delay statement, synchronization state-
ment, a block statement containing only timed statements, or con-
ditional statement and loop statement whose body is timed. The
body of delay statement and synchronization statement should not
be timed. When the program passed all the checking, the domain
compiler then transform the new constructs into kernel constructs.
For example, the delay statement is transformed into method calls
to the simulation backplane. Finally, it is compiled into the exe-
cutable.

pub l ic c lass DiscreteEven tExamp le
domain devent f

event e1 , e2 ;
always void foo ( ) f

w a i t f o r ( 1 ) f . . . g
awai t ( e1 ) f . . . g
awai t ( e2 ) f . . . g
g

g

Figure 2. Discrete event domain example.

We are using OpenJ in a daily basis mainly for software de-
velopment. In addition to the compiler, simulator, and runtime
system, which themselves represents over 60000 lines of code, we
have developed a number of applications to test our domain lan-
guages. One example is an ATM transceiver written in discrete
event domain. We have also developed a number of DSP applica-
tions based on public domain C implementations. One example is
a GSM speech codec.

7 Conclusion and Outlook

In conclusion, The layered architecture can lead to a power-
ful yet simple language suitable for heterogeneous system design.
While we believe allowing too many computational models to co-
exist in one language is equally a bad idea than allowing only one
model, the extensibility of OpenJ provides a good foundation for
experiment before research is mature enough to decide the exact
set of models and their exact semantics.
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