Soft Scheduling in High Level Synthesis

Jianwen Zhu, Daniel D. Gajski
CECS, Information and Computer Science
University of California, Irvine, CA 92717-3425, USA
{jzhu,gajsk} @ics.uci.edu

Abstract

In this paper, we establish a theoretical framework for a new
concept of scheduling called soft scheduling. In contrasts
to the traditional schedulers referred as hard schedulers, soft
schedulers make soft decisions at a time, or decisions that
can be adjusted later. Soft scheduling has a potential to al-
leviate the phase coupling problem that has plagued tradi-
tional high level synthesis (HLS), HLS for deep submicron
design and VLIW code generation. We then develop a spe-
cific soft scheduling formulation, called threaded schedule,
under which a linear, optimal (in the sense of online opti-
mality) algorithm is guaranteed.

® ® ®
Qe 06 600
® ©® @

GO @@
5 o e e
. %8 O

@

Figure 1:Examples of (a) dataflow graph (b) hard schedule (c) insertion

of spill code (d) insertion of wire delay (e) soft schedule.

1 Introduction

High level synthesis (HLS) accepts a behavioral description, (@)).

typically a sequential algorithm, and computes an optimal
microarchitecture, typically composed of a datapath and a
controller, which implements the behavior [1]. HLS task
is intractable in nature, hence it is usually decomposed into
subtasks of scheduling, register allocation, functional unit
binding and interconnect binding. Such strategy of divide-
and-conquer, helps to find good solution with reasonable
computational cost. One the other hand, it suffers from an
intrinsic problem ofphase couplingthat is, the subtasks, or
phasesadversely contribute to the optimality of each other,
or even worse, invalidate each other.

Unfortunately, the problem of phase coupling becomes
more severe when many realistic considerations, which are
often omitted by traditional HLS, are factored in. Consider
the following scenarios, where we assume traditional schedul-
ing, which assign each operation in the behavior to a fixed
time step, is performed before any other tasks (e.g., Figure 1
(b) is an ALAP schedule of the dataflow graph in Figure 1

To appear in 36th Design Automation Conference, New Or-
lean, June, 1999

e coupling with register allocation: Traditional HLS
assumes all values can be fit into registers or register
files in the datapath. In reality, there are only limited
number of such resources. Henspilling, which se-
lectively stores values into background memory, has
to be performed when the number of simultaneously
alive values exceeds the number of registers available.
Spilling effectively changes the original behavior. For
example, assume the register allocator chooses to spill
the value computed by vertex 3 in Figure 1 (a), then
additional node for storing the value to memory and
loading the value from the memory has to be inserted
accordingly. This inevitably will affect the final sched-
ule. In practice, either inferior result such as the one
shown in Figure 1 (c) has to be accepted, or the entire
design process has to be iterated. As another exam-
ple, theg nodes, as artifacts of static single assignment
(SSA) analysis [11], can be resolved to either register
moves or void operation only after register allocation.

e coupling with physical design: Traditional HLS ig-
nores the interconnect delay, an abstraction not valid
any more indeep submicron designUnfortunately,
the interconnect delay can be determined only after

place and route, which in turn can be performed until of scheduling operations with undeterministic delay. Path-
HLS is performed. For example, if the register which based scheduling [5], percolation scheduling , and trace schedul-
stores the value computed by vertex 3 in Figure 1 (a) is ing exploits parallelism beyond the basic blocks.

placed far enough from the functional unit which uses The phase coupling problem between the HLS subtasks
its value, additional node representing the wire delay has been noted in several systems and their solutions are
has to be introduced in the dataflow graph. In practice, to solve all the subtasks simultaneously with an ILP for-
either a pessimistic estimate of the interconnect delay mulation. Among them are the work by Gebotys [6], and
has to be assumed in order to keep the original sched-the OSCARsystem [7]. The phase coupling problem be-
ule valid; or trivial fix of the original schedule such tween the HLS tasks and the physical design is also ad-
as the one shown in Figure 1 (d) has to be performed, dressed in several work8D Scheduling8] performs bind-
which leads to inferior result; or the entire design pro- ing and floorplaning at the same time. Erwing [9] addresses
cess has to be iterated. the problem on a particular VLSI architecture called parti-
tioned bus.ChipEst[10] performs HLS tasks with estima-

More such examples can be enumerated, all of Wh'ChJion of the physical information.

tend to resultin an iterated design process if reasonable goo Our work focuses on removing the coupling of schedul-
solution is expected. Unfortunately, such iteration is expen- ing with other tasks. The goal is achieved neither by per-

sive,_since it.often spans the entire _des_ign process, ir‘Cmdingforming all the tasks simultaneously as the ILP approach,
physical design. More importantly, it might have no guaran- since it is expensive and unscalable; nor by incorporating

tee ofconvergenf;at all. Alternatively, glopal optimization ._an estimate of the possible effect of other tasks, since such
approache;, Wh'Ch usually reducg the high level Synthes"seﬁ‘ect is difficult to characterize. Instead, we perform soft
task to a linear integer programming problem, can be USEdscheduling to make decisions just necessary for other tasks
to carry out the subtasks smultanepusly. Whlle the exact SO proceed. The exact mapping from operations to time steps
llttion can k_)e .fognd, the problem size which these memOdScan then be delayed until all the information, including in-
can tac!de s limited. . . . terconnect delay, is available.

In this paper, we focus on the scheduling techniques which
help to alleviate the phase coupling problem without resort- .
ing to the exact approaches. The paper makes the follow-3 Soft Scheduling
ing contributionsFirst, a new concept of scheduling, called .
soft scheduling, is proposed in contrasts to the traditional Sphedulers u'sually opergte within the bounqary of the ba-
scheduling algorithms which insist the scheduled operationsSIC block, or in order to increase the parallelism gvanable,
to be totally ordered. Instead, Soft scheduling assumes athe super block. In both cases, the bI.OCk behavior can be
weaker requirement that the scheduled operations only need‘f‘bStr"’ICted as a precedence graph, defined as follows:
to be par’_[iall)_/ ordered. Analogous to soft decoding in digitgl Definition 1 A precedence graphs a directed acyclic graph
communication, soft sche_dullng hence makes soft decision _ (Va, Ec, Dg) whereV is the set of verticesie C
at a time, since the decision can be refined later. The hardVG x V¢ is the set of edges, ard; : Vi — T is the delay

decision, or the exact mapping of operations to time steps, ¢,nction. Thepartial order <¢C Vi x Ve induced byG is

can thus be delayed to the desired stage, for example, aftefe transitive closure ofi;. Vv € Vi, its source distance
place and route is performe8econdwe propose a specific |, || . is the sum of the delay of all the vertices along the
soft scheduling formulation, called threaded scheduling, to longest path from the primary inputs, or the set of vertices
impose a structure in the partial order of the scheduled OpPer-yithout predecessors, t Its sink distance|jv ~ || is
ations. Elegant theoretical result can be derived from such 3the sum of delay of all the vertices along the longest path
structure, which leads to an algorithm both linear and opti- t4m 4 to the primary outputs, or the set of vertices without
mal. . .) successors. ltdistance|| ~ v ~ ||g is the sum of delay

The rest of the paper is organized as follows. Section 2 ¢ 4| the vertices along the longest path from primary in-

discusses the related works. Section 3 gives a formal defini—puts to primary outputs which passesThediameter |G|
tion of soft scheduling. Section 4 describes threaded schedul¢ precedence grapé is the longest distance of all its ver-
ing algorithm and proves its correctness, optimality and lin- 4~aq

earity. Section 5 gives the experimental results.

The vertices of the grapf correspond directly to the op-
2 Related Works erations in the behavior description, and the edges represent
the dependency between the operations. The ultimate goal
Traditional HLS tools or VLIW compilers [1] typically use of scheduling, is then to assign a time step to each operation,
list scheduling [2] and force-directed scheduling [3], or their such that the total order induced by such a mapping is consis-
variants for resource constrained and timing constrained schdéuf-with the partial ordex; derived from the dependency.
ing. Relative scheduling [4] has the additional capability In this paper, we are interested in the category of scheduling

algorithms called procedural schedules, which schedule onevertex 2 and vertex 5 Figure 1 (e) is an artificial edge, intro-
operation at a time: duced in order to serialize the accesses of the common func-
tional unit shared by vertex 2 and vertex 5. The design of
an online schedule is then an art of imposing a structure, or
the set of additional invariants that the scheduling state has
to hold, to make the desired tradeoff between the flexibility,
decision completeness, and complexity of the algorithm.

Definition 2 A procedural scheduleof precedence graph
Gis atupleP = (Mp, Fp), where thaneta scheduleM p
is a sequence ovéig; and Fp is anonline scheduleof G.

According to Definition 2, a procedural schedule con-
sists of two parts: the meta schedule determines the order
of operations to feed into the online schedule, while the on- 4 Threaded Scheduling
line schedule schedules one operation at a time. Tradition-
ally, the set of scheduled operations maintained by the online

schedule has to be total ordered. Our definition relaxes thiSOne Specific soft schedule formulation is defined as follows.

4.1 Problem Formulation

assumption:

Definition 3 An online schedule of precedence grapis a
functionF : Vg x Sp — Sp, whereSy is a set of prece-
dence graphs, called trezheduling stateswhich satisfy the
following:

1. initial condition : (©, ®) € SF.

2. correctness condition VS € Sg,Vp,q € Vs, then
P<¢q—p=<s4q.

3. incremental condition: VS € Sg, thenp <5 ¢ —
P <p(us) ¢ andv € Vs — F(v,S) = S; andv ¢
Vg — VF(v,S) =VsU {U}

An online schedulé” is said to behard if VS € Sg, Vs is

Definition 4 A threaded scheduleof G is an online sched-
ule F' whose scheduling state isglareaded graph. A threaded
graph is a precedence graghZ whose vertices are covered
by a partitionT” C 2V7¢, such that't € T, Vp, q € t, either

p <TG qOrq <rg p. Vt € T is called athread. A threaded
graphT'G is said to beK-threaded if |T'| = K.

According to Definition 4, there exist a fixed number
of threads in the scheduling state of a threaded schedule.
Every scheduled operation belongs to exactly one thread.
While operations across threads are partial ordered, within
a thread the operations are total ordered. In practice, each
thread corresponds to one functional unit in the datapath.
The task of scheduling one operation then consists of find-

ing the best thread, or the best functional unit, and finding
the best position within the thread, or the best way to seri-

The online scheduler can be considered as an automatorilize the access of the functional unit, in order to optimize
which takes an empty graph as its initial scheduling state. Some figure of merit. An alternatively view of the schedule
It updates its state every time an operation not already in Problem is toembedhe original precedence graph onto the
its state is given. According to Definition 3, the scheduling threaded structure by introducing artificial precedence rela-
state maintained by the online schedule needs to maintaintionship between operations such that some figure of merit
only a partial order among the set of scheduled operations,is optimized. For example, Figure 1 (e) is produced by a
as long as the partial orderdsrrect that is, it is consistent ~ threaded scheduler for the precedence graph in Figure 1 (a).
with the partial order of the original precedence graph; and Here, vertex 3, 4, 6, and 7 belongs to one thread, and vertex
incremental that is, the partial order of the updated state is 1, 2, and 5 belongs to another thread. From this threaded
consistent with that of the original state. graph, a hard schedule of 5 states can be constructed. How-

Residing in one extreme of this definition is the tradi- €ver, if additional spill code as shown Figure 1 (c) is intro-
tional scheduler, such as list scheduling and force-directedduced, the resultant threaded schedule leads to a hard sched-
scheduling, where the scheduling state is totally orderd. Theule of only 6 states. Similarly, if wire delay as shown in
total ordering invariant turns out to be overly restrictive for Figure 1 (d) is introduced, the resultant threaded schedule
the later passes of the design process, which motivates thdeads to a hard schedule of only 5 states.
class of schedulers called soft schedulers. The relaxed as-. :
sumption on the order between the scheduled operations ir@)eﬂnmon S A threadeld schedulE is said to peopﬂmal i
the soft scheduler contributes to its flexibility, since the par- 7> € 5770 € Vs, VI # E[[F(v, S)|| < [[F7 (v, S)]].

tial order can be refined later. For example, the soft schedule Tpe criterion established by Definition 5 optimizes per-
shown in Figure 1 (e) represents a partial order subject 10 ¢, mance, where performance is measured in terms of the

refinement, such as the introduction of spill code, register yiameter of the scheduling state, or the critical path length.

moves or wiring delay. On the other hand“, the pz'a,lmal order £qr simplicity of presentation, we assume each function unit
maintained by a soft scheduler is usually “tighter” than that ., implement all the operations, in other words, an oper-

of the original data flow graph, where the tighter partreflects 4iion can be partitioned to an arbitrary thread. Our results
the design decisions made. For example, the edge betweer:cllpmy equally well when this assumption is relaxed.

total ordered. It issoft otherwise.

touched. On the other hand,dfdoes not exist, as shown

in Figure 2 (b), then an edge fromto v is added. Other-
wise, e is replaced by an edge fromto v. Similarly, the
current state is updated for every successar, @ccording

to rules shown in Figure 2 (d)(e)(f). The correctness theorem
of Section 4.3 shows that the scheduling state updated in the
fashion defined by this algorithm is indeed consistent with

4.2 Algorithm Implementation

We present our implementation of the threaded schedule in
Algorithm 1 using an object oriented notation for the data
structure and a methemetical notation for the algorithm it-
self. Here, ahreadedGraph object implements a prece-
dence graph denoted llyis. Each vertex of the graph con-

tains the fieldin, which points to its immediate predeces-
sors; the fieldout, which points to its immediate succes-
sors; the fieldsdist andtdist, which record its source dis-

Definition 4.
Algorithm 1

tance and sink distance respectively; the figlcead, which puplc e [ﬁgzlc,gffeief@ap“ { ;
records a number ranging frobnto K — 1, to indicate the Vertex] in = new Vertex[KJ; 3
thread to which the vertex belong; and the figddiay, which portex] ot = powveredil .
indicates the delay of the vertex. Initially, the graph contains int tdist = 0; 6
. . int thread,; 7
an array (of sizeK) of vertices, calleds, connected to an- it delay — 0: 3
other array of vertices, called The graph is updated every g ¥ — ewVerteKL l9
time the methodschedule is called, with a new vertex Vel 8 e et I
added to the graph, and the edges modified. ddedule Graph G; 12
X . . 13
method proceeds by first calling thelect method, which public ThreadedGraph(Graph ¢) { 11
finds the best position to insert the new vertex; and then the Vk € [0, K —\}] { _ 15
methodcommit, which performs the actual update of the zm inlk] = _TjﬁoSfﬁ“kgﬁfﬁfi;{,ﬁ’; e
graph. t[k] = new Vertex(; [k].thread = k; 18
Based on Definition 5, a naive implementation of the g"] Anlk] = slk]; i{k].outlk] = null o
select method would evaluate every position to insert the } 21
node by first speculatively updating the graph, and then com- Voi](', commit(Vertex pos, Vertex v) { §§
pute the diameter of the resultant graph. Finally, the position int k= pos.thread; 24
which leads to the smallest diameter is returned. While up- Z'fﬁfg&fw’f@] — : v-out[k] = pos.out[k]: o
dating the graph take®(|Vy|) time, the diameter compu- pos.out[k] = v; v.in[k] = pos; g
tation takesO(;]) time, assuming Bellman-Ford v”i}(ppfofw'fk{] —— ulll|v <ense pout(k]) { %
algorithm is used. Hence the total time spent on evaluating if(p-ou%!;[n?}:) q " 32
allthe position is0)(. p it e 3
We can actually find the best position without the expen- 32
sive speculation by taking advantage of the special struc- Vg, v <a q{ 35
ture inherent in the threaded graph. In Algorithm 1, the if(g.in[k] == null||g.in[k] <enis v) { 36
. s if(g.in[k]! = null) 37
select method starts by labeling every vertex with its source g in[k].outlq.thread] = null; 38
distance and sink distance. It then computesithensic q.in[k] = v; v.out[g.thread] = ¢; 39
. . . 40
source delayof the vertex to be added, which is the maxi- } a1
mum source distance of its predecessors which are already } 42
. L . void label() { 43
scheduled. It computes iistrinsic sink delayas well. Note forwardLabel();/l s.tVv € Vynis, v.sdist = || ~ v|| 44
that both the intrinsic source delay and sink delay are quan- backwardLabel(); Il s.t.Yv € Vynis, v.tdist = |lv ~ || 45
tities not dependent on the position to be selected. Itthen yerex serect(vertex v) { j?
evaluate every position by compute a cost which combines it curDelay, bestDelay = INFINITY; o 48
the intrinsic delay information and the delay associated With — Vges war pear 1 oicSTeDist intrinsicSnkDist: 29
the position selected. Note that the cost computation can be _ 5;
computed in constant time. The one with the minimum cost i»fiili?i'csrcmst = MATpevyyy, p<q oD 5dist; 23
. this> v !
can then be selected in linear time. The optimality theorem intrisicSnkDist = mazqe vy, ,v<gal-tdist; 54
in Section 4.3 shows that the best position selected according ~ "* S -1 o
to this algorithm indeed leads to the optimal solution defined sdist = maz(cur.sdist, intrinsicSrcDist); 57
by Definition 5 tdist = maz(cur.out(k].tdist, intrinsicSnkDist); 58
y : . i curDelay = sdist 4 tdist 4+ cur.delay; 59
Thecommit method first link, the vertex to be added, if(1(v <@ cur)&&!(cur.out[k] <a v) 60
into the given thread at the given position. For every prede- pomi oDy heat DAL o
cessop of v in the original precedence graph, it then further } 63
update the scheduling stateiis already in the state, accord- return best: s
ing to if there exists an edgefrom p to a vertexg in thread o 66
k: If e exists and it happens thatis beforev in threadk;, P e paar e uet Verex w M o
as shown in Figure 2 (a), then the current state remains un- 69

if(v € Vinis) return;
pos = select(v);
commit(pos, k, v);

p.out[k] == null

(b)

p.out[k] >v

©

qinfk] <v

®

qinlk] >v

(d

q.in[k] == null

©

Figure 2:Update of scheduling state.

4.3 Algorithm Analysis

In this section, we study the correctness, optimality and com-

4.3.2 Optimality

By definition, a threaded schedule is incremental, we can
hence assert that the diameter of its scheduling state is mono-
tonic:

Lemma 4 Let F' be a threaded schedule of the precedence
graphG. Thenvv € Vg,VS € Sp, [|S|| < ||F (v, S)||. O

By definition, the distance of a vertex in a precedence
graph can be computed as the sum of the maximum of the
source distance of its predecessors, the maximum of the sink
distance of its successors, and its own delay:

Lemma 5 LetG be a precedence graph. Thén € Vg,

v~ || = Dg(v) + mazp<gol| ~ pll + mazy<gqllg ~ |-
O

| >

We then make the following observations in Lemma 6,
which states that if a new vertaxis scheduled by Algo-
rithm 1, then the source distance of its predecessors will not
change their values. Similarly, the sink distance of its suc-
cessors will not change their values.

Lemma 6 LetF be the schedule of precedence grapm-
plemented by Algorithm 1. § € Vs andp <g v, then
| ~ pllF,s) = Il ~ plls. If ¢ € Vs andv <¢g g, then
llg ~ llFe,s) =llg ~ lls. O

According to Lemma 5, the distance of the new vertex
scheduled in the new state can be computed by just look-
ing at the old state. We can hence believe that Algorithm 1
ensures that the distance of the new vertex scheduled is min-

plexity of Algorithm 1. For space reason, Interest readers are um

referred to [12] for proofs of claims. We first establish the
relationship between the precedence gtaghimplemented
by Algorithm 1 and our definition of a threaded schedule.

Definition 6 A functionF : Vg x Sp — Sp is a schedule
of precedence grapfi implemented by Algorithm 1¥S €
Sr is formed by the subgraph tifis spanned b¥}inis \ s\ t.

4.3.1 Correctness

In order to show Algorithm 1 is indeed a threaded schedule,
we first prove a set of lemmas.

Lemma 1 Let F’ be the schedule of precedence gr&pm-
plemented by Algorithm 1. Thém, ©) € Sp. O

Lemma 2 Let F' be the schedule of precedence gragh
implemented by Algorithm 1. AndS € Sp,v € Vg, let

S = F(v,S). Thenv € Vg - S = S;andv ¢ Vs —

Vg =VsU{v}andp <s ¢ > p<g ¢. O

Lemma 3 Let F’ be the schedule of precedence gr&pm-

plemented by Algorithm 1. Th&$ € Sp,Vp,q € Vs,p <¢
g—p=<sq O

We can then prove the correctness theorem.

Theorem 1 Let F' be the schedule of precedence gragh
implemented by Algorithm 1, théhis a threaded schedule.
O

Corollary 1 Let F' be the schedule of precedence graph
implemented by Algorithm 1. Th&tF" # F,S € Sp,v €
Vg’ || U ||F(U,S) < || U ||F'(v,S)' o

We can then assert the optimality theorem:

Theorem 2 Let F' be the schedule of precedence graph
implemented by Algorithm 1, thenis optimal in the sense
of Definition 5.0

4.3.3 Complexity

The algorithm left unspecified in Algorithm 1 forwardLabel
and backwardLabel, which computes the source and sink
distance of each vertex in the scheduling state. We claim that
they can be computed in linear time by exploiting the fact
that the maximum degree of a threaded graph maintained by
Algorithm 1is K.

Lemma 7 Let F' be the schedule of precedence gragh
implemented by Algorithm 1, thenS € Sg,Vv € Vg,
|(p,v) € Es| < K,and|(v,q) € Es| < K.O

It is hence trivial to prove the complexity theorem.

Theorem 3 Let F' be the schedule of precedence graph
implemented by Algorithm 1. Th&fs € Sp,Vv € Vg,
F(v,S) can be computed i®(|Vg]) time.O

I BM I SChEd-A'g-I] fjﬁ“ﬁ'ﬁ ST I a kernel into other algorithms which need to take schedul-

7 ing effect into account, or need to incrementally change the

meta sched]] 8 6] A -
meta sched2| 8 6 14 schedule. For example, polynomial time algorithms can be
HAL | meta sched3 8 6 13 t ted f both th bl f trained
Teta schedd™—8 5 3 constructed for bo e problem of resource constraine
listsched 8 6 3 technology mapping and resource constrained retiming.
meta sched]] 19 11 34
meta sched? 19 11 34
AR meta sched3 19 11 34
meta sched4| 19 11 34 References
list sched 19 11 34 Lo . .
meta schedl] 10 17 24 [1] D. Gajski, N. Dutt, A. Wu, S. Lin. High Level Synthe-
meta sched? 19 17 24 iar i i i
e 1o o 24 sis: Intr(.)ductlo.n to Chip and System Design, Kluwer
meta schedd] 19 7 24 Academic Publishers, 1992.
list sched 19 17 24
meta schedl] 11 7 19 [2] J. Nestor and D.E ThomaBehavioral Synthesis with In-
meta sched? 11 7 19 :
FIR et scheds—II - I terfaceg Proceec}mgs of the IEEE Conference on Com-
meta schedd 11 7 19 puter Aided Design, November 1986.
list sched 11 7 19

[3] P.G. Paulin, J.P. Knightorce-Directed Scheduling for
the Behavioral Synthesis of ASICIEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems, June 1989.

Figure 3:Scheduling results of benchmarks under resource constraints.

5 Experimental Result [4] D. Ku, G. De Micheli.Relative Scheduling under Tim-

The criterion established by Definition 5 is in the sense of NG Constraints: Algorithms for High-Level Synthesis of

online optimality. Schedulers constructed with this criterion Digital Circuits. IEEE Transactions on CAD/ICAS, Vol.
only promise the best result for small changes of a sched- 11, N0 6, April 1992.
ule. Theoretically, the optimality of a schedule built from |51 R camposanoPath-Based Scheduling for Synthesis
scratch, canqot be guaranteed with an arbitary meta sched- ~ |EEg Transaction on CAD/ICAS, Vol. 10, No.1, Jan-
ule. In practice, many meta schedules can lead to results
& ; uary, 1991.

comparable to the traditional list scheduler. ' .

Figure 3 lists the experimental result of several bench- [6] C.H. Gebotys, M.I. EImasrySimultaneous Scheduling
marks by applying Algorithm 1 with different meta sched- and Allocation for Cost Constrained Optimal Architec-
ule. Meta schedule 1 traverses the precedence graph with tural SynthesisProceedings of 28th DAC, 1991.

the depth first order. Meta schedule 2 follows a topological [7] B. Landwehr, P. Marwedel, R. @iier.Optimum Simul-

order. Meta schedule 3 partitions the operations into paths, . . -
. . taneous Scheduling, Allocation and Resource Binding
and then feeds the online scheduler with paths ordered by . ;
Based on Integer Programmingroceedings of Euro-

their length. Meta schedule 4 follows an order similar to DAC. 1994
those determined by the list scheduling heuristics. The ex- ' '
periments are repeated on the benchmarks for different re{8] J. Weng, A.C. ParkeBD Scheduling: High-Level Syn-
source constraints. The results are compared with the tradi- thesis with FloorplanningProceedings of DAC, 1991.
tional list scheduler. With few exceptions, we observe that) o .)
the threaded scheduler is able to achieve the same result a] C- Ewering. Automatic High-Level Synthesis of Parti-
the list scheduler with a number of meta schedules. tioned BussesProceedings of EuroDAC, 1990.

[10] M. Xu, F.J. KurdahiLayout-driven RTL Binding Tech-

6 Conclusion and Outlook niques for High-Level Synthesi®roceedings of 9th
ISSS, 1996.

We have presented in this paper a new concept called soft
scheduling and theoretical results for a linear, online op- [11] R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman,
timal algorithm called threaded scheduling. While experi- F.K. ZadeckEfficiently Computing Static Single Assign-
mental results show that the performance of full schedulers ~ Ment Form and the Control Dependence Grap:M
engined with threaded scheduling matches those traditional ~ 1ransactions on Programming Languages and Systems,
hard schedulers, our algorithm enjoys unprecedented flexi- ~ ©October, 1991.
bilities which are valuable in a numbgr of occasions. Fir;t, [12] J. Zhu, D.D. Gajski.Soft Scheduling in High Level
the result of the schedule can be refined and are hence im- SynthesisTechnical Report ICS-98-37, Information and

mune to the phase coupling problem or engineering changes. Computer Science, UC, Irvine, August, 1998.
Second, the meta schedule, or the order of operations to feed

into our algorithm, is flexible. It can hence be embedded as

