
Soft Scheduling in High Level Synthesis

Jianwen Zhu, Daniel D. Gajski
CECS, Information and Computer Science

University of California, Irvine, CA 92717-3425, USA
fjzhu,gajskig@ics.uci.edu

Abstract

In this paper, we establish a theoretical framework for a new
concept of scheduling called soft scheduling. In contrasts
to the traditional schedulers referred as hard schedulers, soft
schedulers make soft decisions at a time, or decisions that
can be adjusted later. Soft scheduling has a potential to al-
leviate the phase coupling problem that has plagued tradi-
tional high level synthesis (HLS), HLS for deep submicron
design and VLIW code generation. We then develop a spe-
cific soft scheduling formulation, called threaded schedule,
under which a linear, optimal (in the sense of online opti-
mality) algorithm is guaranteed.

1 Introduction

High level synthesis (HLS) accepts a behavioral description,
typically a sequential algorithm, and computes an optimal
microarchitecture, typically composed of a datapath and a
controller, which implements the behavior [1]. HLS task
is intractable in nature, hence it is usually decomposed into
subtasks of scheduling, register allocation, functional unit
binding and interconnect binding. Such strategy of divide-
and-conquer, helps to find good solution with reasonable
computational cost. One the other hand, it suffers from an
intrinsic problem ofphase coupling, that is, the subtasks, or
phases, adversely contribute to the optimality of each other,
or even worse, invalidate each other.

Unfortunately, the problem of phase coupling becomes
more severe when many realistic considerations, which are
often omitted by traditional HLS, are factored in. Consider
the following scenarios, where we assume traditional schedul-
ing, which assign each operation in the behavior to a fixed
time step, is performed before any other tasks (e.g., Figure 1
(b) is an ALAP schedule of the dataflow graph in Figure 1

To appear in 36th Design Automation Conference, New Or-
lean, June, 1999

1

2

54

3

6

7

1

2

54

6

7

3

1

23

54

6

7

wd

wd

1

2

54

6

7

3

1

23

54

6

7

(e)(d)(c)(b)(a)

ld

st

ld

Figure 1:Examples of (a) dataflow graph (b) hard schedule (c) insertion
of spill code (d) insertion of wire delay (e) soft schedule.

(a)).

� coupling with register allocation: Traditional HLS
assumes all values can be fit into registers or register
files in the datapath. In reality, there are only limited
number of such resources. Hence,spilling, which se-
lectively stores values into background memory, has
to be performed when the number of simultaneously
alive values exceeds the number of registers available.
Spilling effectively changes the original behavior. For
example, assume the register allocator chooses to spill
the value computed by vertex 3 in Figure 1 (a), then
additional node for storing the value to memory and
loading the value from the memory has to be inserted
accordingly. This inevitably will affect the final sched-
ule. In practice, either inferior result such as the one
shown in Figure 1 (c) has to be accepted, or the entire
design process has to be iterated. As another exam-
ple, the� nodes, as artifacts of static single assignment
(SSA) analysis [11], can be resolved to either register
moves or void operation only after register allocation.

� coupling with physical design: Traditional HLS ig-
nores the interconnect delay, an abstraction not valid
any more indeep submicron design. Unfortunately,
the interconnect delay can be determined only after

place and route, which in turn can be performed until
HLS is performed. For example, if the register which
stores the value computed by vertex 3 in Figure 1 (a) is
placed far enough from the functional unit which uses
its value, additional node representing the wire delay
has to be introduced in the dataflow graph. In practice,
either a pessimistic estimate of the interconnect delay
has to be assumed in order to keep the original sched-
ule valid; or trivial fix of the original schedule such
as the one shown in Figure 1 (d) has to be performed,
which leads to inferior result; or the entire design pro-
cess has to be iterated.

More such examples can be enumerated, all of which
tend to result in an iterated design process if reasonable good
solution is expected. Unfortunately, such iteration is expen-
sive, since it often spans the entire design process, including
physical design. More importantly, it might have no guaran-
tee ofconvergenceat all. Alternatively, global optimization
approaches, which usually reduce the high level synthesis
task to a linear integer programming problem, can be used
to carry out the subtasks simultaneously. While the exact so-
lution can be found, the problem size which these methods
can tackle is limited.

In this paper, we focus on the scheduling techniques which
help to alleviate the phase coupling problem without resort-
ing to the exact approaches. The paper makes the follow-
ing contributions:First, a new concept of scheduling, called
soft scheduling, is proposed in contrasts to the traditional
scheduling algorithms which insist the scheduled operations
to be totally ordered. Instead, Soft scheduling assumes a
weaker requirement that the scheduled operations only need
to be partially ordered. Analogous to soft decoding in digital
communication, soft scheduling hence makes soft decision
at a time, since the decision can be refined later. The hard
decision, or the exact mapping of operations to time steps,
can thus be delayed to the desired stage, for example, after
place and route is performed.Second, we propose a specific
soft scheduling formulation, called threaded scheduling, to
impose a structure in the partial order of the scheduled oper-
ations. Elegant theoretical result can be derived from such a
structure, which leads to an algorithm both linear and opti-
mal.

The rest of the paper is organized as follows. Section 2
discusses the related works. Section 3 gives a formal defini-
tion of soft scheduling. Section 4 describes threaded schedul-
ing algorithm and proves its correctness, optimality and lin-
earity. Section 5 gives the experimental results.

2 Related Works

Traditional HLS tools or VLIW compilers [1] typically use
list scheduling [2] and force-directed scheduling [3], or their
variants for resource constrained and timing constrained schedul-
ing. Relative scheduling [4] has the additional capability

of scheduling operations with undeterministic delay. Path-
based scheduling [5], percolation scheduling , and trace schedul-
ing exploits parallelism beyond the basic blocks.

The phase coupling problem between the HLS subtasks
has been noted in several systems and their solutions are
to solve all the subtasks simultaneously with an ILP for-
mulation. Among them are the work by Gebotys [6], and
the OSCARsystem [7]. The phase coupling problem be-
tween the HLS tasks and the physical design is also ad-
dressed in several works.3D Scheduling[8] performs bind-
ing and floorplaning at the same time. Erwing [9] addresses
the problem on a particular VLSI architecture called parti-
tioned bus.ChipEst[10] performs HLS tasks with estima-
tion of the physical information.

Our work focuses on removing the coupling of schedul-
ing with other tasks. The goal is achieved neither by per-
forming all the tasks simultaneously as the ILP approach,
since it is expensive and unscalable; nor by incorporating
an estimate of the possible effect of other tasks, since such
effect is difficult to characterize. Instead, we perform soft
scheduling to make decisions just necessary for other tasks
to proceed. The exact mapping from operations to time steps
can then be delayed until all the information, including in-
terconnect delay, is available.

3 Soft Scheduling

Schedulers usually operate within the boundary of the ba-
sic block, or in order to increase the parallelism available,
the super block. In both cases, the block behavior can be
abstracted as a precedence graph, defined as follows:

Definition 1 Aprecedence graphis a directed acyclic graph
G = hVG; EG; DGi whereVG is the set of vertices,EG �
VG � VG is the set of edges, andDG : VG 7! I is the delay
function. Thepartial order �G� VG�VG induced byG is
the transitive closure ofEG. 8v 2 VG, its source distance
k vkG is the sum of the delay of all the vertices along the
longest path from the primary inputs, or the set of vertices
without predecessors, tov. Its sink distancekv kG is
the sum of delay of all the vertices along the longest path
from v to the primary outputs, or the set of vertices without
successors. Itsdistancek v kG is the sum of delay
of all the vertices along the longest path from primary in-
puts to primary outputs which passesv. Thediameter kGk
of precedence graphG is the longest distance of all its ver-
tices.

The vertices of the graphG correspond directly to the op-
erations in the behavior description, and the edges represent
the dependency between the operations. The ultimate goal
of scheduling, is then to assign a time step to each operation,
such that the total order induced by such a mapping is consis-
tent with the partial order�G derived from the dependency.
In this paper, we are interested in the category of scheduling

algorithms called procedural schedules, which schedule one
operation at a time:

Definition 2 A procedural scheduleof precedence graph
G is a tupleP = hMP ; FP i, where themeta scheduleMP

is a sequence overVG; andFP is anonline scheduleofG.

According to Definition 2, a procedural schedule con-
sists of two parts: the meta schedule determines the order
of operations to feed into the online schedule, while the on-
line schedule schedules one operation at a time. Tradition-
ally, the set of scheduled operations maintained by the online
schedule has to be total ordered. Our definition relaxes this
assumption:

Definition 3 An online schedule of precedence graphG is a
functionF : VG � SF 7! SF , whereSF is a set of prece-
dence graphs, called thescheduling states, which satisfy the
following:

1. initial condition : h�;�i 2 SF .

2. correctness condition: 8S 2 SF ;8p; q 2 VS , then
p �G q ! p �S q.

3. incremental condition: 8S 2 SF , thenp �S q !
p �F (v;S) q; and v 2 VS ! F (v; S) = S; and v =2
VS ! VF (v;S) = VS [fvg.

An online scheduleF is said to behard if 8S 2 SF ; VS is
total ordered. It issoft otherwise.

The online scheduler can be considered as an automaton
which takes an empty graph as its initial scheduling state.
It updates its state every time an operation not already in
its state is given. According to Definition 3, the scheduling
state maintained by the online schedule needs to maintain
only a partial order among the set of scheduled operations,
as long as the partial order iscorrect, that is, it is consistent
with the partial order of the original precedence graph; and
incremental, that is, the partial order of the updated state is
consistent with that of the original state.

Residing in one extreme of this definition is the tradi-
tional scheduler, such as list scheduling and force-directed
scheduling, where the scheduling state is totally orderd. The
total ordering invariant turns out to be overly restrictive for
the later passes of the design process, which motivates the
class of schedulers called soft schedulers. The relaxed as-
sumption on the order between the scheduled operations in
the soft scheduler contributes to its flexibility, since the par-
tial order can be refined later. For example, the soft schedule
shown in Figure 1 (e) represents a partial order subject to
refinement, such as the introduction of spill code, register
moves or wiring delay. On the other hand, the partial order
maintained by a soft scheduler is usually “tighter” than that
of the original data flow graph, where the tighter part reflects
the design decisions made. For example, the edge between

vertex 2 and vertex 5 Figure 1 (e) is an artificial edge, intro-
duced in order to serialize the accesses of the common func-
tional unit shared by vertex 2 and vertex 5. The design of
an online schedule is then an art of imposing a structure, or
the set of additional invariants that the scheduling state has
to hold, to make the desired tradeoff between the flexibility,
decision completeness, and complexity of the algorithm.

4 Threaded Scheduling

4.1 Problem Formulation

One specific soft schedule formulation is defined as follows.

Definition 4 A threaded scheduleofG is an online sched-
uleF whose scheduling state is athreaded graph. A threaded
graph is a precedence graphTG whose vertices are covered
by a partitionT � 2VTG , such that8t 2 T;8p; q 2 t, either
p �TG q or q �TG p. 8t 2 T is called athread. A threaded
graphTG is said to beK-threaded if jT j = K.

According to Definition 4, there exist a fixed number
of threads in the scheduling state of a threaded schedule.
Every scheduled operation belongs to exactly one thread.
While operations across threads are partial ordered, within
a thread the operations are total ordered. In practice, each
thread corresponds to one functional unit in the datapath.
The task of scheduling one operation then consists of find-
ing the best thread, or the best functional unit, and finding
the best position within the thread, or the best way to seri-
alize the access of the functional unit, in order to optimize
some figure of merit. An alternatively view of the schedule
problem is toembedthe original precedence graph onto the
threaded structure by introducing artificial precedence rela-
tionship between operations such that some figure of merit
is optimized. For example, Figure 1 (e) is produced by a
threaded scheduler for the precedence graph in Figure 1 (a).
Here, vertex 3, 4, 6, and 7 belongs to one thread, and vertex
1, 2, and 5 belongs to another thread. From this threaded
graph, a hard schedule of 5 states can be constructed. How-
ever, if additional spill code as shown Figure 1 (c) is intro-
duced, the resultant threaded schedule leads to a hard sched-
ule of only 6 states. Similarly, if wire delay as shown in
Figure 1 (d) is introduced, the resultant threaded schedule
leads to a hard schedule of only 5 states.

Definition 5 A threaded scheduleF is said to beoptimal if
8S 2 SF ;8v 2 VS ;8F

0

6= F; kF (v; S)k � kF
0

(v; S)k.

The criterion established by Definition 5 optimizes per-
formance, where performance is measured in terms of the
diameter of the scheduling state, or the critical path length.
For simplicity of presentation, we assume each function unit
can implement all the operations, in other words, an oper-
ation can be partitioned to an arbitrary thread. Our results
apply equally well when this assumption is relaxed.

4.2 Algorithm Implementation

We present our implementation of the threaded schedule in
Algorithm 1 using an object oriented notation for the data
structure and a methemetical notation for the algorithm it-
self. Here, aThreadedGraph object implements a prece-
dence graph denoted bythis. Each vertex of the graph con-
tains the fieldin, which points to its immediate predeces-
sors; the fieldout, which points to its immediate succes-
sors; the fieldssdist andtdist, which record its source dis-
tance and sink distance respectively; the fieldthread, which
records a number ranging from0 to K � 1, to indicate the
thread to which the vertex belong; and the fielddelay, which
indicates the delay of the vertex. Initially, the graph contains
an array (of sizeK) of vertices, calleds, connected to an-
other array of vertices, calledt. The graph is updated every
time the methodschedule is called, with a new vertexv
added to the graph, and the edges modified. Theschedule
method proceeds by first calling theselect method, which
finds the best position to insert the new vertex; and then the
methodcommit, which performs the actual update of the
graph.

Based on Definition 5, a naive implementation of the
select method would evaluate every position to insert the
node by first speculatively updating the graph, and then com-
pute the diameter of the resultant graph. Finally, the position
which leads to the smallest diameter is returned. While up-
dating the graph takesO(jVGj) time, the diameter compu-
tation takesO(jVGj � jEGj) time, assuming Bellman-Ford
algorithm is used. Hence the total time spent on evaluating
all the position isO(jVGj2 � jEGj).

We can actually find the best position without the expen-
sive speculation by taking advantage of the special struc-
ture inherent in the threaded graph. In Algorithm 1, the
select method starts by labeling every vertex with its source
distance and sink distance. It then computes theintrinsic
source delayof the vertex to be added, which is the maxi-
mum source distance of its predecessors which are already
scheduled. It computes itsintrinsic sink delayas well. Note
that both the intrinsic source delay and sink delay are quan-
tities not dependent on the position to be selected. It then
evaluate every position by compute a cost which combines
the intrinsic delay information and the delay associated with
the position selected. Note that the cost computation can be
computed in constant time. The one with the minimum cost
can then be selected in linear time. The optimality theorem
in Section 4.3 shows that the best position selected according
to this algorithm indeed leads to the optimal solution defined
by Definition 5.

Thecommit method first linksv, the vertex to be added,
into the given threadk at the given position. For every prede-
cessorp of v in the original precedence graph, it then further
update the scheduling state ifp is already in the state, accord-
ing to if there exists an edgee from p to a vertexq in thread
k: If e exists and it happens thatq is beforev in threadk,
as shown in Figure 2 (a), then the current state remains un-

touched. On the other hand, ife does not exist, as shown
in Figure 2 (b), then an edge fromp to v is added. Other-
wise, e is replaced by an edge fromp to v. Similarly, the
current state is updated for every successor ofv, according
to rules shown in Figure 2 (d)(e)(f). The correctness theorem
of Section 4.3 shows that the scheduling state updated in the
fashion defined by this algorithm is indeed consistent with
Definition 4.

Algorithm 1
public classThreadedGraph f 1

static classVertex f 2
Vertex[] in = new Vertex[K]; 3
Vertex[] out = new Vertex[K]; 4
int sdist = 0; 5
int tdist = 0; 6
int thread; 7
int delay = 0; 8
g 9

Vertex[] s = new Vertex[K]; 10
Vertex[] t = new Vertex[K]; 11
Graph G; 12

13
public ThreadedGraph(Graph g) f 14
8k 2 [0;K � 1] f 15
s[k] = new Vertex(); s[k]:thread = k; 16
s[k]:in[k] = null; s[k]:out[k] = t[k]; 17
t[k] = new Vertex(); t[k]:thread = k; 18
t[k]:in[k] = s[k]; t[k]:out[k] = null; 19
G = g; 20
g 21

g 22
void commit(Vertex pos, Vertex v) f 23

int k = pos.thread; 24
v:thread = k; 25
pos:out[k]:in[k] = v; v:out[k] = pos:out[k]; 26
pos:out[k] = v; v:in[k] = pos; 27
8p; p �G v f 28

if (p:out[k] == nulljjv �this p:out[k]) f 29
if(p:out[k]! = null) 30
p:out[k]:in[p:thread] = null; 31

p:out[k] = v; v:in[p:thread] = p; 32
g 33

g 34
8q; v �G q f 35

if (q:in[k] == nulljjq:in[k] �this v) f 36
if(q:in[k]! = null) 37
q:in[k]:out[q:thread] = null; 38

q:in[k] = v; v:out[q:thread] = q; 39
g 40

g 41
g 42

void label() f 43
forwardLabel(); // s:t:8v 2 Vthis; v:sdist = k vk 44
backwardLabel(); // s:t:8v 2 Vthis; v:tdist = kv k 45
g 46

Vertex select(Vertex v) f 47
int curDelay; bestDelay = INFINITY ; 48
int sdist; tdist; intrinsicSrcDist; intrinsicSnkDist; 49
Vertex cur; best; 50

51
label(); 52
intrisicSrcDist = maxp2V

this
;p�Gvp:sdist; 53

intrisicSnkDist = maxq2V
this

;v�Gqq:tdist; 54
8k 2 [0;K � 1] 55

for (cur = s:out[k]; cur! = t[k]; cur = cur:out[k]) f 56
sdist = max(cur:sdist; intrinsicSrcDist); 57
tdist = max(cur:out[k]:tdist; intrinsicSnkDist); 58
curDelay = sdist + tdist + cur:delay; 59
if (!(v �G cur)&&!(cur:out[k] �G v) 60

&&curDelay<bestDelay) f 61
bestDelay = curDelay; best = cur; 62
g 63

g 64
return best; 65
g 66

public void schedule(Vertex v) f 67
Vertex pos; 68

69

if (v 2 Vthis) return ; 70
pos = select(v); 71
commit(pos; k; v); 72
g 73

g 74

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

prev

v

p

prev

v

p

prev

v

(a)

p.out[k] == null

(b)

p.out[k] < v p.out[k] > v q.in[k] > v q.in[k] == null q.in[k] < v

(c) (d) (e) (f)

prev

v

p

q

q

q

prev

v

q

prev

v

q

p

p

Figure 2:Update of scheduling state.

4.3 Algorithm Analysis

In this section, we study the correctness, optimality and com-
plexity of Algorithm 1. For space reason, Interest readers are
referred to [12] for proofs of claims. We first establish the
relationship between the precedence graphthis implemented
by Algorithm 1 and our definition of a threaded schedule.

Definition 6 A functionF : VG � SF 7! SF is a schedule
of precedence graphG implemented by Algorithm 1 if8S 2
SF is formed by the subgraph ofthis spanned byVthisnsnt.

4.3.1 Correctness

In order to show Algorithm 1 is indeed a threaded schedule,
we first prove a set of lemmas.

Lemma 1 LetF be the schedule of precedence graphG im-
plemented by Algorithm 1. Thenh�;�i 2 SF . 2

Lemma 2 Let F be the schedule of precedence graphG
implemented by Algorithm 1. And8S 2 SF ; v 2 VG, let
S
0

= F (v; S). Thenv 2 VS ! S
0

= S; and v =2 VS !
VS0 = VS [fvg; andp �S q ! p �S

0 q. 2

Lemma 3 LetF be the schedule of precedence graphG im-
plemented by Algorithm 1. Then8S 2 SF ;8p; q 2 VS ; p �G

q ! p �S q. 2

We can then prove the correctness theorem.

Theorem 1 Let F be the schedule of precedence graphG
implemented by Algorithm 1, thenF is a threaded schedule.
2

4.3.2 Optimality

By definition, a threaded schedule is incremental, we can
hence assert that the diameter of its scheduling state is mono-
tonic:

Lemma 4 Let F be a threaded schedule of the precedence
graphG. Then8v 2 VG;8S 2 SF ; kSk � kF (v; S)k. 2

By definition, the distance of a vertex in a precedence
graph can be computed as the sum of the maximum of the
source distance of its predecessors, the maximum of the sink
distance of its successors, and its own delay:

Lemma 5 LetG be a precedence graph. Then8v 2 VG; k
v k = DG(v) +maxp�Gvk pk+maxv�Gqkq k.
2

We then make the following observations in Lemma 6,
which states that if a new vertexv is scheduled by Algo-
rithm 1, then the source distance of its predecessors will not
change their values. Similarly, the sink distance of its suc-
cessors will not change their values.

Lemma 6 LetF be the schedule of precedence graphG im-
plemented by Algorithm 1. Ifp 2 VS and p �G v, then
k pkF (v;S) = k pkS. If q 2 VS and v �G q, then
kq kF (v;S) = kq kS. 2

According to Lemma 5, the distance of the new vertex
scheduled in the new state can be computed by just look-
ing at the old state. We can hence believe that Algorithm 1
ensures that the distance of the new vertex scheduled is min-
imum.

Corollary 1 Let F be the schedule of precedence graphG
implemented by Algorithm 1. Then8F

0

6= F; S 2 SF ; v 2
Vg , k v kF (v;S) � k v kF 0 (v;S). 2

We can then assert the optimality theorem:

Theorem 2 Let F be the schedule of precedence graphG
implemented by Algorithm 1, thenF is optimal in the sense
of Definition 5.2

4.3.3 Complexity

The algorithm left unspecified in Algorithm 1 isforwardLabel
andbackwardLabel, which computes the source and sink
distance of each vertex in the scheduling state. We claim that
they can be computed in linear time by exploiting the fact
that the maximum degree of a threaded graph maintained by
Algorithm 1 isK.

Lemma 7 Let F be the schedule of precedence graphG
implemented by Algorithm 1, then8S 2 SF ;8v 2 VS ,
j(p; v) 2 ES j � K, andj(v; q) 2 ES j � K. 2

It is hence trivial to prove the complexity theorem.

Theorem 3 Let F be the schedule of precedence graphG
implemented by Algorithm 1. Then8S 2 SF ;8v 2 VG,
F (v; S) can be computed inO(jVGj) time.2

BM Sched. Alg. Results
2+/-,2* 4+/-, 4* 2+/, 1*

meta sched1 8 6 14
meta sched2 8 6 14

HAL meta sched3 8 6 13
meta sched4 8 6 13

list sched 8 6 13

meta sched1 19 11 34
meta sched2 19 11 34

AR meta sched3 19 11 34
meta sched4 19 11 34

list sched 19 11 34

meta sched1 19 17 24
meta sched2 19 17 24

EF meta sched3 19 17 24
meta sched4 19 17 24

list sched 19 17 24

meta sched1 11 7 19
meta sched2 11 7 19

FIR meta sched3 11 7 19
meta sched4 11 7 19

list sched 11 7 19

Figure 3:Scheduling results of benchmarks under resource constraints.

5 Experimental Result

The criterion established by Definition 5 is in the sense of
online optimality. Schedulers constructed with this criterion
only promise the best result for small changes of a sched-
ule. Theoretically, the optimality of a schedule built from
scratch, cannot be guaranteed with an arbitary meta sched-
ule. In practice, many meta schedules can lead to results
comparable to the traditional list scheduler.

Figure 3 lists the experimental result of several bench-
marks by applying Algorithm 1 with different meta sched-
ule. Meta schedule 1 traverses the precedence graph with
the depth first order. Meta schedule 2 follows a topological
order. Meta schedule 3 partitions the operations into paths,
and then feeds the online scheduler with paths ordered by
their length. Meta schedule 4 follows an order similar to
those determined by the list scheduling heuristics. The ex-
periments are repeated on the benchmarks for different re-
source constraints. The results are compared with the tradi-
tional list scheduler. With few exceptions, we observe that
the threaded scheduler is able to achieve the same result as
the list scheduler with a number of meta schedules.

6 Conclusion and Outlook

We have presented in this paper a new concept called soft
scheduling and theoretical results for a linear, online op-
timal algorithm called threaded scheduling. While experi-
mental results show that the performance of full schedulers
engined with threaded scheduling matches those traditional
hard schedulers, our algorithm enjoys unprecedented flexi-
bilities which are valuable in a number of occasions. First,
the result of the schedule can be refined and are hence im-
mune to the phase coupling problem or engineering changes.
Second, the meta schedule, or the order of operations to feed
into our algorithm, is flexible. It can hence be embedded as

a kernel into other algorithms which need to take schedul-
ing effect into account, or need to incrementally change the
schedule. For example, polynomial time algorithms can be
constructed for both the problem of resource constrained
technology mapping and resource constrained retiming.

References

[1] D. Gajski, N. Dutt, A. Wu, S. Lin. High Level Synthe-
sis: Introduction to Chip and System Design, Kluwer
Academic Publishers, 1992.

[2] J. Nestor and D.E Thomas.Behavioral Synthesis with In-
terfaces. Proceedings of the IEEE Conference on Com-
puter Aided Design, November 1986.

[3] P.G. Paulin, J.P. Knight.Force-Directed Scheduling for
the Behavioral Synthesis of ASIC’s. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems, June 1989.

[4] D. Ku, G. De Micheli.Relative Scheduling under Tim-
ing Constraints: Algorithms for High-Level Synthesis of
Digital Circuits. IEEE Transactions on CAD/ICAS, Vol.
11, No. 6, April 1992.

[5] R. Camposano.Path-Based Scheduling for Synthesis.
IEEE Transaction on CAD/ICAS, Vol. 10, No.1, Jan-
uary, 1991.

[6] C.H. Gebotys, M.I. Elmasry.Simultaneous Scheduling
and Allocation for Cost Constrained Optimal Architec-
tural Synthesis. Proceedings of 28th DAC, 1991.

[7] B. Landwehr, P. Marwedel, R. D¨omer.Optimum Simul-
taneous Scheduling, Allocation and Resource Binding
Based on Integer Programming. Proceedings of Euro-
DAC, 1994.

[8] J. Weng, A.C. Parker.3D Scheduling: High-Level Syn-
thesis with Floorplanning. Proceedings of DAC, 1991.

[9] C. Ewering.Automatic High-Level Synthesis of Parti-
tioned Busses. Proceedings of EuroDAC, 1990.

[10] M. Xu, F.J. Kurdahi.Layout-driven RTL Binding Tech-
niques for High-Level Synthesis. Proceedings of 9th
ISSS, 1996.

[11] R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman,
F.K. Zadeck.Efficiently Computing Static Single Assign-
ment Form and the Control Dependence Graph.ACM
Transactions on Programming Languages and Systems,
October, 1991.

[12] J. Zhu, D.D. Gajski.Soft Scheduling in High Level
Synthesis.Technical Report ICS-98-37, Information and
Computer Science, UC, Irvine, August, 1998.

