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Abstract

In this paper, we develop a formal framework to widen the
scope of retargetable compilation. The goal is achieved by the
unification of architectural models for both the processor archi-
tecture and the ASIC architecture. This framework enables the
unified treatment of code generation and behavioral synthesis, and
is being used in our experimental codesign environment to drive
system-on-a-chip synthesis from an object oriented language.

1 Introduction

For billion-transistor chip design, synthesis, reuse, and explo-
ration are three important vehicles to help reduce design effort and
improve system performance. In this setting, the conventional wis-
dom of Y chart [1], which defines synthesis as the generation of
structure, or architecture, from the behavior, can be refined as the
generation of low level representation from the behavior, tocon-
figure a reused architecture. This view is readily understood for
programmable devices, where software compilation is the gener-
ation of instruction stream to “configure” the reused processors.
With a little bit more thinking, behavior synthesis can be viewed
as generation of a finite state machine to “configure” the data path,
where the data path itself can be parameterized in terms of the
numbers and types of the units available. When the system design
starts from a uniform specification in a programming language, the
entire system synthesis task can then be best viewed as the familiar
retargetable compilation.

It is thus necessary to establish thearchitectural model before
any synthesis tasks can be carried out. Note that the purpose of
an architectural model is neither collecting every information one
need to build the actual hardware, for example, the detailed netlist;
nor repeating every information one can find on the traditional ar-
chitectural manual. Instead, the architecture model should serve
as guidance to the corresponding synthesis tools.

In this paper, we demonstrate the first step toward our goal of
developing formal architectural model for system-on-a-chip by a
unified treatment of its most important components: the instruc-
tion set architecture (ISA) for processor and finite state machine
with a datapath architecture (FSMD) [14] for ASIC. The rest of
the paper is organized as follows. Section 2 reviews the related
works and highlight our contributions. Section 3 discusses the be-
havioral models that are relevant to the subsequent discussion of
architecture models. Section 4 discusses the instruction set archi-
tecture. Section 5 discusses FSMD architecture. Section 6 de-
scribes the algorithms which unite the FSMD and ISA architec-
ture. Due to space reasons, detailed illustrations and algorithms
are omitted. Interested readers are referred to [15].

2 Related Works and Contributions

The earliest forms of explicit architecture model descriptions
are various code generator’s generator (CGG) [2] [3] [4]. The
CGGs typically use tree pattern specifications to drive the auto-
matic generation of the instruction selector. However, such spec-
ification is often tied to a particular compiler implementation, for
example, a particular intermediate representation. A more recent
effort is the the set of computer system description languages in the
Zephra project, where [5] is devoted to the description of binary
encoding of instruction set, [6] focuses on the semantics of in-
struction sets, and [7] describes the calling conventions. However,
the models are not integrated and different aspects of the same ar-
chitecture are scattered in different specifications in different lan-
guages. In addition, there is no explicit support of instruction level
parallelism (ILP). The machine description language MDES [8]
of the impact compiler, seems to be the most sophisticated in this
aspect. In MDES, the architecture model is accurate enough to de-
scribe the superscalar, VLIW, as well as new architecture features
such as predicated and speculative execution.

Architecture descriptions for irregular processors, for exam-
ple, the DSP processors and and application specific instruction
set processors (ASIPs), also receive intensive interest in the recent
years. Representative works are MIMOLA [9], where a hardware
description language is used to describe the structural model of
the processor; as well as nML [12] and ISDL [11], which take
a more traditional approach. Representing a more recent effort,
the Expression [13] architecture description language uses both
the behavioral level model and the structural model to describes
the processor architecture. In addition to the accurate modeling of



ILP, Expression also features the explicit description of memory
hierarchy.

A widely used ASIC architecture model is FSMD, where a for-
mal definition can be found in [14]. However, the simple model
given in [14] does not handle advanced features such as procedure
call. How the ASIC interacts with its envioronment is also left
unspecified. Furthermore, the model serves better as description
of the synthesized ASIC, rather than the model which guides syn-
thesis. In general, the architectural information captured in most
behavioral synthesis systems are limited to allocation table, in the
form of graphical user interface or compiler pragmas. Little work
has been done on defining architectural model flexible enough to
describe a partially constrained architecture.

Our approach, as presented in this paper, is unique in the fol-
lowing aspect:

� completeness: unlike previous works discussed, which fo-
cus on the ISA architecture, our model also covers the FSMD
architecture. Our future work will extend this work to in-
clude the communication architecture, with a unified treat-
ment of the local communications, that is, the calling con-
ventions, as well as the system wide communications.

� uniformness: Our model unifies the apparently different
FSMD and ISA architecture, this effectively helps to unify
the software compiler and behavioral synthesizer. In fact,
under the retargetable compiler infrastructure of our exper-
imental codesign platform, behavioral synthesizer appears
just as yet another target in the backend.

� formality: Our model is the first to formally define the es-
sential elements as well as their relationship in the architec-
ture. Without a formal model, the architecture specifier
tends to be overwhelmed by the language syntax and the
amount of information one has to capture in a typical archi-
tecture, and a clean interface between the architectural model
and the synthesis tool is difficult to define.

Despite its uniqueness, our work is in many ways inspired by
the previous works. The concept of implicitly representing the
instruction set of a processor using a structural description, was
first proposed in MIMOLA [9] and detailed in [10]. Expression
[13] also uses the same concept to reduce the size of processor
specification. Our work differs in that we extend this concept to
the FSMD architecture, and our structural specification is abstract,
parameterized and partially constrained. Our model for ILP is an
abstraction from the one in MDES [8].

3 Behavioral Model

As we discussed before, it is important in the architectural
model to associate architecture resource with the behavior piece
that it can implement. We define our model of behavior piece in
terms of trees.

Definition 1 A treeover an alphabetV is a member of

set TreehV i f

kind : V ;
rank : int;
kids : TreehV i�;
g

, wherekind is the type of the tree root,kids is a sequence of trees
representing the successors of the root, andrank is the number of
the successors.2

A piece of behavior, called thebehavior pattern, can then be
defined as follows:

Definition 2 A behavior patternlfs rhs over theterminal set
�t andnonterminalset�n is a member of

set BP h�t;�ni f

lfs : �n;
rhs : Treeh�t [ �ni;
g

. The set of nonterminal that appears inrhs is called theoperands
of the tree. Note that8n 2 �n; n:rank = 0. And typically, the
terminal set�t is taken asO� T , whereO is the set ofopcodes,
andT is the set ofdata types. 2

Definition 2 is adopted by many tree-based CGGs such as
BURG. Typically, the nonterminal set�t is taken as thevalue
holders, such as storages, in the architecture model.

4 ISA Architecture

An instruction set architecture is characterized by its instruc-
tions, storages, the instruction level parallelism, as well as commu-
nication schemes such as calling conventions. Definition 3 gives
our formal model of an ISA architecture.

Definition 3 An ISA architectural modelis a member of

set ISA f

m;n : int;
S : 2Store;
I : 2Instrn;
SC : 2I�I�int;
TC : I � I 7! int � int� int;
CA : COMM ;
g

wherem is the size of the instruction word;n is the number of
pipeline stages;S is the set ofstores; I is the set of instructions;
SC is thespatial constraint, TC is thetemporal constraint, and
CA is the communication architecture.2

To simply the model, we assume that the size of the instruction
word is constant: For example, for a typical 32-bit RISC processor,
m is 32; for a four-issue VLIW processor,m maybe 128; for a
four-issue superscalar processor,m is 32. The irregularity of CISC
processors causes some problems, but it can be easily handled in
the implementation. The model for communication architecture
COMM , however, will not be covered in this paper.



4.1 Stores

Much the same way as the addressing modes one can find in
the architectural manual, The stores (Definition 4) model proces-
sor storage resources such as register files and memories. The
information of interest is the set of cells, which is in turn defined
in Definition 5, that it contains and the way they can beaccessed
andallocated.

Definition 4 A store is a member of set

set Store f

C : 2Cell;
base : Cell;
offset : int;
AS : bit�;
AF : AS � T 7! AS � int;
g

, whereC is the set ofcells that the store contains;base is a cell
representing the base of addressing;offset is an integer repre-
senting the additional offset used in the addressing;AS is a finite
set ofallocation state; andAF is theallocation function. 2

Definition 5 A cell is a member of

set Cell f

s : Store;
n : int;
g

, wheres is the store to which it belongs,n is the number repre-
senting its offset in the store.2

A store is called afinite store if the number of its cellsjCj is
finite, it is calledinfinite store otherwise. Register files are usu-
ally finite stores since they contain a fixed number of cells: the
registers. The immediate stores, fall into the category of infinite
stores, since their cells are created “on-demand”. Although mem-
ory stores are physically finite, they are conceptually simpler to be
considered as infinite. Note that the fieldsbase andoffset make
sense only in the memory store.

The allocation of cells in each store is characterized by its al-
location state space. The allocation state space of a register file
can be modeled as a bit vector, where each bit corresponds to a
register of the smallest granularity. The allocation state space of a
memory store is usually modeled after the alignment status of the
current available memory location.

Given the current allocation state and a data type, the allocation
function can allocate a new cell by updating the allocation state
and output the allocated cell number.

4.2 Instructions

The instruction (Definition 6) models processor computational
resources. The information of concern is its semantics and binary
encoding. Modeled as a behavioral pattern, the instruction seman-
tics helps to identify the behavior piece that the instruction can im-
plement. When a behavior piece is identified to be implemented by

a particular instruction, the storage allocation has to be performed
to determine thedestination, which is essentially a cell within the
store corresponding to the left hand side of the pattern; and the set
of sources, which are cells within the stores corresponding to the
operands of the pattern.

The instruction encoding is modeled by theopcode, which is
a bit pattern of sizem; thedest, which is a pair of fields (Defini-
tion 7) for the base and offset of the instruction destination respec-
tively; andsrcs, which are field pairs for the bases of offsets of
instruction sources.

Definition 6 An instruction is a member of set

set Instrn f

pattern : BP hO � T [ Storei;
opcode : bit�;
dest : Field� Field;
srcs : Field� Field�;
g

, wherepattern is the instruction semantics,opcode; dest; srcs
is the instruction encoding.2

The field is characterized by its offset and width.

Definition 7 A field is a member of

set Field f

offset; width : int;
g

, whereoffset is its offset within the instruction word, andwidth
is the width of the field.2

4.3 Constraints

The temporal constraint models temporal parallelism between
the instructions. Modern microprocessors are always pipelined,
and hence allow the interleaved execution of instructions. How-
ever, the possibility of interleaving is limited by various forms
of dependency between instructions: the flow dependency (read
after write), the anti dependency (write after read), and the out-
put dependency (write after write). The situation is further com-
plicated by the processor’s capability of bypassing. To make
things even worse, some processors allow bypassing within the
same functional unit, but not across. Our model of temporal con-
straint maps any pair of instructioni1; i2, into a triple of numbers
TC(i1; i2) = hdflow; danti; doutputi, where each number indi-
cates the minimum number of cycles thati2 should be scheduled
afteri1 for flow, anti and data dependency respectively.

The spatial constraint models spatial parallelism between the
instructions. Modern microprocessors, whether a superscalar or
VLIW architecture, contains multiple functional units to allow the
simultaneous execution of instructions. Such parallelism is limited
only by the processor resources. An entryhi1; i2; di in the spatial
constraints indicates thati2 cannot be scheduled atc cycles later
than i1. On the other hand, if8d; hi1; i2; di =2 SC, then i1; i2
can be schedule with a delay of any cycles, or, can be executed in
parallel. Note that it is always the case thatd � 0 ^ d < n.



5 FSMD Architecture

An ASIC is typically implemented in the FSMD architecture,
which consists of a control path and a data path. The control path
implements a finite state machine which generates a set of con-
trol signals, called the control word, at every clock cycle . The
data path performs the computational tasks specified by the con-
trol signals by transforming data values in its storages.

Our formal model of FSMD is given in Definition 8, which
specifies the control path implementation style, the set of units
and buses in the data path, as well as their interconnection. The
implementation style can be random logic based, PLA based, or
microcode based.

Definition 8 AnFSMD Architectural Model is a member of

set FSMD f

c : frandom; pla; romg;
U : 2Unit;
B : 2Bus;
PMF :

S
u2U u:P 7! B;

CA : COMM ;
g

, wherec is the control path implementation style,U is the set of
units,B is the set of buses,PMF is the port map function, and
CA is the communication architecture.2

The data path contains a network of functional units, such as
ALUs and multipliers; storage units, such as register files or mem-
ories; and steering units such as multiplexers and bus drivers. Def-
inition 9 provides an abstraction for all of them. A unit contains a
set of input and output data ports, which are eventually mapped to
the buses in the data path. It also contains a set of control fields,
which are connected to the control signals. For a storage unit, it
also contains a store, as defined in Definition 4. The functions that
the unit is able to perform are specified by its operations.

Definition 9 A unit is a member of

set Unit f

P : 2Port;
F : 2Field;
s : Store;
OP : 2Operation;
g

, whereP is a set of ports;F is the set of control fields,s is its
associated store,OP is a set of operations.2

A control field (Definition 7) is characterized by its offset and
width in the control word. While the width is a fixed value, the
offset is determined only when the associated unit is instantiated
in an FSMD.

The operations that a unit can perform are characterized by the
behavior patterns, and the corresponding control configurations.
Note that the nonterminal set of the behavior pattern is limited to
the ports and store of the unit. The control configuration is char-
acterized by a set of control fields, and the corresponding methods
to compute the control values, which are specified either directly

by integer numbers; or by stores. For those specified as stores,
the control values are taken as the cell numbers as the results of
storage allocation.

Definition 10 Anoperationof unitu is a member of

set Operation f

p : BP hO � T; u:P [ fu:sgi;
c : 2Fu�(int[Store);
g

, wherep is its behavior pattern,f is the control configuration in
order to enable the operation.2

p1v1

p1

c

p2

Immediate Store Bus Driver

is = {
 { p1 }, { v1 }, immed, {
    v1(immed) : p1<−int.cpy(immed)
    }
  }

is = {
 { p1, p2 }, { c }, ^ {
    c(1) : p2 <− int.cpy(p1)
    }
  }

p1 p2

p3

p1 p2

p3

p1
p2
p3

a1
a2
a3

MultiplexerALU

alu = {
  {p1,p2,p3 }, {opcode}, ^, {
    op(00) : p3<−int.add(p1, p2),
      op(01) : p3<−int.sub(p1, p2),
      op(10) : p3<−int.and( p1, p2)
      ...
      }
  }

Register File

mux = {
  {p1, p2, p3}, { sel }, ^, {
    sel(0) : p3 <− int.cpy(p1),
    sel(1) : p3 <− int.cpy(p2)
    }
  }

rf = {
  {p1, p2, p3}, {a1, a2, a3}, reg, {
    a1(reg) : p1 <− int.cpy(reg),
    a2(reg) : p2 <− int.cpy(reg),
    a3(reg) : s <− int.cpy(p3)
    }
  }

Figure 1. Units.

Example 1 Figure 1 shows a unit library containing an ALU, a
multiplexer, a register file and a bus driver.2

In our model, the notion of bus goes beyond the physical wires.
They are used to indicate the possible data transfers between the
units. A shared bus does imply one physical interconnection be-
tween the set of units, but the corresponding steering units such
as bus drives and keepers can be automatically generated. On the
other hand, an on-demand bus implies as many point-to-point con-
nection as needed by the behavior.

Definition 11 A bus is a member of

set Bus f

type : fshared; on� demandg;
g

wheretype is the type of the bus.2



6 Bridging the Gap between FSMD and ISA

The FSMD model defined in Section 5 has an apparently dif-
ferent structure than the ISA model defined in Section 4. To
perform the mapping of behaviors to these two architecture, the
code generator (for the ISA), and the behavioral synthesizer (for
the FSMD), have to go through similar procedures such as con-
trol/dataflow analysis, target independent optimzations, instruc-
tion selection (binding), scheduling and emission. Unifying these
two architectural models can help unify these procedures, and con-
sequently merge the different tools into one. Obviously, such uni-
fication can greatly reduce the development effort, and simply the
user interface of the synthesis tool.

This goal is achieved by deriving an ISA model
hm;n; S; I; IE; SC; TC;CAi from the FSMD model
hc; U;B; PMF;CAi.

In the derived ISA model, the instruction word is viewed as the
control word of the FSMD model. Hencen can be easily com-
puted by summing up the width of all the control fields, whose
side effect is to determine the offset of each control field of the
FSMD units [15].

The set of storesS can be simply computed by enumerating all
the stores associated with the FSMD units [15].

The problem left is the derivation of the set of instructions as
well as the spatial constraints. The problem can be solved by
first deriving thepartial instruction sets associated with the value
holders, that is, the buses and the stores of the FSMD. Intuitively, a
partial instruction stands for a storage-to-storage or storage-to-bus
operation. In other words, a partial instruction associated with a
value holder has a behavior patternlhs  rhs which maintains
the following invariant:lhsmust be equal to the value holder itself
and each operand ofrhs must be stores. The partial instruction is
also associated with encoding information as well as its resource
usage, which is essentially a set of buses or units.

Definition 12 A partial instruction in an FSMD architecture
hc; U;B; PMP;COMMi is a member of

set PI f

p : BP hO � T;
S
u2U u:P [ fu:sju 2 Ugi;

opcode : bit�;
dest : Field;
srcs : Field�;
R : B [ U ;
g

, wherep is the behavior pattern,opcode; dest; srcs models the
encoding,R is the set of resources used to execute the partial in-
struction.

The partial instruction set of each value holder can be derived
following a topological order, that is, if value holdera is used in an
operation of a unit to compute a value in the value holderb, then
the partial instruction set ofa is first computed [15].

Each instruction can be mapped to a partial instruction. Given
a set of instructions, and its mapping to the partial instructions,
the spatial constraints of the instruction set can be computed by
examining if there are resource conflicts between any pair of in-
structions [15].

The instruction set can be derived by enumerating the par-
tial instruction set associated with the stores of the FSMD. Since
FSMD does not involve pipelined control, it is easy to conclude
thatm = 1 andTC = �. The communication architecture can
be directly inherited. The other information needed for an ISA
model can be derived by the methods discussed [15].

7 Conclusion

We have presented the formal models for the ISA and FSMD
architectures. These formal models can serve as the basis of archi-
tecture description for an retargetable compiler environment, and
represents the first step towards unifying code generation and be-
havioral synthesis.
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